
Appendices

A Čech cohomology

This appendix contains a detailed review of Čech cohomology, including for sheaves of non-abelian
groups, describes its connections with singular cohomology and principal bundles, and classifies
oriented vector bundles over bordered surfaces. We carefully specify the assumptions required in
each statement.

We generally follow the perspective of [32, Chapter 5]. In particular, a sheaf S over a topological
space Y is a topological space along with a projection map π : S ÝÑ Y so that π is a local
homeomorphism. For a sheaf S of modules over a ring R as in [32] and in Section A.1 below,
Sy ” π´1pyq is a module over R for every y P Y and the module operations are continuous with
respect to the topology of S. For a sheaf S of groups (not necessarily abelian), as in Sections A.2-
A.4 below, Sy is a group for every y PY and the group operations are continuous with respect to
the topology of S. For a collection tUαuαPA of subsets of a space Y and α0, α1, . . . , αp PA, we set

Uα0α1...αp “ Uα0
XUα1

X. . .XUαp Ă Y .

A.1 Identification with singular cohomology

For a sufficiently nice topological space Y and a module M over a ring R, the Čech cohomology
group qHppY ;Mq of Y with coefficients in the sheaf Y ˆM of germs of locally constant functions
on Y with values in M is well-known to be canonically isomorphic to the singular cohomology
group HppY ;Mq of Y with coefficients in M . Proposition A.1 below makes this precise in the
M“Z2 case relevant to our purposes, making use of the locally Hk-simple notion of Definition 3.2.
The statement and proof of this proposition apply to an arbitrary module M over a ring R. The
p“1 case of the isomorphism of Proposition A.1 is described explicitly at the end of this section.

Proposition A.1. Let k P Z
ě0. For every paracompact locally Hk-simple space Y , there exist

canonical isomorphisms

ΦY : HppY ;Z2q
«

ÝÑ qHppY ;Z2q, p“0, 1 . . . , k . (A.1)

If Y is another paracompact locally Hk-simple space and f : Y ÝÑ Y 1 is a continuous map, then
the diagram

HppY 1;Z2q
ΦY 1

//

f˚

��

qHppY 1;Z2q

f˚

��

HppY ;Z2q
ΦY // qHppY ;Z2q

(A.2)
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commutes for every pďk.

Proof. Let p P Z
ě0 and Y be a topological space. Denote by S

p
Y ÝÑ Y the sheaf of germs of

Z2-valued singular p-cochains on Y as in [32, 5.31], by

dp : S
p
Y ÝÑ S

p`1
Y (A.3)

the homomorphism induced by the usual differential in the singular cohomology theory, and by

dp;Y : Γ
`
Y ;Sp

Y

˘
ÝÑ Γ

`
Y ;Sp`1

Y

˘

the resulting homomorphism between the spaces of global sections. Let Z
p
Y ĂS

p
Y be the kernel of

the sheaf homomorphism (A.3) so that

t0u ÝÑ Z
p
Y ÝÑ S

p
Y

dp
ÝÑ Z

p`1
Y (A.4)

is an exact sequence of sheaves. If Y is locally path-connected, Z0
Y “Y ˆZ2.

From now on, we assume that Y is paracompact. By the exactness of (A.4),

ker dp;Y “ Γ
`
Y ;Zp

˘
“ qH0

`
Y ;Zp

˘
. (A.5)

By [32, p193], each sheaf Sp
Y is fine. By [32, p202], this implies that

qHqpY ;Sp
Y q “ 0 @ pPZě0, qPZ` . (A.6)

Each Z2-valued singular p-cochain ̟ on Y determines a section pρy,Y p̟qqyPY of Sp
Y over Y . By

[32, 5.32], the induced homomorphism

HppY ;Z2q ÝÑ Hp
`
ΓpY ;S˚

Y q, d˚;Y

˘
, r̟s ÝÑ

“
pρy,Y p̟qqyPY

‰
, (A.7)

is an isomorphism. Combining the p“0 cases of this isomorphism and of the identification (A.5),
we obtain an isomorphism (A.1) for p“0.

Suppose Y is locally Hk-simple and pPZ` with pďk. The sequence

t0u ÝÑ Z
p´q´1
Y ÝÑ S

p´q´1
Y ÝÑ Z

p´q
Y ÝÑ t0u (A.8)

of sheaves is then exact for every q P Z
ě0 with q ă p. From the exactness of the associated long

sequence in Čech cohomology, (A.5), and (A.6), we obtain isomorphisms

qδY : Hp
`
ΓpY ;S˚

Y q, d˚;Y

˘
”

ker dp;Y
Imdp´1;Y

“
qH0pY ;Zpq

dp´1p qH0pY ;Sp´1qq

«
ÝÑ qH1

`
Y ;Zp´1

Y

˘
,

qδY : qHqpY ;Zp´q
Y q

«
ÝÑ qHq`1

`
Y ;Zp´q´1

Y

˘
@ qPZ`, qăp.

Putting these isomorphisms together, we obtain an isomorphism

qδpY : Hp
`
ΓpY ;S˚

Y q, d˚;Y

˘
ÝÑ qHp

`
Y ;Z0

Y

˘
“ qHp

`
Y ;Z2

˘
. (A.9)

Combining (A.7) with this isomorphism, we obtain an isomorphism as in (A.1) with pą0.
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Suppose Y is another paracompact locally Hk-simple space. A continuous map f : Y ÝÑY 1 induces
commutative diagrams

HppY 1;Z2q
« //

f˚

��

Hp
`
ΓpY 1; S̊Y 1q, d˚;Y 1

˘

f˚

��

t0u // Z
p´q´1
Y 1

//

f˚

��

S
p´q´1
Y 1

//

f˚

��

Z
p´q
Y 1

f˚

��

// t0u

HppY ;Z2q
« // Hp

`
ΓpY ; S̊Y q, d˚;Y

˘
t0u // Z

p´q´1
Y

// S
p´q´1
Y

// Z
p´q
Y

// t0u

for all p, q PZ
ě0 with qă pď k. Combining the p“ 0 cases of the first diagram above and of the

identifications (A.5) for Y and for Y 1, we obtain a commutative diagram (A.2) for p “ 0. The
second commutative diagram above induces a commutative diagram

Hp
`
ΓpY 1; S̊Y 1q, d˚;Y 1

˘ « //

f˚

��

qHp
`
Y 1;Z2

˘

f˚

��

Hp
`
ΓpY ; S̊Y q, d˚;Y

˘ « // qHp
`
Y ;Z2

˘

with the horizontal isomorphisms as in (A.9). Combining this with the first commutative diagram
in this paragraph, we obtain (A.2) with pą0.

Let Y be a paracompact locally H1-simple space. We now describe the p “ 1 case of the iso-
morphism (A.1) explicitly. Suppose ̟ is a Z2-valued singular 1-cocycle on Y . Since Y is locally
H1-simple, there exist an open cover tUαuαPA of Y and a Z2-valued singular 0-cochain µα on Uα

for each αPA so that
d0;Uαµα “ ̟

ˇ̌
Uα

@αPA.

We define a Čech 1-cocycle η on Y by

ηαβ “ µβ
ˇ̌
Uαβ

´ µα
ˇ̌
Uαβ

P S1
Y

`
Uαβ

˘
@α, β PA. (A.10)

Since d0;Uαβ
ηαβ “ 0 and Y is locally path-connected, ηαβ is a locally constant function on Uαβ.

Thus, η takes values in the sheaf of germs of Z2-valued continuous functions on Y and so defines
an element rηs of qH1pY ;Z2q. This is the image of r̟s under the p“1 case of the isomorphism ΦY

in (A.1).

Suppose Y is a CW complex and ̟ is a Z2-valued singular 1-cocycle on Y as above. For each
vertex α P Y0 of Y , let Uα Ă Y denote the (open) star of α, i.e. the union of all open cells e̊ of Y
so that α is contained in the closed cell e. In particular, Uα is an open neighborhood of α and the
collection tUαuαPY0

covers the 1-skeleton Y1ĂY . We take

tUαuαPA ” tUαuαPY0
\
 
Y ´Y1u;

this is an open cover of Y . By adding extra vertices to Y1, we can ensure that no closed 1-cell is a
cycle. This implies that every closed 1-cell e of Y runs between distinct vertices α and β with

e Ă UαYUβ, eXUαβ “ e̊, eX Uγ “ H @ γ PA´tα, βu. (A.11)
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For every αPA, there then exists a Z2-valued singular 0-cochain µα on Uα so that

d0;Uαµα “ ̟
ˇ̌
Uα
, µαpαq “ 0 @ αPA.

Every closed 1-cell e of Y is cobordant to the difference of a singular 1-simplex exβ running from
a point x P e̊ to β and a singular 1-simplex exα running from x to α. By (A.11), exα Ă Uα and
exβ ĂUβ. Since ̟ is a cocycle, it follows that

̟peq “ ̟
`
exβ´exα

˘
“ ̟

`
exβ

˘
´̟

`
exα

˘
“
 
d0;Uβ

µβ
(`
exβ

˘
´
 
d0;Uαµα

(`
exα

˘

“
`
µβpβq´µβpxq

˘
´
`
µαpαq´µαpxq

˘
“ µαpxq´µβpxq.

Along with (A.10), this implies that the Čech cohomology class rηs”ΦY pr̟sq corresponding to r̟s
under the isomorphism (A.1) is represented by a collection tηαβuα,βPA associated with an open cover
tUαuαPA of Y such that

e̊ Ă Uαβ , ηαβ
ˇ̌
e̊

“ ̟peq P Z2

for all α, β PY0 and every closed 1-cell e with vertices α and β.

A.2 Sheaves of groups

Čech cohomology groups qHp are normally defined for sheaves or presheaves of (abelian) modules
over a ring. The sets qH0 and qH1 can be defined for sheaves or presheaves of non-abelian groups as
well. The first set is still a group, while the second is a pointed set, i.e. it has a distinguished ele-
ment. A short exact sequence of such sheaves gives rise to an exact sequence of the corresponding
Čech pointed sets, provided the kernel sheaf R lies in the center ZpSq of the ambient sheaf S; see
Proposition A.3. The main examples of interest are the sheaves S of germs of continuous functions
over a topological space Y with values in a Lie group G, as in Section A.3.

We denote the center of a group G by ZpGq. We call a collection

``
δp : C

p ÝÑCp`1
˘
p“0,1,2

, ˚ : C0ˆC1 ÝÑC1
˘

consisting of maps δp between groups Cp with the identity element 1p and a left action ˚ a short
cochain complex if

δp1p “ 1p`1, δp`1˝δp “ 1p`2, δ1pf ˚gq “ δ1g @ f PC0, gPδ´1
1

`
ZpC2q

˘
, (A.12)

δ0pf ¨f 1q “ f ˚pδ0f
1q, f ˚g “ pδ0fqg @ f, f 1 PC0, gPZpC1q, (A.13)

δp
`
g ¨g1

˘
“
`
δpg

˘`
δpg

1
˘

@ gPCp, g1 PZpCpq, p“1, 2. (A.14)

By the second condition in (A.13),

C0˚tgu “
`
Im δ0

˘
¨tgu @ gPZpC1q. (A.15)

By both conditions in (A.13),

H0pC˚q ” H0
`
pCp, δpqp“0,1,2, ˚

˘
” ker δ0 ” δ´1

0 p11q (A.16)

is a subgroup of C0. By the last property in (A.12), ˚ restricts to an action on ker δ1 ” δ´1
1 p12q.

We can thus define
H1pC˚q ” H1

`
pCp, δpqp“0,1,2, ˚

˘
“ ker δ1

L
C0 ; (A.17)
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this is a pointed set with the distinguished element given by the image of Im δ0 Q11 in H1pC˚q.

By (A.13) and the p“ 1 case of (A.14), δ0 and δ1 are group homomorphisms if the group C1 is
abelian and ˚ is the usual action of the 1-coboundaries on the 1-cochains via the group operation. In
this case, (A.17) agrees with the usual definition and the last condition in (A.12) is automatically
satisfied. If in addition the group C2 is also abelian, as happens for the kernel complex B˚ in
Lemma A.2 below, then the map δ2 is a group homomorphism as well and

H2pC˚q ” H2
`
pCp, δpqp“0,1,2, ˚

˘
“ ker δ2

L
Im δ1

is a well-defined abelian group.

A morphism of short cochain complexes

ι”pιpqp“0,1,2,3 :
`
pBp, δpqp“0,1,2, ˚

˘
ÝÑ

`
pCp, δpqp“0,1,2, ˚

˘

is a collection of group homomorphisms ιp : B
p ÝÑ Cp that commute with the maps δp and the

actions ˚. Such a homomorphism induces morphisms

ι˚ : H
ppB˚q ÝÑ HppC˚q, p “ 0, 1,

of pointed sets, i.e. ι˚ takes the distinguished element of the domain to the distinguished element
of the target; the map ι0 is a group homomorphism. The kernel of such a morphism is the preimage
of the distinguished element of the target. The next lemma is an analogue of the Snake Lemma
[32, Proposition 5.17] for short cochain complexes of groups.

Lemma A.2. For every short exact sequence

t1u ÝÑ
`
pBp, δpqp“0,1,2, ˚

˘ ι
ÝÑ

`
pCp, δpqp“0,1,2, ˚

˘ j
ÝÑ

`
pDp, δpqp“0,1,2, ˚

˘
ÝÑ t1u

of short cochain complexes of groups such that ιppBpqĂZpCpq for p“1, 2, there exist morphisms

Bp : H
ppD˚q ÝÑ Hp`1pB˚q, p “ 0, 1, (A.18)

of pointed sets such that the sequence

t1u ÝÑ H0pB˚q
ι˚ÝÑ H0pC˚q

j˚ÝÑ H0pD˚q
B0ÝÑ

B0ÝÑ H1pB˚q
ι˚ÝÑ H1pC˚q

j˚ÝÑ H1pD˚q
B1ÝÑ H2pB˚q

(A.19)

of morphisms of pointed sets is exact. The maps Bp are natural with respect to morphisms of short
exact sequences of short cochain complexes of groups.

Proof. We proceed as in the abelian case. Given dp Pker δp ĂDp, let cp PCp be such that jppcpq“dp.
Since

jp`1

`
δppcpq

˘
“ δp

`
jppcpq

˘
“ δppdpq “ 1p`1 P Dp`1,

there exists a unique bp`1 PBp`1 such that ιp`1pbp`1q“δppcpq. By the second condition in (A.12),
bp`1 Pker δp`1. We set

Bp
`
rdps

˘
“
“
bp`1

‰
P Hp`1pB˚q.
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By the first condition in (A.13), rb1s is independent of the choice of c0 PC0 such that j0pc0q“d0.
By the p“1 case of (A.14) and the assumption that ιppBpqĂZpCpq for p“1, 2, rb2s is independent
of the choice of c1 PC1 such that j1pc1q“d1. By the last condition in (A.12) and the assumption
that ι2pB2q ĂZpC2q, rb2s does not depend on the choice of representative d1 for rd1s. Thus, the
maps (A.18) are well-defined. By the first condition in (A.12), Bppr1psq “ r1p`1s, i.e. Bp is a mor-
phism of pointed sets. By the construction, the maps Bp are natural with respect to morphisms of
exact sequences of short cochain complexes.

It is immediate that (A.19) is exact at H0pB˚q and H0pC˚q and that

j˚˝ι˚ “r11s : H1pB˚qÝÑH1pD˚q, Bp˝j˚ “r1p`1s : HppC˚qÝÑHp`1pB˚q .

The exactness of (A.19) at H1pB˚q is immediate from (A.15) with g“11 PZpC1q. The exactness at
H1pC˚q follows from (A.15) with g“11 PZpD1q, the second condition in (A.13), and the assumption
that ι1pB1q Ă ZpC1q. The exactness at H0pD˚q follows from (A.15) with g “ 11 P ZpB1q, both
conditions in (A.13), and the assumption that ι1pB1q ĂZpC1q. The exactness at H1pD˚q follows
from the assumption that ιppBpqĂZpCpq for p“1, 2 and the p“1 case of (A.14).

We next review the definitions and key properties of the group qH0 and pointed set qH1 for a sheaf S
of groups over a topological space Y . We denote by ZpSq ĂS the subsheaf consisting of the cen-
ters ZpSyq of the groups Sy with yPY and by 1y PSy the identity element of Sy.

Let U”tUαuαPA be an open cover of Y . As in the abelian case, the set

qCppU ;Sq ”
ź

α0,α1,...,αpPA

Γ
`
Uα0α1...αp ;S

˘

of Čech p-cochains is a group under pointwise multiplication of sections:

¨ : qCppU ;Sq ˆ qCppU ;Sq ÝÑ qCppU ;Sq,

th ¨ h1uα0α1...αppyq “ hα0α1...αppyq ¨ h1
α0α1...αk

pyq @α0, α1, . . . , αp PA, yPUα0α1...αp .

The identity element 1p P qCppU ;Sq is given by

p1pqα0α1...αppyq “ 1y @α0, α1, . . . , αp PA, yPUα0α1...αp .

Define the boundary maps by

δ0 : qC0pU ;Sq ÝÑ qC1pU ;Sq, pδ0fqα0α1
“ fα0

ˇ̌
Uα0α1

¨ f´1
α1

ˇ̌
Uα0α1

,

δ1 : qC1pU ;Sq ÝÑ qC2pU ;Sq, pδ1gqα0α1α2
“ gα1α2

ˇ̌
Uα0α1α2

¨ g´1
α0α2

ˇ̌
Uα0α1α2

¨ gα0α1

ˇ̌
Uα0α1α2

.

We also define a left action of qC0pU ;Sq on qC1pU ;Sq by

˚ : qC0pU ;Sq ˆ qC1pU ;Sq ÝÑ qC1pU ;Sq,

tf ˚guα0α1
“ fα0

ˇ̌
Uα0α1

¨ gα0α1
¨ f´1

α1

ˇ̌
Uα0α1

P ΓpUα0α1
;Sq.
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We now construct a short cochain complex. Let

Cp
`
U ;S

˘
“

#qCppU ;Sq, if p“0, 1, 2;

Abelp qCppU ;Sqq if p“3.

For p“0, 1, we take
δp : C

p
`
U ;S

˘
ÝÑ Cp`1

`
U ;S

˘

to be the maps defined above. We take δ2 to be the composition of the map

δ2 : qC2pU ;Sq ÝÑ qC3pU ;Sq,
`
δ2h

˘
α0α1α2α3

“ hα1α2α3

ˇ̌
Uα0α1α2α3

h´1
α0α2α3

ˇ̌
Uα0α1α2α3

hα0α1α3

ˇ̌
Uα0α1α2α3

h´1
α0α1α2

ˇ̌
Uα0α1α2α3

,

with the projection qC3pU ;SqÝÑC3
`
U ;S

˘
. The tuple

``
δp : C

ppU ;SqÝÑCp`1pU ;Sq
˘
p“0,1,2

, ˚ : C0pU ;SqˆC1pU ;SqÝÑC1pU ;Sq
˘

is then a short cochain complex of groups. We denote the associated group (A.16) and the pointed
set (A.17) by qH0pU ;Sq and qH1pU ;Sq, respectively.

Let U 1 ” tU 1
αuαPA1 be an open cover of Y refining U , i.e. there exists a map µ : A1 ÝÑA such that

U 1
α ĂUµpαq for every αPA1. Such a refining map induces group homomorphisms

µ˚
p : qCppU ;Sq ÝÑ qCppU 1;Sq, (A.20)

`
µ˚
ph

˘
α0...αp

“ hµpα0q...µpαpq

ˇ̌
U 1
α0...αp

@ hP qCppU ;Sq, α0, . . . , αp PA1.

These homomorphisms commute with δ0, δ1, and the action of qC0p¨;Sq on qC1p¨;Sq. Thus, µ
induces maps

R0
U 1,U : qH0pU ;Sq ÝÑ qH0pU 1;Sq and R1

U 1,U : qH1pU ;Sq ÝÑ qH1pU 1;Sq (A.21)

of pointed sets; the first map above is a group homomorphism.

If µ1 : A1 ÝÑA is another refining map, then U 1
α ĂUµpαqµ1pαq for every αPA1 and thus

µ˚
0

ˇ̌
ker δ0

“ µ1˚
0

ˇ̌
ker δ0

: ker δ0 ÝÑ ker δ0 Ă qC0pU 1;Sq.

For gP qC1pU ;Sq, define

h1g P qC0pU 1;Sq by ph1gqα “ gµ1pαqµpαq|U 1
α
.

If gPker δ1 Ă qC1pU ;Sq, then

gµpα0qµpα1q

ˇ̌
Uµ1pα1qµpα0qµpα1q

¨ g´1
µ1pα1qµpα1q

ˇ̌
Uµ1pα1qµpα0qµpα1q

“ g´1
µ1pα1qµpα0q

ˇ̌
Uµ1pα1qµpα0qµpα1q

,

gµ1pα0qµpα0q

ˇ̌
Uµ1pα1qµ1pα0qµpα0q

¨ g´1
µ1pα1qµpα0q

ˇ̌
Uµ1pα1qµ1pα0qµpα0q

“ g´1
µ1pα1qµ1pα0q

ˇ̌
Uµ1pα1qµ1pα0qµpα0q

for all α0, α1 PA. From this, we find that

µ1˚
1 g “ ph1gq ˚ pµ˚

1gq @ gPker δ1 Ă qC1pU ;Sq.
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By the previous paragraph, the pointed maps (A.21) are independent of the choice of refining map
µ : A1 ÝÑA. We can therefore define the group qH0pY ;Sq and the pointed set qH1pY ;Sq as the direct
limits of the groups qH0pU ;Sq and of the pointed sets qH1pU ;Sq, respectively, over open covers of Y .
The map

ΓpY ;Sq ÝÑ qH0pY ;Sq, f ÝÑ
`
f |Uα

˘
αPA

, (A.22)

is a group isomorphism.

If S is a sheaf of abelian groups, as happens for the kernel sheaf R in Proposition A.3 below, the
definitions of qH0pY ;Sq and qH1pY ;Sq above reduce to the ones in [32, Section 5.33]. Furthermore,

qH2pU ;Sq ”
kerpδ2 : qC2pU ;SqÝÑ qC3pU ;Sqq

Impδ1 : qC1pU ;SqÝÑ qC2pU ;Sqq

is a well-defined abelian group for every open cover U of Y . The group homomorphisms

R2
U 1,U : qH2pU ;Sq ÝÑ qH2pU 1;Sq

induced by refining maps still depend only on the covers U and U 1. The abelian group qH2pY ;Sq
is again the direct limit of the groups qH2pU ;Sq over all open covers U of Y .

A homomorphism ι : RÝÑS of sheaves of groups over Y induces maps

ι˚ : ΓpY ;Rq ÝÑ ΓpY ;Sq, ι˚ : qH0pY ;Rq ÝÑ qH0pY ;Sq, ι˚ : qH1pY ;Rq ÝÑ qH1pY ;Sq

between pointed spaces. The first two maps are group homomorphisms which commute with the
identifications (A.22).

Proposition A.3. Let Y be a paracompact space. For every short exact sequence

t1u ÝÑ R
ι

ÝÑ S
j

ÝÑ TÝÑ t1u (A.23)

of sheaves of groups over Y such that ιpRqĂZpSq, there exist morphisms

qδp : qHppY ;Tq ÝÑ qHp`1pY ;Rq, p “ 0, 1, (A.24)

of pointed sets such that the sequence

t1u ÝÑ qH0pY ;Rq
ι˚ÝÑ qH0pY ;Sq

j˚ÝÑ qH0pY ;Tq
qδ0ÝÑ

qδ0ÝÑ qH1pY ;Rq
ι˚ÝÑ qH1pY ;Sq

j˚ÝÑ qH1pY ;Tq
qδ1ÝÑ qH2pY ;Rq

(A.25)

of morphisms of pointed sets is exact. The maps qδp are natural with respect to morphisms of short
exact sequences of sheaves of groups over Y .

Proof. Let U”tUαuαPA be an open cover of Y ,

BppUq “ Cp
`
U ;R

˘
, CppUq “ Cp

`
U ;S

˘
, DppUq “ Cp

`
U ;T

˘
.
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Since ιpRqĂZpSq, ι˚pBppUqqĂZpCppUqq for all p. By the exactness of (A.23), the sequence

t1u ÝÑ BppUq
ι˚ÝÑ CppUq

j˚ÝÑ DppUq

of groups is exact. For p“0, 1, 2, 3, we denote by D
p
pUq ĂDppUq the image of j˚. For p“0, 1, let

H
p
pU ;Tq be the Čech pointed sets determined by the short cochain complex D

˚
pUq.

The sequence

t1u ÝÑ BppUq
ι˚ÝÑ CppUq

j˚ÝÑ D
p
pUq ÝÑ t1u (A.26)

of short cochain complexes is exact. By Lemma A.2, there thus exist morphisms

qδp : Hp
pU ;Tq ÝÑ qHp`1pU ;Rq, p “ 0, 1, (A.27)

of pointed sets such that the sequence

t1u ÝÑ qH0pU ;Rq
ι˚ÝÑ qH0pU ;Sq

j˚ÝÑ H
0
pU ;Tq

qδ0ÝÑ

qδ0ÝÑ qH1pU ;Rq
ι˚ÝÑ qH1pU ;Sq

j˚ÝÑ qH1pU ;Tq
qδ1ÝÑ qH2pU ;Rq

(A.28)

of morphisms of pointed sets is exact.

Let U 1 ” tU 1
αuαPA1 be an open cover of Y refining U and µ : A1 ÝÑA be a refining map. By

the naturality of the morphisms (A.27), the group homomorphisms (A.20) induce commutative
diagrams

H
p
pU ;Tq

R
p

U 1,U
��

qδp
// qHp`1pU ;Rq

R
p`1

U 1,U
��

H
p
pU 1;Tq

qδp
// qHp`1pU 1;Rq

of pointed sets. Taking the direct limit of the morphisms (A.27) over all open covers of Y , we thus
obtain morphisms

qδp : Hp
pY ;Tq ÝÑ qHp`1pY ;Rq, p “ 0, 1, (A.29)

of pointed sets such that the sequence (A.25) with qH˚pY ;Tq replaced by H
p`1

pY ;Tq is exact.

The inclusions ip : D
p
pUq ÝÑDppUq of short cochain complexes commute with the refining homo-

morphisms (A.20) and induce morphisms

i˚ : H
p
pU ;Tq ÝÑ qHppU ;Tq and i˚ : H

p
pY ;Tq ÝÑ qHppY ;Tq (A.30)

of pointed sets. By the paracompactness of Y and the reasoning in [32, p204], for every open
cover U ” tUαuαPA of Y and every element dp of DppUq there exist an open cover U 1 ” tU 1

αuαPA1

refining U , a refining map µ : A1 ÝÑA, and an element d1
p of D

p
pU 1q such that ippd1

pq“µ˚
ppdpq. This

implies that the second map in (A.30) is a bijection. Composing (A.29) with this bijection, we
obtain a morphism as in (A.24) so that the sequence (A.25) is exact.

A morphism of short exact sequences of sheaves of groups over Y as in (A.23) induces morphisms of
the corresponding exact sequences of short cochain complexes as in (A.26) and of the inclusions ip

232



above. Thus, it also induces morphisms of the corresponding maps as in (A.27) and as on the
left-hand side of (A.30). These morphisms commute with the associated maps (A.21) and thus
induce morphisms of the maps as in (A.24). This establishes the last claim.

A.3 Sheaves determined by Lie groups

For a Lie group G and a topological space Y , we denote by SY pGq the sheaf of germs of continuous
G-valued functions on Y and let

qHppY ;Gq “ qHp
`
Y ;SY pGq

˘
@ p“0, 1.

If G is abelian, we use the same notation for all pPZ. We begin this section by applying Proposi-
tion A.3 to short exact sequences of sheaves arising from short exact sequences

t1u ÝÑ K
ι

ÝÑ G
j

ÝÑ Q ÝÑ t1u (A.31)

of Lie groups. For certain kinds of exact sequences (A.31), the topological condition on Y of Defi-
nition A.4 appearing in the resulting statement of Corollary A.5 reduces to the locally H1-simple
notion of Definition 3.2. For such exact sequences of Lie groups and topological spaces, we combine
Proposition A.1 and Corollary A.5 to obtain an exact sequence mixing Čech and singular cohomol-
ogy; see Proposition A.6.

A homomorphism ι : KÝÑG of Lie groups induces a homomorphism

ι : SY pKq ÝÑ SY pGq

of sheaves over every topological space and thus morphisms

ι˚ : qHppY ;Kq ÝÑ qHppY ;Gq

of pointed sets for p“0, 1; the p“0 case of ι˚ is a group homomorphism.

A continuous map f : Y ÝÑY 1 induces group homomorphisms

f˚ : qCp
`
U ;SY 1pGq

˘
ÝÑ qCp

`
f´1pUq;SY pGq

˘
, pPZ,

for every open cover U of Y 1 that commute with the Čech coboundaries and group actions for the
sheaves SY 1pGq and SY pGq constructed in Section A.2 and with the refining homomorphisms as
in (A.20). Thus, f induces morphisms

f˚ : qHppY 1;Gq ÝÑ qHppY ;Gq

of pointed sets for p“ 0, 1; the p“ 0 case of f˚ is a group homomorphism. If G is abelian, then
f induces such a morphism for every p P Z and this morphism is a group homomorphism. If in
addition ι is a homomorphism of Lie groups as above, then the diagram

qHppY 1;Kq
ι˚

//

f˚

��

qHppY 1;Gq

f˚

��
qHppY ;Kq

ι˚ // qHppY ;Gq

commutes.
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Definition A.4. Let (A.31) be a short exact sequence of Lie groups. A topological space Y is
locally simple with respect to (A.31) if it is locally path-connected and for every neighborhood UĂY

of a point y PY and a continuous map fU : U ÝÑQ there exist a neighborhood U 1 ĂU of y and a
continuous map f 1

U : U 1 ÝÑG such that fU |U 1 “ j˝f 1
U .

For any topological space Y , a short exact sequence (A.31) of Lie groups induces an exact sequence

t1u ÝÑ SY pKq
ι

ÝÑ SY pGq
j

ÝÑ SY pQq

of sheaves over Y . The last map above is surjective if and only if Y is locally simple with respect
to (A.31). If the restriction of j to the identity component G0 of G is a double cover of Q0 and
π1pQ0q is (possibly infinite) cyclic, then the condition of Definition A.4 is equivalent to Y being
locally H1-simple. This follows from the lifting property for covering projections [27, Lemma 79.1],
Hurewicz isomorphism for π1 [31, Proposition 7.5.2], and the Universal Coefficient Theorem for
Cohomology [26, Theorem 53.3].

Corollary A.5. Let Y be a paracompact space and (A.31) be a short exact sequence of Lie groups
such that ιpKqĂZpGq. If Y is locally simple with respect to (A.31), then there exist morphisms

qδp : qHppY ;Qq ÝÑ qHp`1pY ;Kq, p “ 0, 1, (A.32)

of pointed sets such that the sequence

t1u ÝÑ qH0pY ;Kq
ι˚ÝÑ qH0pY ;Gq

j˚ÝÑ qH0pY ;Qq
qδ0ÝÑ

qδ0ÝÑ qH1pY ;Kq
ι˚ÝÑ qH1pY ;Gq

j˚ÝÑ qH1pY ;Qq
qδ1ÝÑ qH2pY ;Kq

(A.33)

of morphisms of pointed sets is exact. The maps qδp are natural with respect to morphisms of short
exact sequences of Lie groups and with respect to continuous maps between paracompact spaces that
are locally simple with respect to (A.31).

Proof. Since Y is locally simple with respect to (A.31), the sequence

t1u ÝÑ SY pKq
ι

ÝÑ SY pGq
j

ÝÑ SY pQq ÝÑ t1u (A.34)

of sheaves over Y is exact. Since ιpKq Ă ZpGq, ιpSY pKqq Ă ZpSY pGqq. The existence of mor-
phisms (A.32) so that the sequence (A.33) is exact thus follows from the first statement of Propo-
sition A.3.

A morphism of short exact sequences of Lie groups as in (A.31) satisfying the conditions at the
beginning of the statement of the proposition induces a morphism of the corresponding short exact
sequences of sheaves as in (A.34). Thus, the naturality of (A.32) with respect to morphisms of
short exact sequences of Lie groups follows from the second statement of Proposition A.3.

A continuous map f : Y ÝÑ Y 1 between paracompact spaces that are locally simple with respect
to (A.31) induces a morphism of the corresponding exact sequences of short cochain complexes
as in (A.26) and of the inclusions ip as in the proof of Proposition A.3. Thus, it also induces
morphisms of the corresponding maps as in (A.27) and as on the left-hand side of (A.30). These
morphisms commute with the associated maps (A.21) and thus induce morphisms of the maps as
in (A.32). This establishes the naturality of (A.32) with respect to continuous maps.
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Proposition A.6. Let Y be a paracompact locally H1-simple space and

t1u ÝÑ Z2
ι

ÝÑ G
j

ÝÑ Q ÝÑ t1u (A.35)

be an exact sequence of Lie groups such that ιpZ2q ĂZpGq and π1pQ0q is cyclic. Then there exist
morphisms

qδ0 : qH0pY ;Qq ÝÑ H1pY ;Z2q and qδ1 : qH1pY ;Qq ÝÑ qH2pY ;Z2q, (A.36)

of pointed sets such that the sequence

t1u ÝÑ H0pY ;Z2q
ι˚ÝÑ qH0pY ;Gq

j˚ÝÑ qH0pY ;Qq
qδ0ÝÑ

qδ0ÝÑ H1pY ;Z2q
ι˚ÝÑ qH1pY ;Gq

j˚ÝÑ qH1pY ;Qq
qδ1ÝÑ qH2pY ;Z2q

(A.37)

of morphisms of pointed sets is exact. If in addition Y is locally H2-simple, then the same statement
with qH2pY ;Z2q replaced by H2pY ;Z2q also holds. The maps qδ0 and qδ1 are natural with respect to
morphisms of exact sequences of Lie groups as in (A.6) and with respect to continuous maps between
paracompact locally H1-simple spaces.

Proof. Since Y is locally H1-simple, it is locally simple with respect to the exact sequence (A.35)
in the sense of Definition A.4. Thus, this proposition with all HppY ;Z2q replaced by qHppY ;Z2q is a
specialization of Corollary A.5. By Proposition A.1, we can then replace qH0pY ;Z2q by H0pY ;Z2q
and qH1pY ;Z2q by H1pY ;Z2q. If in addition Y is locally H2-simple, then qH2pY ;Z2q can also be
replaced by H2pY ;Z2q.

A.4 Relation with principal bundles

LetG be a Lie group and Y be a topological space. We recall below the standard identification of the
set PrinY pGq of equivalence (isomorphism) classes of principal G-bundles over Y with the pointed
set qH1pY ;Gq. This identification is key for applying Proposition A.6 to principal G-bundles, in-
cluding to study Spin- and Pin˘-structures in the classical perspective of Definition 1.1.

Suppose πP : P ÝÑ Y is a principal G-bundle. Let U ” pUαqαPA be an open cover of Y so that
the principal G-bundle P |Uα is trivializable for every α P A. Thus, for every α P A there exists a
homeomorphism

Φα : P
ˇ̌
Uα

ÝÑ UαˆG s.t.

πα;1˝Φα “ πP , πα;2
`
Φαppuq

˘
“
`
πα;2

`
Φαppq

˘̆
¨u @ pPP |Uα , uPG,

where πα;1, πα;2 : UαˆGÝÑUα, G are the two projection maps. Thus, for all α, β PA there exists
a continuous map

gαβ : Uαβ ÝÑ G s.t. πα;2
`
Φαppq

˘
“ gαβ

`
πP ppq

˘
¨
`
πβ;2

`
Φβppq

˘̆
@ pPP

ˇ̌
Uαβ

.

These continuous maps satisfy

gβγ
ˇ̌
Uαβγ

¨g´1
αγ

ˇ̌
Uαβγ

¨gαβ
ˇ̌
Uαβγ

“ 1 @α, β, γ PA.
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Therefore, gP ”pgαβqα,βPA lies in ker δ1 Ă qC1pU ;SY pGqq and thus defines an element

rgP s P qH1pY ;Gq.

We show below that rgP s depends only on the isomorphism class of P .

Suppose U 1 ”tU 1
αuαPA1 is a refinement of U . If µ : A1 ÝÑA is a refining map, then

Φα ”Φµpαq

ˇ̌
P |U 1

α

: P
ˇ̌
U 1
α

ÝÑ U 1
αˆG

is a trivialization of the principal G-bundle P |U 1
α
for every α P A1. The corresponding transition

data is
g1
P ”

 
gµpαqµpβq|U 1

αβ
: U 1

αβ ÝÑG
(
α,βPA1 “ µ˚

1gP .

Since
rgP s “ rµ˚

1gP s P qH1pY ;Gq,

it is thus sufficient to consider trivializations of isomorphic vector bundles over a common cover
(otherwise we can simply take the intersections of open sets in the two covers).

Suppose Ψ: P ÝÑP 1 is an isomorphism of principal G-bundles over Y and the principal G-bundle
P 1|Uα is trivializable for every αPA. Thus, for every αPA there exists a homeomorphism

Φ1
α : P

1
ˇ̌
Uα

ÝÑ UαˆG s.t.

πα;1˝Φ1
α “ πP 1 , πα;2

`
Φ1
αpp1uq

˘
“
`
πα;2

`
Φ1
αpp1q

˘̆
¨u @ p1 PP |Uα , uPG.

For every αPA, there then exists a continuous map

fα : Uα ÝÑ G s.t. πα;2
`
Φ1
α

`
Ψppq

˘̆
“ fα

`
πP ppq

˘
¨
`
πα;2

`
Φαppq

˘̆
@ pPP

ˇ̌
Uα
.

The transition data gP 1 ” pg1
αβqα,βPA determined by the collection tΦ1

αuαPA of trivializations of P 1

then satisfies
g1
αβ “ fα

ˇ̌
Uαβ

¨gαβ ¨f´1
β

ˇ̌
Uαβ

@α, β PA.

Thus, gP 1 “f ˚gP , where f”pfαqαPA, and

“
gP 1

‰
“
“
gP

‰
P qH1pY ;Gq.

We conclude that the element rgP sP qH1pY ;Gq constructed above depends only on the isomorphism
class of the principal G-bundle P over Y .

Conversely, suppose rgsP qH1pY ;Gq. Let U ”pUαqαPA be an open cover of Y and g”tgαβuα,βPA be

an element of ker δ1 Ă qC1pU ;SY pGqq representing rgs. Define

πPg : Pg “
´ ğ

αPA

tαû UαˆG
M̄

„gÝÑ Y,

`
α, y, gαβpyqu

˘
„g

`
β, y, u

˘
@α, β PA, py, uqPUβˆG .
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This is a principal G-bundle over Y with trivializations

Φα : Pg

ˇ̌
Uα

ÝÑ UαˆG, Φα

`
rα, y, uqs

˘
“ py, uq,

for αPA and the associated transition data g. Thus,

“
gPg

‰
“ rgs P qH1pY ;Gq. (A.38)

We show below that the isomorphism class rPgs of Pg depends only on rgs.

Suppose U 1 ”tU 1
αuαPA1 is a refinement of U and µ : A1 ÝÑA is a refining map. The map

Ψ: Pµ˚g ”
´ ğ

αPA1

tαû U 1
αˆG

M̄
„µ˚gÝÑ Pg ”

´ ğ

αPA

tαû UαˆG
M̄

„g,

Ψ
`
rα, y, us

˘
“
“
µpαq, y, u

‰
,

is then an isomorphism of principal G-bundles. Thus, it is sufficient to show that if

g, g1 P ker δ1 Ă qC1
`
U ;SY pGq

˘
and rgs “ rg1s P qH1

`
U ;SY pGq

˘
,

then the principal G-bundles Pg and Pg1 are isomorphic. By definition, there exists

f”pfαqαPA P qC0
`
U ;SY pGq

˘
s.t. g1 “ f ˚g.

The map

Ψ: Pg “
´ ğ

αPA

tαû UαˆG
M̄

„gÝÑ Pg1 “
´ ğ

αPA

tαû UαˆG
M̄

„g1 ,

Ψ
`
rα, y, us

˘
“
“
α, y, fαpyq¨u

‰
,

is then an isomorphism of principal G-bundles.

Let P be a principal G-bundle over Y , tΦαuαPA be a collection of trivializations of P over an open
cover U”pUαqαPA, and gP ”pgαβqα,βPA be the corresponding transition data. The map

Ψ: P ÝÑ PgP ”
´ ğ

αPA

tαû UαˆG
M̄

„g, Ψppq “
“
α,Φαppq

‰
@ pPP |Uα , αPA,

is then an isomorphism of principal G-bundles. Along with (A.38), this implies that the maps

PrinY pGq ÝÑ qH1pY ;Gq, rP s ÝÑ rgP s,

qH1pY ;Gq ÝÑ PrinY pGq, rgs ÝÑ rPgs,
(A.39)

are mutual inverses that identify PrinY pGq with qH1pY ;Gq.

If f : Y ÝÑY 1 is a continuous map and P ÝÑY 1 is a principal G-bundle, then

“
gf˚P

‰
“ f˚

“
gP

‰
P qH1pY ;Gq.

Thus, the identifications (A.39) are natural with respect to continuous maps.
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Corollary A.7. Let Y be a paracompact locally H1-simple space and ΦY be as in (A.1). For every
real line bundle V over Y ,

qH1
`
Y ;Z2

˘
Q ΦY

`
w1pV q

˘
“
“
gOpV q

‰
P qH1

`
Y ; Op1q

˘

under the canonical identification of the groups Z2 and Op1q.

Proof. By the Universal Coefficient Theorem for Cohomology [26, Theorem 53.5], the homomor-
phism

κ : H1pY ;Z2q ÝÑ Hom
`
π1pY q, H1pS1;Z2q

˘
,

 
κpηq

(`
f : S1 ÝÑY

˘
“ f˚η,

is injective. By the naturality of w1, ΦY , and (A.39), it is thus sufficient to show that

qH1
`
RP

1;Z2

˘
Q ΦRP1

`
w1pf˚V q

˘
“
“
gOpf˚V q

‰
P qH1

`
RP

1; Op1q
˘

(A.40)

for every continuous map f : RP1 ÝÑY . Since every line bundle over the interval r0, 1s is trivializ-
able, the line bundle f˚V is isomorphic to either the trivial line bundle τ1 or the real tautological
line bundle γR;1. Both sides of (A.40) vanish in the first case. Since (A.39) is a bijection, this
implies that the right-hand side of (A.40) does not vanish in the second case. The left-hand side
of (A.40) does not vanish in this case by the Normalization Axiom for Stiefel-Whitney classes [24,
p38].

A.5 Orientable vector bundle over surfaces

We now combine the description of complex line bundles in terms of Čech cohomology and the
identification of some Čech cohomology groups with the singular ones to characterize orientable
vector bundles over surfaces and their trivializations.

Lemma A.8. Let Y be a paracompact locally contractible space. The homomorphism

c1 : LBCpY q ÝÑ H2pY ;Zq, L ÝÑ c1pLq,

from the group of isomorphism classes of complex line bundles is an isomorphism.

Proof. By Section A.4, there is a natural bijection

LBCpY q ÝÑ qH1pY ;C˚q;

it is a group isomorphism in this case. By the proof of Proposition A.1, there are natural isomor-
phisms

qHppY ;Zq « HppY ;Zq @ pPZ.

By the reasoning in [32, Section 5.10], SY pCq is a fine sheaf. Along with [32, p202], this implies that

qHp
`
Y ;SY pCq

˘
“ t0u @ pPZ`.

Since Y is locally contractible, it is locally simple with respect to the short exact sequence

t0u ÝÑ Z ÝÑ C
exp
ÝÑ C

˚ ÝÑ t0u
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of abelian Lie groups in the sense of Definition A.4. Thus, we obtain a commutative diagram

t0u“ qH1pCP8;Cq //

f˚

��

LBCpCP8q
qδ1 //

f˚

��

H2
`
CP

8;Z
˘

f˚

��

// qH2pCP8;Cq“t0u

f˚

��

t0u“ qH1pY ;Cq // LBCpY q
qδ1 // H2pY ;Zq // qH2pY ;Cq“t0u

(A.41)

of group homomorphisms for every continuous map f : Y ÝÑCP
8.

Let γC ÝÑCP
8 be the complex tautological line bundle. By [24, Theorem 14.5], H2pCP8;Zq is

freely generated by c1pγCq. Along with the exactness of the top row in (A.41), this implies that
qδ1 “ c̆1 in this row. By [24, Theorem 14.6], for every complex line bundle L over Y there exists a
continuous map f : Y ÝÑCP

8 such that L“f˚γC. Along with the commutativity of (A.41), these
statements imply that qδ1 “ ˘c1 in the bottom row in (A.41) as well. The claim now follows from
the exactness of this row.

Remark A.9. The statement and proof of Lemma A.8 apply to any paracompact space Y satis-
fying the k“2 case of Definition 3.2 with Hpp¨;Z2q replaced by Hpp¨;Zq.

Corollary A.10. Let Y be a CW complex with cells of dimension at most 2. If H2pY ;Zq“t0u,
then every orientable vector bundle V over Y is trivializable.

Proof. Let n“rkV . If n“1, then V is an orientable line bundle and is thus trivializable. Suppose
ně2. Since the cells of Y are of dimension at most 2, there exists a rank 2 orientable vector bundle
L over Y such that

V « L‘
`
Y ˆR

n´2
˘
. (A.42)

The real vector bundle L admits a complex structure i. It can be obtained by fixing an orientation
and a metric on L and defining iv PL for v PL nonzero to be the vector which is orthogonal to v
and has the same length as v so that v, iv form an oriented basis for a fiber of L. By Lemma A.8,
pL, iq is trivializable as a complex line bundle. Along with (A.42), this establishes the claim.

Corollary A.11. Let Σ be a surface, possibly with boundary, and ně3. The map

OVBnpΣq ÝÑ H2pΣ;Z2q, V ÝÑ w2pV q,

from the set of isomorphism classes of rank n oriented vector bundles over Σ is a bijection.

Proof. We can assume that Σ is connected. If Σ is not compact or has boundary, then

H2pY ;Zq, H2pΣ;Z2q “ t0u.

By Corollary A.10, we can thus assume that Σ is closed and so H2pΣ;Z2q«Z2.

Let C Ă Σ be an embedded loop separating Σ into two surfaces, Σ1 and Σ2, with boundary C.
By Corollary A.10, a rank n oriented vector bundle V over Σ is isomorphic to the vector bundle
obtained by gluing Σ1ˆR

n and Σ2ˆR
n along CˆR

n by a clutching map ϕ : C ÝÑSOpnq. Since
ně 3, π1pSOpnqq « Z2. It thus remains to show that there exists an orientable vector bundle V

239



over Σ with w2pV q‰0.

Let γC;1 ÝÑCP
1 be the complex tautological line bundle. Since w2pγC;1q is the image of c1pγC;1q

under the reduction homomorphism

H2
`
CP

1;Z
˘

ÝÑ H2
`
CP

1;Z2

˘
,

w2pγC;1q ‰ 0 by the proof of Lemma A.8. If f : Σ ÝÑ CP
1 is a degree 1 map with respect to the

Z2-coefficients, then
@
w2pf˚γC;1q, rΣsZ2

D
“
@
w2pγC;1q, f˚rΣsZ2

D
“
@
w2pγC;1q, rCP1sZ2

D
‰ 0.

Thus, w2 of the orientable vector bundle

V ” f˚γC;1 ‘
`
ΣˆR

n´2
˘

ÝÑ Σ

is nonzero.

Corollary A.12. Suppose rΣ is a compact surface with two boundary components and pΣ is a closed
surface obtained from rΣ by identifying these components with each other. Let nPZ` and pV ÝÑ pΣ
be the orientable vector bundle obtained from rΣˆR

n by identifying its restrictions to BrΣ via a
clutching map ϕ : S1 ÝÑSOpnq. If pΣ is connected and ně3, then ϕ is homotopically trivial if and
only if w2ppV q“0.

Proof. By Corollary A.10, every rank n orientable vector bundle over rΣ is trivializable. Thus, every
rank n orientable vector bundle pV over pΣ is obtained from rΣˆR

n by identifying its restrictions to
the two components of BrΣ via a clutching map ϕ : S1 ÝÑSOpnq. Since

π1
`
SOpnq

˘
« Z2 and H2ppΣ;Z2q « Z2,

the claim thus follows from Corollary A.11.

Corollary A.13. Let Σ be a compact connected surface with boundary components C,C1, . . . , Ck

and V be an orientable vector bundle over Σ. If rkV ě 3, then every trivialization of V over
C1Y. . .YCk extends to a trivialization Ψ of V over Σ and the homotopy class of the restriction
of Ψ to V |C is determined by the homotopy class of its restriction to V |C1Y...YCk

.

Proof. Let n“ rkV and choose an orientation on V . Denote by pΣ the connected surface with one
boundary component C obtained from Σ by attaching the 2-disks D2

i along the boundary compo-

nents Ci. Let pV be the oriented vector bundle over pΣ obtained by identifying each D2
i ˆR

n with V

over Ci via the chosen trivialization φi. By Corollary A.10, the oriented vector bundle pV admits a
trivialization Ψ. Since there is a unique homotopy class of trivializations of pV |D2

i
, the restriction

of Ψ to V |Ci
is homotopic to φi and thus can deformed to be the same.

Suppose Ψ,Ψ1 are trivializations of V ÝÑ Σ restricting to the same trivializations φi of V |Ci
for

every i“1, . . . , k. Denote by pΣ (resp. rΣ) the closed (resp. compact) surface obtained from two copies
of Σ, Σ and Σ1, by identifying them along the boundary components corresponding to C,C1, . . . , Ck

(resp. C1, . . . , Ck). Thus, rΣ has two boundary components, each of which corresponds to C, and
pΣ can be obtained from rΣ by identifying these two boundary components. Let

rq : rΣ ÝÑ Σ and pq : pΣ ÝÑ Σ
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be the natural projections. The trivializations Ψ and Ψ1 induce a trivialization rΨ of rq˚V over rΣ
which restricts to Ψ and Ψ1 over Σ,Σ1Ă pΣ, rΣ. The bundle pq˚V over pΣ is obtained from rq˚V by
identifying the copies of V |C via the clutching map ϕ : S1 ÝÑSOpnq determined by the difference
between the trivializations of V |C induced by Ψ and Ψ1. Since

w2

`
pq˚V

˘
“ pq˚w2pV q “ 0 P H2ppΣ;Z2q,

Corollary A.12 implies that ϕ is homotopically trivial. Thus, Ψ and Ψ1 determine the same homo-
topy class of trivializations of V |C .

For an oriented vector bundle V ÝÑY , let TrivpV q denote the set of homotopy classes of trivial-
izations of V . For an oriented vector bundle V over a surface Σ, we define the map

εV : Triv
`
V |BΣ

˘
ÝÑ Z2 (A.43)

by setting εV pφq“0 for the trivializations φ of V |BΣ that extend to trivializations of V over Σ and
εV pφq“1 for the trivializations φ that do not.

Corollary A.14. Let Σ be a compact connected surface with BΣ‰H and V be an oriented vector
bundle over Σ. If rkV ě3, then the map (A.43) is surjective and changing the homotopy class of
a trivialization φ over precisely one component of BΣ changes the value εV pφq.

Proof. This follows from π1pSOpnqq«Z2 and Corollary A.13.

B Lie group covers

This appendix reviews basic statements concerning covers of Lie groups by Lie groups that are
Lie group homomorphisms. Lemma B.1 describes the structure of connected Lie group covers.
Lemma B.2 and Proposition B.3 do the same for covers of disconnected Lie groups with connected
restrictions to the identity component of the base. We conclude with examples involving the groups
Spinpnq and Pin˘pnq defined in Sections 2.1 and 2.2, respectively.

B.1 Terminology and summary

We call a covering projection q : rGÝÑG a Lie group covering if rG and G are Lie groups and q is a
Lie group homomorphism. We call such a cover connected if rG is connected; this implies that so
is G. Lie group coverings

q : rG ÝÑ G and q1 : rG1 ÝÑ G

are equivalent if there exists a Lie group isomorphism ρ : rG ÝÑ rG1 such that q“q1˝ρ. For a
connected Lie group G, we denote by CovpGq the set of equivalence classes of connected Lie group
coverings of G and by π1pGq its fundamental group based at the identity 1. For any group H, we
denote by SGpHq the set of subgroups of H. The next lemma is established in Section B.2.

Lemma B.1. (a) Let G be a connected Lie group. The map

CovpGq ÝÑ SG
`
π1pGq

˘
,

“
q : rGÝÑG

‰
ÝÑ q˚π1

` rG
˘
,

is a bijection. For every rqsPCovpGq as above, q´1p1q is contained in the center of rG.
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