MAT 545: Complex Geometry Problem Set 5 Solutions

Problem 1 (10 pts)

Suppose (M, J) is an almost complex manifold, g is a J-compatible Riemannian metric on M, and ∇ is the Levi-Civita connection of g (thus, J is a complex structure in the fibers of the vector bundle $TM \longrightarrow M$ which preserves g; ∇ is g-compatible and $[X,Y] = \nabla_X Y - \nabla_Y X$ for any two vector fields X, Y on M). Show that $\nabla J = 0$ if and only if (M, J, g) is Kahler (you can use either of the equivalent conditions in PS2,#1 as the integrability criterion for J).

The nondegenerate 2-form determined by (g, J) is given by

$$\omega(X,Y) = g(JX,Y).$$

Given a fixed point $p \in M$, let X, Y, Z be vector fields on M such that

$$\nabla X|_p = 0, \quad \nabla Y|_p = 0, \quad \nabla Z|_p = 0;$$

$$\implies \quad \nabla (JX)|_p = (\nabla J)_p X_p, \quad \nabla (JY)|_p = (\nabla J)_p Y_p \quad \nabla (JZ)|_p = (\nabla J)_p Z_p,$$

$$[X,Y]_p = 0, \quad [X,Z]_p = 0, \quad [Y,Z]_p = 0.$$

(i) Suppose $\nabla J = 0$. We first show that the Nijenhuis tensor of J,

$$N_J(X,Y) \equiv \frac{1}{2} \Big([X,Y] + J[X,JY] + J[JX,Y] - [JX,JY] \Big)$$

vanishes. With X and Y as above,

$$N_J(X,Y)_p = \left(J(\nabla_X J)Y - J(\nabla_Y J)X - (\nabla_J XJ)Y + (\nabla_J YJ)X\right)_p = 0,$$

since $\nabla J = 0$; thus, (M, J) is a complex manifold. We next show that $d\omega = 0$. With X, Y, Z as above

$$\begin{aligned} \{d\omega\}_p(X,Y,Z) \\ &= \left(X\omega(Y,Z) + Y\omega(Z,X) + Z\omega(X,Y) - \omega([X,Y],Z) - \omega([Y,Z],X) - \omega([Z,X],Y)\right)_p \\ &= \left(Xg(JY,Z) + Yg(JZ,X) + Zg(JX,Y)\right)_p \\ &= \left(g((\nabla_X J)Y,Z) + g((\nabla_Y J)Z,X) + g((\nabla_Z J)X,Y)\right)_p = 0, \end{aligned}$$

since $\nabla J = 0$. Thus, (M, ω) is a symplectic manifold, and (M, g, J) is Kahler.

(ii) Suppose (M, g, J) is Kahler; we show that $\nabla J = 0$.

Solution (a): By Lemma in G&H, p107, there is a complex coordinate system $z = (z_1, \ldots, z_m)$, with $z_k = x_k + iy_k$, centered around $p \in M$ such that

$$g = \sum_{k} \left(dx_k \otimes dx_k + dy_k \otimes dy_k \right) + O(z^2).$$

Since ∇ is determined by the values of g and of its first derivatives, $(\nabla T)_p$ agrees with $(DT)_p$ for every tensor T, where D is the connection for the flat metric. In particular, $(\nabla J)_p = 0$.

Solution (b): From the proof in part (i),

$$N_J(X,Y)_p = \left(J(\nabla_X J)Y - J(\nabla_Y J)X - (\nabla_J XJ)Y + (\nabla_J YJ)X\right)_p;$$

$$\{d\omega\}_p(X,Y,Z) = \left(g((\nabla_X J)Y,Z) + g((\nabla_Y J)Z,X) + g((\nabla_Z J)X,Y)\right)_p.$$

Since $J^2 = -\mathrm{I}d$, $g(J \cdot, \cdot) = -g(\cdot, J \cdot)$, and ∇ is g-compatible,

$$J(\nabla J) = -(\nabla J)J, \qquad g\big((\nabla_X J)Y, Z\big) = -g\big(Y, (\nabla_X J)Z\big).$$

This all gives

$$2g((\nabla_Z J)X, JY) = g(N_J(X, Y), Z) + d\omega(JX, Y, Z) + d\omega(X, JY, Z).$$

Since M is Kahler, $N_J, d\omega = 0$ and thus ∇J .

Solution (c): Let D be the metric connection in the holomorphic tangent $(TM, J) \longrightarrow M$ with the hermitian inner-product h by g; in particular, DJ=0. It is sufficient to show that $D=\nabla$, i.e. D is g-compatible and torsion-free. The former is immediate, since D is h-compatible. Since M is Kahler, the "torsion" τ of D defined by (*) in G&H, p76, is zero (G&H, p107). It is thus sufficient to check that

$$\tau(X,Y) = D_X Y - D_Y X - [X,Y]$$

for any two vector fields X, Y on M. Let v_1, \ldots, v_m be a local *h*-orthonormal \mathbb{C} -frame for (TM, J) and $\varphi_1, \ldots, \varphi_m$ the dual frame for $(T^*M, J) = (T^*M^{1,0}, \mathfrak{i})$. Then, for each *i*

$$d\varphi_i = \sum_j \psi_{ij} \wedge \varphi_j + \tau_i$$

for unique 1-forms ψ_{ij} and (2,0)-form τ_i such that $\psi_{ji} = -\bar{\psi}_{ij}$. Furthermore,

$$Dv_i = -\sum_k \psi_{ki} \otimes v_k$$

for all i; see p77. Thus,

$$\varphi_k (D_{v_i} v_j - D_{v_j} v_i - [v_i, v_j]) = -\psi_{kj} (v_i) + \psi_{ki} (v_j) + \{ d\varphi_k \} (v_i, v_j)$$

= $-\psi_{kj} (v_i) + \psi_{ki} (v_j) + (\psi_{kj} (v_i) - \psi_{ki} (v_j) + \tau_k (v_i, v_j)) = \tau_k (v_i, v_j).$

Thus, τ_k is indeed the v_k -component of the usual torsion and its vanishing implies that D is the Levi-Civita connection for (M, g, J).

Problem 3 (5 pts)

Let $M_n = (\mathbb{C}^n - 0) / \sim$, where $z \sim 2^k z$ for every $k \in \mathbb{Z}$. (a) Show that M_n is a complex manifold (with the complex structure inherited from \mathbb{C}^n). What simple smooth manifold is M_n diffeomorphic to?

(b) Give at least two reasons why M_n does not admit a Kahler metric for $n \ge 2$.

(a) Let S^{2n-1} denote the unit sphere in \mathbb{C}^n . The diffeomorphism

$$f: \mathbb{R} \times S^{2n-1} \longrightarrow \mathbb{C}^n - 0, \qquad (s, w) \longrightarrow 2^s w,$$

is \mathbb{Z} -equivariant with respect to the above action on $\mathbb{C}^n - 0$ and the action

$$k \cdot (s, z) = (s \! + \! k, z)$$

on $\mathbb{R} \times S^{2n-1}$. Thus, M_n is diffeomorphic to $(\mathbb{R}/\mathbb{Z}) \times S^{2n-1}$. Since the standard action of \mathbb{Z} on \mathbb{R} is properly discontinuous, so is the action of \mathbb{Z} on $\mathbb{C}^n - 0$. Thus, the quotient map $q: \mathbb{C}^n - 0 \longrightarrow M_n$ is a covering projection. Since \mathbb{Z} acts by holomorphic transformations on $\mathbb{C}^n - 0$, i.e. the complex structure on $\mathbb{C}^n - 0$ is preserved by the \mathbb{Z} -action, the complex structure on $\mathbb{C}^n - 0$ descends to a complex structure on the quotient M_n .

(b) If $n \ge 2$, by the Kunneth formula

$$H^{1}_{deR}(M_{n};\mathbb{R}) \approx \mathbb{R}, \qquad H^{2}_{deR}(M_{n};\mathbb{R}) = \{0\}, \qquad H_{2}(M_{n};\mathbb{Z}) = \{0\}$$

However, the odd betti numbers of a compact Kahler manifolds are even, while the second betti number is non-zero; this contradicts the first statements above. The third statement implies that the complex one-dimensional tori $q(L-0) \subset M_n$, where $L \subset M_n$ is a one-dimensional linear subspace, are trivial in the homology of M; this is yet another reason that M_n is not Kahler.

Problem 4 (10 pts)

Let $M = \mathbb{R}^4 / \sim$, where

$$(s,t,x,y) \sim (s+k,t+l,x+m,y+lx+n) \qquad \forall \ (s,t,x,y) \in \mathbb{R}^4, \ (k,l,m,n) \in \mathbb{Z}^4.$$

Show that

(a) this is an equivalence relation;

(b) M is a compact symplectic manifold (with the symplectic form, i.e. closed non-degenerate 2-form, inherited from the standard symplectic form on \mathbb{R}^4 , i.e. $ds \wedge dt + dx \wedge dy$).

(c) M does not admit an integrable complex structure compatible with this symplectic form. Note 1: this is the first known example (due to W. Thurston'76) of a symplectic manifold that admits no Kahler structure.

Note 2: in contrast, every symplectic manifold (M, ω) admits an almost complex structure compatible with ω ; the space of ω -compatible almost complex structures is contractible.

For each $(k, l, m, n) \in \mathbb{Z}^4$, define

$$\varphi_{(k,l,m,n)} \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^4 \qquad \text{by} \qquad \varphi_{(k,l,m,n)}(s,t,x,y) = \big(s+k,t+l,x+m,y+lx+n\big).$$

Then, $(s,t,x,y) \sim (s',t',x',y')$ if and only if $(s',t',x',y') = \varphi_{(k,l,m,n)}(s,t,x,y)$ for some $(k,l,m,n) \in \mathbb{Z}^4$.

(a) Reflexivity: $(s, t, x, y) = \varphi_{(0,0,0,0)}(s, t, x, y)$. Symmetry: if $(s', t', x', y') = \varphi_{(k,l,m,n)}(s, t, x, y)$, then

$$(s, t, x, y) = \varphi_{(-k, -l, -m, -n+lm)}(s', t', x', y');$$

Transitivity: if $(s_i, t_i, x_i, y_i) = \varphi_{(k_i, l_i, m_i, n_i)}(s_{i-1}, t_{i-1}, x_{i-1}, y_{i-1})$ for i = 0, 1, then

$$(s_2, t_2, x_2, y_2) = \varphi_{(k_1 + k_2, l_1 + l_2, m_1 + m_2, n_1 + n_2 + m_1 l_2)}(s_0, t_0, x_0, y_0)$$

It follows that M is the quotient of \mathbb{R} by the group $G = \mathbb{Z}^4$ with the composition law

$$(k_1, l_1, m_1, n_1) \cdot (k_2, l_2, m_2, n_2) = (k_1 + k_2, l_1 + l_2, m_1 + m_2, n_1 + n_2 + m_1 l_2),$$

which is acting on the right.

(b) For every $(s, t, x, y) \in \mathbb{R}^4$, there exists $(k, l, m, n) \in \mathbb{Z}^4$ such that

$$\varphi_{(k,l,m,n)}(s,t,x,y) \in [0,1]^4$$

Since $[0,1]^4$ is compact, it follows that so is M. The action group G on \mathbb{R}^4 is properly discontionuos: if p is any point and $B_p(1/2)$ is the open ball of radius 1/2 around p, in the square or round metric, then

$$B_p(1/2) \cap \varphi_{(k,l,m,n)} \big(B_p(1/2) \big) = \emptyset \qquad \forall (k,l,m,n) \in \mathbb{Z}^4 - 0.$$

Thus, the quotient map $q: \mathbb{R}^4 \longrightarrow M$ is a covering projection. Since G acts on \mathbb{R}^4 by diffeomorphisms, the smooth structure on \mathbb{R}^4 , descends to M. Since

$$\varphi_{k,l,m,n}^*(ds \wedge dt + dx \wedge dy) = ds \wedge dt + dx \wedge (dy + ldx) = ds \wedge dt + dx \wedge dy,$$

the G acts on \mathbb{R}^4 preserves the symplectic form, which thus descends to a symplectic on M.

(c) Since $\mathbb{R}^4 \longrightarrow M$ is a covering projection, $\pi_1(M) = G$ and $H_1(M; \mathbb{Z}) = G/[G, G]$. Since the projection on the first three coordinates $G \longrightarrow \mathbb{Z}^3$ is a group homomorphism, $[G, G] \subset 0^3 \times \mathbb{Z}$. Since G is not abelian, it follows that

$$H_1(M;\mathbb{R}) = H_1(M;\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} \approx \mathbb{R}^3;$$

(in fact $[G,G] = 0^3 \times \mathbb{Z}$, but this is not needed). Thus, the first betti number of M is odd and therefore M does not admit a Kahler metric.

Problem 5 (5 pts)

Let (X, J, g) be a Kahler manifold and ω its symplectic form. Show that ω is harmonic with respect to g.

Let L be the wedging with ω operator and Δ either of the three laplacians. By one of the main Hodge relations, $\Delta L = L\Delta$ (this is used in the proof of the Lefschetz theorem). Thus,

$$\Delta \omega = \Delta(L1) = L(\Delta 1) = L0 = 0$$

Problem 6 (10 pts)

Let M be a compact complex manifold that admits a Kahler metric.

(a) Let α be a (p,q)-form on M such that $d\alpha = 0$. Show that the following are equivalent:

(i) $\alpha = d\beta$ for some (p+q-1)-form β ;

(ii) $\alpha = \partial \beta$ for some (p-1, q)-form β ;

(iii) $\alpha = \overline{\partial}\beta$ for some (p, q-1)-form β ;

(iv) $\alpha = \partial \overline{\partial} \beta$ for some (p-1, q-1)-form β .

(b) Let ω and ω' be symplectic forms compatible with the complex structure on M (thus ω and ω' arise from Kahler metrics on M). If $[\omega] = [\omega'] \in H^2_{deR}(M)$, show that $\omega' = \omega + i\partial \bar{\partial} f$ for some $f \in C^{\infty}(M; \mathbb{R})$.

(a) (iv) \implies (i),(ii),(iii), since $d = \partial + \bar{\partial}$, $\partial^2 = 0$, $\bar{\partial}^2 = 0$, and $\partial \bar{\partial} = -\bar{\partial} \partial$ on any complex manifold. (i) \implies (ii),(iii): Since $\alpha = d\beta$, α is orthogonal to the harmonic forms (since *M* is Kahler, harmonic forms for *d*, ∂ , and $\bar{\partial}$ are the same). Thus, by the Hodge decomposition for ∂ and $\bar{\partial}$,

$$\alpha = \partial \gamma_{-} + \partial^* \gamma_{+} = \bar{\partial} \gamma'_{-} + \bar{\partial}^* \gamma'_{+} \,.$$

Since $\partial \alpha = 0$ and $\bar{\partial} \alpha = 0$ (because α is of pure bi-degree), $\partial^* \gamma_+, \bar{\partial}^* \gamma'_+ = 0$. (ii) \implies (iv): By Hodge decomposition, $\beta = \beta_0 + \bar{\partial}\beta_- + \bar{\partial}^*\beta_+$, where β_0 is harmonic. Thus,

$$\alpha = \partial \beta = \partial \bar{\partial} \beta_{-} + \partial \bar{\partial}^{*} \beta_{+} \qquad \Longrightarrow \qquad 0 = \bar{\partial} \partial \beta = \bar{\partial} \partial \bar{\partial} \beta_{-} + \bar{\partial} \partial \bar{\partial}^{*} \beta_{+} \,.$$

Since $\bar{\partial}\partial = -\partial\bar{\partial}$ and $\bar{\partial}^2 = 0$ on all complex manifolds, while $\partial\bar{\partial}^* = -\bar{\partial}^*\partial$ on Kahler manifolds, it follows that

$$\bar{\partial}\bar{\partial}^*\partial\beta_+ = 0 \quad \Longrightarrow \quad \bar{\partial}^*\partial\beta_+ = 0 \quad \Longrightarrow \quad \partial\bar{\partial}^*\beta_+ = 0 \quad \Longrightarrow \quad \alpha = \partial\bar{\partial}\beta_- \,,$$

as required.

(b) Let $\alpha = \omega - \omega'$. By our assumptions, $\alpha \in A^{1,1}(M)$, $d\alpha = 0$, and $\alpha = d\beta$. Thus, $\alpha = i\partial \bar{\partial}g$ for some $g \in C^{\infty}(M; \mathbb{C})$ by part (a). Since α is a real (1, 1)-form, it follows that

$$\alpha = \bar{\alpha} = (-\mathfrak{i})\bar{\partial}\partial\bar{g} = \mathfrak{i}\partial\bar{\partial}\bar{g} \implies \alpha = \mathfrak{i}\partial\bar{\partial}(g + \bar{g})/2$$

so we can take $f = \operatorname{Re} g$.