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Abstract

This note collects a number of standard statements in Riemannian geometry and in Sobolev-
space theory that play a prominent role in analytic approaches to symplectic topology. These
include relations between connections and complex structures, estimates on exponential-like
maps, and dependence of constants in Sobolev and elliptic estimates.
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1 Connections in real vector bundles

1.1 Connections and splittings

Suppose M is a smooth manifold and ng: E — M is a vector bundle. We identify M with the
zero section of . Denote by

a: FoF — FE and Tpep: FOE — M

the associated addition map and the induced projection map, respectively. For feC>(M;R),
define
mg: E— F by my(v) = f(re(v)) v VveEE. (1.1)

In particular,
TEQE = TEOQ, g =7ngpomy V feC?(M;R).

The total spaces of the vector bundles
Tpep: E®OFE — M and mpE—FE

consist of the pairs (v,w) in Fx E such that 7g(v) =mg(w).
Define a smooth bundle homomorphism

d
tp:mpE — TE, tp(v,w) = &(QH—tw)‘ (1.2)

t=0

Since the restriction of tg to the fiber over v€ E is the composition of the isomorphism

d
Erpw) — ToErp ), w — a(v—i—tw)’tzo,

with the differential of the embedding of the fiber E (,) into F, ¢g is an injective bundle homo-
morphism. Furthermore,

drgotg =0, m}LEOTr*Emf =dmyorg, a"Lpompgpa=daoipgE,
TE|y ~TM & Tm g .

By the first statement in (1.3), the injectivity of ¢p, and surjectivity of drpg,

0—> B2 TE -5 oM — 0 (1.5)

is an exact sequence of vector bundles over E. By the second statement in (1.3), the diagram

| SR, f o R Y, o gu—
lﬂgmf ldmf lﬂ'*Eid (16)
m}LE mj}dﬂ'E
0 7LE mTE M ——0



of vector bundle homomorphisms over E commutes. By the third statement in (1.3), the diagram

dm
0 —> Thep(EOE) —2F  ~ T(EoE) — 2% »pp o TM ——0
l”E@Eu lda l”E@Eki (1'7)
0— > rf B —F TE— "9 L TM—>0

of vector bundle homomorphisms over E®E commutes.

A connection in F is an R-linear map
V:I'(M;E) — I'(M; T*"M ®gr E) s.t.
V(f§) =df@&+ fVE ¥V feC™(M), €T (M;E). (1.8)

The Leibnitz property (1.8) implies that any two connections in F differ by a 1-form on M. In other
words, if V and V are connections in E there exists

9 € T(M;T*M@rHomg(E, E)) s.t.
Vol = Vol +{0(v)}e YV EET(M;E), veTuM, x€ M. (1.9)

If U is a neighborhood of x € M and f is a smooth function on M supported in U such that
f(xz)=1, then
Vel = V(fE)|, — daf®E(x) (1.10)

by (1.8). The right-hand side of (1.10) depends only on &|y. Thus, a connection V in F is a local
operator, i.e. the value of V¢ at a point z € M depends only on the restriction of ¢ to any neigh-
borhood U of x.

Suppose U is an open subset of M and &1,...,&,€T(U; E) is a frame for E on U, i.e.

&(x),.... & (x) € E,

is a basis for E, for all z€U. By definition of V, there exist

k=n k=n
0f cT(U;T*U)  st. V&= GO =D 0@ Vi=1,...,n
k=1 k=1
We call
0=(0r),,_, , €T (U;T*"U®rMat,R)

the connection 1-form of V with respect to the frame (& ).

For an arbitrary section

l=n
¢=> fl&er(U;E),

=1



by (1.8) we have

k=n l=n
ve=Ya(aff 0, ie V(S =g {d+o}f, (1.11)
k=1 =1
where &= (&,....&), f=(f' .., ). (1.12)
This implies that
V|, = moleodsl: TeM — B, VEED(UZ E) sit. £(z) =0, (1.13)

where 73|, : Ty F — E, is the projection to the second component in (1.4).

By (1.11), V is a first-order differential operator. By (1.8), its symbol is given by
ov:T"M — Hom(E,T*M@RE), {av(n)}(f) =R f.

Lemma 1.1. Suppose M is a smooth manifold and 7g: E— M is a vector bundle. A connec-
tion V in E induces a splitting
TE =~ n15TM @& npE (1.14)

of the exact sequence (1.5) extending the splitting (1.4) such that
VE| = malpodel: ToM — B, YV E€T(MGE), x€M, (1.15)
where mo|,: Ty — E, is the projection onto the second component in (1.14). Furthermore,
dmy ~ mpid @ mpm V teR and a4~ Thepid ® Thepa, (1.16)
with respect to the splitting (1.14), i.e. it is consistent with the commutative diagrams (1.6) and (1.7).
Proof. Given x€ M and v € E,, choose £ eT'(M; E) such that {(z)=v and let
T,E" =Im{d¢-VE} C T,E.
Since mgo&=idyy,
dyrgo{dé-VEY =idpy =  TE~RT,E"®E,~T,M®E,.
This splitting of T, E satisfies (1.15) at v.

With the notation as in (1.11),
l=n l=n
{de—veY|, = (dxidM,Zfl(:r)Gﬂx, . Zfl(x)9?|w> . T,M — T, M®R"
=1 =1

with respect to the identification F|y ~ U x R* determined by the frame (&)r. Thus, T,E" is
independent of the choice of £. Furthermore, the resulting splitting (1.14) of (1.5) extends (1.4)
and satisfies (1.16). O



1.2 Metric-compatible connections
Suppose £ — M is a smooth vector bundle. Let g be a metric on E, i.e.

g€ T'(M; E*@rE™) s.t. g(v,w) = g(w,v), g(v,v) >0 YvwekE;, v#£0, zeM.
A connection V in E is g-compatible if

d(9(&,Q) =9(VE Q) +9(§, VO eT(M; T M) V£, € T(M;E).

Suppose U is an open subset of M and &;,...,&, €I'(U; E) is a frame for Eon U. Fori,j=1,...,n
let

9(&i, &) € €=(U).

If V is a connection in E and 6y, is the connection 1-form for V with respect to the frame {&}x,
then V is g-compatible on U if and only if

k=n
Z (giwf%—gjk@f) :dgij \V/i,j = 1,2,...,77,. (1.17)
k=1

1.3 Torsion-free connections

If M is a smooth manifold, a connection V in T'M is torsion-free if

VxY - VyX = [X,Y].

If (x1,...,2,): U—R" is a coordinate chart on M, let
0 0
—,— e NU;TM
Oxy’ " Oy (U;TM)

be the corresponding frame for 7'M on U. If V is a connection in T'M, the corresponding connection
1-form 6 can be written as

k
ZF da?, where Vc‘)/axza Z ij axk

The connection V is torsion-free on T'M |y if and only if
Ih=Th  Vijk=1..n (1.18)

Lemma 1.2. If (M, g) is a Riemannian manifold, there exists a unique torsion-free g-compatible
connection V in T M.



Proof. (1) Suppose V and V are torsion-free g-compatible connections in TM. By (1.9), there
exists

0 € T'(M;T*M@gHomg(TM,TM)) s.t.
VxY —VxY ={0(X)}Y VYel(M;TM), XeT,M, xcM.
Since V and V are torsion-free,
{0(xX)}y ={6(M)}X VX, YeT,M, zcM. (1.19)
Since V and V are g-compatible,

g({0(X)}Y, Z) + (Y. {0(X)}Z) =0
g({6(Y)}X, 2) + g(X. {6(Y)}Z2) =0 V X,Y,Z € T,M, ze M. (1.20)
g({0(Z2)}X,Y) +g(X,{6(2)}Y) =0

Adding the first two equations in (1.20), subtracting the third, and using (1.19) and the symmetry
of g, we obtain

20{0(X)}Y,Z) =0 VX,Y,ZeT,M, zeM = 0

Il
e

Thus, V=V.
(2) Let (x1,...,2,): U—R" be a coordinate chart on M. With notation as in the paragraph
preceding Lemma 1.2, V is g-compatible on T'M |y if and only if

l=n

> (9T + 91iThi) = Or, 9is; (1.21)
=1

see (1.17). Define a connection V in T'M|y by
1 l=n
ng = 5 ngl (axlg]l + axjgil - axngj) v iaja k= 17 PR
=1

where g% is the (i,j)-entry of the inverse of the matrix (9i5)ij=1,...n- Since g;j = gji, Ffj satisfies
(1.18); a direct computation shows that Ffj also satisfies (1.21). Therefore, V is a torsion-free g-
compatible connection on 7'M |y. In this way, we can define a torsion-free g-compatible connection
on every coordinate chart. By the uniqueness property, these connections agree on the overlaps. [

2 Complex structures

2.1 Complex linear connections

Suppose M is a smooth manifold and = : (E,i) — M is a complex vector bundle. Similarly to
Section 1.1, there is an exact sequence

0—=mbE L TE -5 oM — =0 (2.1)



of vector bundles over £. The homomorphism ¢g is now C-linear. If f€ C*°(M;C) and ms: E—FE
is defined as in (1.1), there is a commutative diagram

| 5 JC R, DR ) g—
lﬂ'}ﬁ;mf idmf iﬂ}}id (22)
m’}LE m;dTrE
0—>14E m5TE M —0

of bundle maps over E.

Suppose
V:T'(M; E) — T'(M; T*"M®rFE)
is a C-linear connection, i.e.
Vo(i€) =i(VyE) VEeT(M;E), veTM.
If U is an open subset of M and &1,...,§, €T'(U; E) is a C-frame for F on U, then there exist

k=n k=n
0f e T(M;T*M) st V=Y &GIF =D /4 Vi=1,...n
k=1 k=1
We will call

0= (o}

the complex connection 1-form of V with respect to the frame ({)x. For an arbitrary section

piel. . € I'(3; T*M @rMat,C)

l=n
=) el (UsE),

=1
by (1.8) and C-linearity of V we have

k=n l=n
ve=Ya(aff +300),  ie V(e f) =g {d+o}r, (2.3)
k=1 =1
where { and f are as (1.12).

Let g be a hermitian metric on F, i.e.
g€ F(M;Hom@(E®@E, C)) st. g(v,w) = g(w,v), gv,v) >0 Yov,wéeE,; v#0, x€M.
A C-linear connection V in E is g-compatible if
d(g(&,¢)) = 9(VE,¢) +9(€, V() € T(M; T*M @R C) V¢ Cel(M;E).
With notation as in the previous paragraph, let
gijzg(fi,éj)GC“(U;C) Vij=1,...,n.
Then V is g-compatible on U if and only if

k=n

Z (905 + gi0F) =dgi; Vi j=12,....n (2.4)
k=1



2.2 Generalized 0-operators
If (3,)) is an almost complex manifold, let
720 = {neT*E@RC: noj= in} and 720! = {neT*Z@RC: noj= —in}

be the bundles of C-linear and C-antilinear 1-forms on X. If (3,j) and (M, J) are smooth almost
complex manifolds and w: 3 — M is a smooth function, define

_ _ 1
dju € D(S; TS @cu*TM) by  Oju= 5(du + Joduoj). (2.5)

A smooth map u: (3,j) — (M, J) will be called (., j)-holomorphic if 97;u=0.

Definition 2.1. Suppose (%,j) is an almost complex manifold and 7 (E,i) — ¥ is a complex
vector bundle. A O-operator on (E,1) is a C-linear map

0:T(%E) — T(X; T*2% @cE)

such that
A(fe) = (Of)®E+ f(0E) V¥V feC™(%), £€D(3%;E), (2.6)

where 5f:c§i,jf is the usual O-operator on complex-valued functions.

Similarly to Section 1.1, a d-operator on (E,1i) is a first-order differential operator. If U is an open
subset of M and &;,...,£,€T(U; E) is a C-frame for E on U, then there exist

k=n k=n
0f eD(U;TU) st 0= &GO =D /e Vi=1,...,n
k=1 k=1
We call
0=(0r),,_, . €T(U;T*U" @cMat,C)

the connection 1-form of O with respect to the frame (£;);. For an arbitrary section
l=n
£=> flg el (U;E),
=1
by (2.6) we have
B k=n ~ l=n B B
e =30+ 30k, ie Bg ) =€ {040} (2.7)
k=1 =1
where ¢ and f are as in (1.12). It is immediate from (2.6) that the symbol of 0 is given by

05: T*S — Home (B, T*S% @cE),  {os)}(f) = (n+inoj) @ f.

In particular, 9 is an elliptic operator (i.e. 05(n) is an isomorphism for n#0) if (3,j) is a Riemann
surface.



Lemma 2.2. Suppose (%,j) is an almost complex manifold and w: (E,i)— % is a complex vector
bundle. If B
:T(%; BE) — T'(%; T2 @c F)

is a O-operator on (E,1i), there exists a unique almost complex structure J=Jz on (the total space
of ) E such that 7 is a (j, J)-holomorphic map, the restriction of J to the vertical tangent bundle
TEY~n*E agrees with i, and

95;€ =0 T(U; T*2" @c&*TE) — 06 =0ecT(U;T*2% @cE) (2.8)
for every open subset U of ¥ and {€T(U; E).

Proof. (1) With notation as above, define
k=n
¢: UxC" — Ely by go(x,cl,...,c”):g(a:)-gtEchfk(x)EEI.
k=1

The map ¢ is a trivialization of E over U. If J=J5 is an almost complex structure on F, let J be
the almost complex structure on UxC" given by

Joe) = {dwo®} 0 Jpwe 0dwep ¥ (z.c) € UxC. (2.9)

The almost complex structure J restricts to i on TEY if and only if

Jzow =iw € T.C" C T, (UXC") vV w e T.C". (2.10)
If J restricts to i on TEY, the projection 7 is (j, J)-holomorphic on E|y if and only if there exists

J™ € T (UxC™; Homg (15, TU, 7. TCY)) st
Jaow =jaw+ JPyw YV we T,U C Ty (UxC"). (2.11)

If CeT(U; B), let
E=plot= (idU,i), where fec=(U;C).

By (2.9)-(2.11),

2 éJJf‘a; = dg(x)go o 25(}"ng$ = dg(x)(p o {(IdeUu dl’i) + jg(:r:) o) (IdTmUy dxi) o) ]x}

3 Tvh :
= dg(x)go o (0, 20f|: + Jg(x) o ]I).

(2.12)

On the other hand, by (2.7),

Ol = 9 f')|, = &(x) - {O+0}f],
= gp(éﬂm —+ 995 . f(w)t)

By (2.12) and (2.13), the property (2.8) is satisfied for all £ €I'(U; E) if and only if

(2.13)

jvy?,g) =2(0,- ') o (—jz) =2i0, - V (x,c) € UxC™.



In summary, the almost complex structure J=J5 on E has the three desired properties if and only
if for every trivialization of E over an open subset U of

j(x,g) (w1, w2) = (jaw1, iws + 20 (w1) - ) (2.14)
V (z,c) € UxC", (w1,wz) € T,UST,.C" =T, ,(UxC"),

where J is the almost complex structure on UxC" induced by J via the trivialization and 6 is the
connection 1-form corresponding to 0 with respect to the frame inducing the trivialization.

(2) By (2.14), there exists at most one almost complex structure J satisfying the three properties.
Conversely, (2.14) determines such an almost complex structure on E. Since

Tty (w1,w2) = Tip ) (fwr, i + 200, (w1) - ) = (Puor, i(iws + 26, (wr) - ) + 216, (un) - )
== —(’11)1, wQ)?

J is indeed an almost complex structure on E. The almost complex structure induced by JonE lu
satisfies the three properties by part (a). By the uniqueness property, the almost complex structures
on F induced by the different trivializations agree on the overlaps. Therefore, they define an almost
complex structure J=.Jg on the total space of £ with the desired properties. O

2.3 Connections and d-operators
Suppose (3,j) is an almost complex manifold, 7: (E,i) — X is a complex vector bundle, and
0:T(%;E) — T(2; T*2% ' @cE)

is a d-operator on (E,i). A C-linear connection V in (E, 1) is -compatible if
= = 1
0¢ = Ové = 5(vg +iVEoj) Ve (M;Y). (2.15)

Lemma 2.3. Suppose (3,j) is an almost complex manifold, m: (E,i) — X is a complex vector
bundle, B
0:T(%E) — T(%; T*2% @cE)

is a -operator on (E,i), and Jj is the complex structure in the vector bundle TE — E provided
by Lemma 2.2. A C-linear connection V in (E, i) is 0-compatible if and only if the splitting (1.14)
determined by V respects the complex structures.

Proof. Since Jz =n*i on 7*E C TE, the splitting (1.14) determined by V respects the complex
structures if and only if

Jlo 0 {d¢ = Ve = {d¢ = V¢ 0o TX — TLE

for all xeX, ve E,, and {€T'(X; F) such that {(z)=0; see the proof of Lemma 1.1. This identity
is equivalent to

D556 =0vE YV EED(SE). (2.16)
On the other hand, by the proof of Lemma 2.2,

djzi6 =06 VEeT(5E); (2.17)
see (2.12)-(2.14). The lemma follows immediately from (2.16) and (2.17). O

10



2.4 Holomorphic vector bundles
Let (3,)) be a complex manifold. A holomorphic vector bundle (E,i) on (3,j) is a complex vector
bundle with a collection of trivializations that overlap holomorphically.
A collection of holomorphically overlagping trivializations of (£, i) determines a holomorphic struc-
ture J on the total space of E' and a d-operator

0:T(S;E) — I'(Z; T2 @c ).

The latter is defined as follows. If &1,...,&, is a holomorphic complex frame for £ over an open
subset U of M, then

k=n k=n
o) fra=) 0ffwe V[ f"eC™(U0),
k=1

k=1
In particular, for all £€T'(M; E)

05,6 =0 = ¢ = 0.
Thus, J=Jj3; see Lemma 2.2.

Lemma 2.4. Suppose (%,j) is a Riemann surface and 7: (E,i) — X is a complex vector bundle.

If
0:T(%E) — T(X; T*2% @cE)

is a O-operator on (E, 1), the almost complex structure J = Jg on I is integrable. With this complex
structure, w: E—3 is a holomorphic vector bundle and 0 is the corresponding 0-operator.

Proof. By (2.8), it is sufficient to show that there exists a (J,j)-holomorphic local section through
every point v € FE, i.e. there exist a neighborhood U of z=7(v) in ¥ and £ €I'(U; E) such that

E(z) = and d7;€ = 0.
By Lemma 2.2 and (2.13), this is equivalent to showing that the equation
{5 + e}ft =0, fl@)=v, feC®U;C), (2.18)
has a solution for every v€C". We can assume that U is a small disk contained in S2. Let
n: 8% —[0,1]
be a smooth function supported in U and such that n=1 on a neighborhood of . Then,
nd € (8% (T*5%)%! @cMat,,C).
Choose p>2. The operator
0 : LI(S%C") — LP(8% (T*8*) % 0cC) & C",  O(f) = (/. /().
is surjective. If n has sufficiently small support, so is the operator
O, : LY(S* C") — LP(S*(T*S*)™ @cC") @ C",  O,(f) = ({0;+n0}f, f(2)).

Then, the restriction of @;1(0, v) to a neighborhood of x on which n=1 is a solution of (2.18). By
elliptic regularity, 6,71(0, v) €C™(5%,Cn). O

11



2.5 Deformations of almost complex submanifolds

If (M, J) is a complex manifold, holomorphic coordinate charts on (M, J) determine a holomorphic
structure in the vector bundle (T'M,i) — M. If (3,j) C (M, J) is a complex submanifold, holo-
morphic coordinate charts on > can be extended to holomorphic coordinate charts on M. Thus,
the holomorphic structure in 7% — ¥ induced from (X,j) is the restriction of the holomorphic
structure in TM|x. It follows that

O =05 : T(5;T8) — T'(S; T2 @cTY) C I'(S; T2 @c TM|x),

where 0y and Oy, are the J-operators in TM|y, and T'Y induced from the holomorphic structures
in 3 and M. Therefore, 0y descends to a d-operator on the quotient

9: T(SNuE) = [(%;TM|s) [T(%TE) — D(E; TS @c Ny D),

where
NuS=TM|s /TS — %

is the normal bundle of ¥ in M. This vector bundle inherits a holomorphic structure from that
of TM|y, and ¥. The above d-operator on N}, is the d-operator corresponding to this induced
holomorphic structure on Ny X.

Suppose (M, J) is an almost complex manifold and (X,j) C (M, J) is an almost complex submani-
fold. Let V be a torsion-free connection in T'M. Define

Dys:T(%;TM|g) — DT 5% @c TM|s) by

1 1
Dyt = 5(VE+J0VEo]) = 2J o Vel : TS — TMs. (2.19)

If V is the Levi-Civita connection (the connection of Lemma 1.2) for a J-compatible metric on M
(and ¥ is a Riemann surface), then Dy is the linearization of the 0 -operator at the inclusion
map ¢: ¥ — M; see [4, Proposition 3.1.1].

In fact, D.»; is independent of the choice of a torsion-free connection in T'M. Let
V=V+6, 0eT(M;T*MogHomg(TM,TM)), (2.20)
be another torsion-free connection; see (1.9). Since V and V are torsion-free connections,
{6(X)} Yy ={0(Y)}X VX,YET,M, z€M. (2.21)
IfzeM and X, Y el'(M;TM),

(VyJ}X =Vy(JX) = JVyX, {VyJ}X =Vy(JX)-JVyX =
{(VyJ}X —{VyJ}X = {0(V)}(JX) — J{O(Y)} X = {0(JX)}Y — J{O(X)}Y (2.22)

by (2.20) and (2.21). On the other hand, by (2.20) for all X € TY and £€I'(3; T M|y),

(VE+ ToVEHX) — {VE+ ToVELHX) = {0(X)}e + J{0(GX) )¢

= J({6(JX)}¢ — J{0(X)}€), (2.23)

12



since j=J|ry and J?=—Id. By (2.22) and (2.23), D,y is independent of the choice of torsion-free
connection V.

Since any torsion-free connection on ¥ extends to a torsion-free connection on M, the above
observation implies that

Dys:T(%;TY) — T(%T*E% ®cTY) C T(; T2 @ TM|x). (2.24)

Thus, an almost complex submanifold (X, j) of an almost complex manifold (M, J) induces a well-
defined generalized Cauchy-Riemann operator! on the normal bundle of ¥ in M,

DY D(ZNyE) — DS T2 @cNyD), DYy (n(€) = n(Dys(€)) VEED(S;TM]y),

where 7: T M|y, — N2 is the quotient projection map. The C-linear part of Dyz determines a
0-operator on the normal bundle of ¥ in M:

Hg: (B NuD) — DS T2 @c Ny E),

)

5 (©) = 5 (DY5(€) — TDY5(JE) VEET(S:NwE).

Both operators are determined by the almost complex submanifold (X,j) of the almost complex
manifold (M, J) only and are independent of the choice of torsion-free connection V in (2.19).

Any connection V in TM induces a J-linear connection in T'M by
Vié=Vxé— %J(VXJ)g VXeTM, E€T(M;TM). (2.25)
If V is as in (2.19),
(D€} (X) = {Bes€} (X) + A5 (X.8) — {(Voed) + J(Ve) }(X) (2.26)
for all £€I'(X;TM|x) and X € TY, where A is the Nijenhuis tensor of J:

Aj(&1,&) = i([&l,&] + J[&1, JEa] + J[JE1, 2] — Ufl,J&D V&, e N(M;TM).  (2.27)

Since the sum of the terms in the curly brackets in (2.26) is C-linear in £, while the Nijenhuis
tensor is C-antilinear, the C-linear operator

DS TM]y) — DTS @cTMs), € — dgs(6) = ({(Vsed) +I(Vel)},  (228)

takes I'(3; TY) to FQE;T*2071®CTE) by (2.24). Thus, it induces a d-operator on Ny Y and this
induced operator is 89[2 If the image of the homomorphism

TM — T*¥% @c TM|y, £ — Ve — IV e,

Lsee Section 4.3
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is contained in T*¥%!®cTY, then Oy preserves TY and induces a d-operator 59/ ; on Ny Y with
ON, =&Y,.. In this case
v/ = Y% ’

DY (n(€) = n(dgu€ + As(,6): TS — NyS VY EET(S;TM]y).
This is the case in particular if J is compatible with a symplectic form w on M and V is the
Levi-Civita connection for the metric g(-,-) =w(-, J-), as the sum in the curly brackets in (2.26)
then vanishes by [4, (C.7.5)].
It is immediate that A takes TYX®grT> to T'> and thus induces a bundle homomorphism

AN TS @p Nu® — NuS.

If ¢ is any vector field on M such that ((x)=X €T, ¥ for some z €3, then

(D€} (X) = 2 (6.6 + TIGE),

[80:(6) = 1(Vaed) + T(Vel) }X) = (168 +T17¢, € 16, JE) + [T, T,

(2.29)

since V is torsion-free.? These two identities immediately imply that the operators (2.19) and (2.28)
preserve TS CT M|y, and thus induce operators

D(Z;NyY) — T(S; T* 2% @c Ny X))
as claimed above.

If g is a J-compatible metric on TM |y and 7 : TM|x — T4 is the projection to the g-orthogonal
complement of 'Y in TM|s, the composition V+

D(ST84) o D(STM|s) o D(S T S@pTMls) =5 T(S: T*S@aTxY),

with V7 as in (2.25), is a g-compatible J-linear connection in T%1. Via the isomorphism
7 TSL — My, it induces a J-linear connection V' in ANj/E which is compatible with the
metric gN induced via this isomorphism from g|ps,.. If the image of the homomorphism

75t — 7*2% @c TM|x, € — Ve — IV geJ, (2.30)
is contained in T*Y%!®c TS, then dga :5{1\;/2 and so
DY (m(8)) = m(Bg 1€+ As(-,6)): TE — NSV eD(5;TEH).
This is the case if ¥ is a divisor in M, i.e. tkeN = 1, since (V¢ J)E is g-orthogonal to ¢ and J¢ for

all £, (€T, M and x€ M by [4, (C.7.1)]. This is also the case if J is compatible with a symplectic
form w on M and g(-,-)=w(-, J-), as the homomorphism (2.30) is then trivial by [4, (C.7.5)].

2Since LHS and RHS of these identities depend only &€ and X =(¢(x), and not on ¢, it is sufficient to verify them
under the assumption that V(¢|,=0.
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3 Riemannian geometry estimates

This section is based on [1, Chapter 1] and [2, Section 3] and culminates in a Poincare lemma
for closed curves in Proposition 3.6 and an expansion for the J-operator in Proposition 3.13. If
u: % — M is a smooth map between smooth manifolds and £ — M is a smooth vector bundle,
let

M(u; E) =T(Z;w*E), TIYwE)=T;T*'S0pu*E).

We denote the subspace of compactly supported sections in I'(u; E) by T'c(u; E).

An exponential-like map on a smooth manifold M is a smooth map exp: TM — M such that
exp |y =idps and

dyexp = (idp,ar idr,ar) : To(TM) = T,M & T,M — T,M Y e M,

where the second equality is the canonical splitting of T,,(T'M) into the horizontal and vertical
tangent space along the zero section. Any connection V in TM gives rise to a smooth map
expY: W — M from some neighborhood W of the zero section M in TM; see [1, Section 1.3]. If
n: TM — R is a smooth function which equals 1 on a neighborhood of M in TM and 0 outside
of W, then

exp: TM — M, v —> exp” (n(v)v),

is an exponential-like map. If M is compact, then W can be taken to be all of TM and exp=exp".

If (M, g,exp) is a Riemannian manifold with an exponential-like map and x € M, let rexp(z) ERT
be the supremum of the numbers r €R such that the restriction

exp: {veT,M: |v|<r} — M
is a diffeomorphism onto an open subset of M. Set
rgxp(a:) = inf {dg(a:,exp(v)): veT, M, |v| :Texp(I)} eRT,

where d, is the metric on M induced by g. If K C M, let

Hp(K) = inf 18, (2);

this number is positive if K C M is compact.

3.1 Parallel transport

Let (E,(,), V) — M be a vector bundle, real or complex, with an inner-product (,) and a metric-
compatible connection V. If a: (a,b) — M is a piecewise smooth curve, denote by

11, : Ea(a) — Ea(b)

the parallel-transport map along « with respect to the connection V. If exp: TM — M is an
exponential-like map, € M, and veT, M, let

In,: £, — Eexp(v)
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be the parallel transport along the curve
Yo [0,1] — M, 7 (t) = exp(tv).
If u: [a,b] x [c,d] — M is a smooth map, let
Hou : Eyae) — Eua,e)

be the parallel transport along u restricted to the boundary of the rectangle traversed in the positive
direction. If u: ¥ — M is any smooth map, V induces a connection

V% T(u; E) — Tl (u; E)
in the vector bundle u*E — . If « is a smooth curve as above and (€T'(«; F), let
D
(= V5.0 ET(as ),

where 0y is the standard unit vector field on R.

Lemma 3.1. If (M, g) is a Riemannian manifold and (E,(,),V) is a normed vector bundle with
connection over M, for every compact subset K C M there exists Cx € RT such that for every
smooth map u: [a,b] X [c,d] — M with ImuC K

d rb
[Tg, — 1| < CK/ / |us||u|dsdt,
cJa

where the norm of (g, —1I) €End(Ey(, )) is computed with respect to the inner-product in Eyq -

Proof. (1) Choose an orthonormal frame {v;} for Ey(,). Extend each v; to

& € T (ulaxpea E)
by parallel-transporting along the curve t — u(a, t) and then to (; € I'(u; E) by parallel-transporting
&i(a,t) along the curve s— u(s,t); see Figure 1. By construction,

D
¢ =0€eT(uE).
G =0el(wE)

Let A be the matrix-valued function on [a, b] X [¢, d] such that

=k

= Aa(s,t)G(s,1), (3.1)

=1

D

a@‘

(s:t)

where k is the rank of E. Note that A;;(a,t) = 0 and

DD_. DD =kra 9
(R (us, u)Gi, G) = <detCi — O.ltdsCi,Cj> = ; < <88Ail> Cl,Cj> = %Aijy (3.2)

where Ry is the curvature tensor of the connection of V. Since K is compact and the image of u
is contained in K, it follows that

b
| Aij (b,1)| < CK/ s (5,00 | ut] 5,0y d5- (3.3)
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&i

C U;

Gi

a b

Figure 1: Extending a basis {v;} for Ey () to a frame {(;} over [a,b] X ¢, d]

(2) The parallel transport of (; along the curves
T —u(r,¢), T—u(r,d), T— ula,T)

is ¢; itself. Thus, it remains to estimate the parallel transport of each (; along the curve 7 —u(b, 7).
Let h;j be the SOg-valued function (Ug-valued function if E is complex) on [c,d] such that

Jj=k D
h(C) = H? Z a z]C] ‘ =0 V’L',t.
7=1
The second equation is equivalent to
j=k i=k
Zh GO+ hi(HAub )G, ) =0 = K =-hA®b,).  (34)
j=11=1

Since (the real part of) the trace of (A4;;) is zero by (3.2), equation (3.4) has a unique solution in
SOy, (or Ug) such that h(c)=I. Furthermore, by (3.3)

d d d rb
Ih(d) — 1] g/]h’(t)|dt§/|hHA|dt§k2// Cre s Jug|dsdt. (3.5)

Since Haavizzng hij(d)v; by the above, the claim follows from equation (3.5). O

Corollary 3.2. If (M, g) is a Riemannian manifold and (E,(,), V) is a normed vector bundle with
connection over M, for every compact subset K C M there exists Cx € RT such that for every
smooth closed curve a: [a,b]— M with ImaC K

o — 1] < Ok min (|[daly, (b—a)|dal3).

Proof. Let exp: TM — M be an exponential-like map. Since the group SOy (or Uy if E is
complex) is compact and
lda||? < (b—a)||dall3

by Holder’s inequality, it is enough to assume that

lde||1 < min(rd,  (K)/2,1).

exp
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Thus, there exists

a € C™([a, b]; TpoyM) s.t. a(t) = exp(a(t)), [a(t)]a(e) < rexp(ala)).

Define
u: [0,1]x[a,b] — K C M by u(s,t) = exp (sa(t)).
Using
la(t)| < Crdg(afa),a(t)) < Ck|dalq ,
&’ (1)] = [{da eXp} ( '(1))] < Ckldial,
we find that
us(s, t) = {dsaq) exp }(a(t)) = |uslsy < Cklldalls; (3.6)
w(s,t) = s{damexp (@ (1) = |wley < Ckldial. (3.7)

Thus, by Lemma 3.1,
1 pb
[T, — 1| = Mg, — | < C’K/ / [us||ug|dsdt < Cl|lda|F < Cle(b—a)||de|3.
0 Ja

Since ||da|; <rdkp(K), it follows that |1, —1I| <Ck||de;. O

Corollary 3.3. If (M, g,exp) is a Riemannian manifold with an exponential-like map and (E, (,), V)
is a mormed vector bundle with connection over M, for every compact subset K C M there exists
Cx € C*(R;R) such that for all € K and smooth maps a: (—¢,e) —TpM and :(—¢,€) — Ey

‘Z(Ha(t)f(t)> ‘

t=0

- Ha(O)ﬁ’(O)‘ < Cx(|a(0)])[a(0)[|a"(0)[1£(0)]- (3.8)

Proof. Define
u: [0,1]x [0,€/2] — K C M by u(s,t) = exp (sa(t)).

Let {v;} be an orthonormal basis for E,. Extend each v; to

G € T(ulpyxe; B)

by parallel-transporting along the curves s — u(s,t). If

where k is the rank of F, then

i=k
Iz&(t) = Z fiBGLy =

i (Ts) Zfz <110+Zfz Geo|, (39)
= Iz +Zfl Qlt)t .
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On the other hand, by (3.1), (3.3), and the first identities in (3.6) and (3.7),

D
—G(1,t Aii(1,0)] < sls <
el Z\ 5(1.0)] < KC (30N [ Toslsoulsonds 510
SCK(|a( )1)1a(0)]le" (0)].
The claim follows from (3.9) and (3.10). O

Remark 3.4. Note that (3.3) is applied above with K replaced by the compact set
exp ({veT,M: zeK, [v|<[a(0)}).

Thus, the constants C'(|a(0)|) and Ck(|a(0)|) may depend on |&(0)|. If M is compact, then the
first constant does not depend on |a/(0)], since (3.3) can then be applied with K =M. The second
constant is then also independent of K and |a(0)| if exp=exp" for some connection V in TM. So,
in this case, the function Ck in (3.8) can be taken to be a constant independent of K.

3.2 Poincare lemmas

Lemma 3.5. If (: S'—R* is a smooth function such that f027TC(9)d9:O,

27 2m
/ |<(9)|2d0§/ ¢ (0)[2d6.
0 0

n<oo

= Z Cneine;

n>—oo

see [6, Section 6.16]. Since ( integrates to 0, (o=0. Thus,

Proof. Write

2 n<oo n<oo 2
[ lc@pas =23 P <2r 3 in? = [ico)Pas,
0 n>—oo n>—oo
as claimed. O

Proposition 3.6. If (M, g) is a Riemannian manifold and (E,(,),V) is a normed vector bundle
with connection over M, for every compact subset K C M there exists C € R with the following
property. If a€ C>®(SY; M) is such that Ina C K and &, €T (a; E), then

[(Ve&, )| < IVo€ll2l Vo2 + Cr min ([[daly, lldal3) €]z ¢]l2

where Vg=V§_ is the covariant derivative with respect to the oriented unit field on S and all the
norms are computed with respect to the standard metric on S*.

Proof. Identify E, ) with R* (or CF), preserving the metric. Denote by s0(Eq()) ~ soy (or
u(Eqy0)) = ug) the Lie algebra of the Lie group SO(E,g)) = SOy, (or of U(Ey))~ Ug). For each
X €50(Eq(0)) (or x €Eu(Ey0))), let eXE€SO(Ey(g)) (or eX€U(Ey))) be the exponential of x. Let

Hg: Ea(O) — Ea(@)
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be the parallel transport along the curve t — «/(t) with ¢ € [0,6]. By Corollary 3.2, there exists
X €50(Eq(0)) (or x €u(Ey(g))) such that

Iy, = eX and x| < Ck min (||de|1, Hda||%) . (3.11)
By the first statement in (3.11),

st X Eq) — @' F, (0,v) — e~ X/2 1y (v),
is a smooth isometry. Let ®o=mooW¥~!: o*E —» Eq(0) and

1

21
(= o J, {@2¢}H(0)dO € Eyg).-

By Holder’s inequality and Lemma 3.5,

[(Vo&, (=] < [IVe€lllIC—¥C]2

z 3.12
V€22 —Clls < Vo€ 2D (312)

By the product rule,
ld(®20) 12 < ([T |y + Ix/2 [T ¢, = 1¥C 2 + be/2n I 12
< [IVo¢ll2 + Cr min ([|del1, de3) [<]lo-
On the other hand, by integration by parts, we obtain
(Vo&, C—WC) = ((Vo&, O) + (& Vo(P0)). (3.14)
Since W( is the parallel transport of X/ e,
(€, Va(TON| < [I€ll2lVo(TO) 12 = lI€ll2lx/2x] || ¥,
< C min ([|da, |dal3) [€]l2]I¢]2-
The claim follows from equations (3.12)-(3.15). O

(3.13)

(3.15)

Let Br,, CRR? denote the open annulus with radii r < R centered at the origin.

Corollary 3.7 (of Lemma 3.5). There exists C € C°(R;R) such that for all RER™
re(0,R], (€C™(BryRF), (=0 = |[[¢|h <C(R/r)R*||d(])2.
BR,T‘

Proof. 1t is sufficient to assume that k=1. Define

R
5 R by €0)= [ 00,

By Holder’s inequality and Lemma 3.5,

</02Tr /TRC(p,H)pd;)‘de)2 < 271'/027r €(0)]%a0 < 2”/()%}5'(9)\2(19

2 R 2
<or / < / ‘d(p,g)C‘dep) d6 (3.16)
0

7TR4 2t rR 9 7TR4
< T [ [ P odpan = T jaci3.
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If the function p— ((p, ) does not change sign on (r, R), then

R R
/ \C(pﬁ)\pdpz‘/ C(p,@)pdp’.

On the other hand, if this function vanishes somewhere on (r, R), then

R R R2 R
<o) < [ ldunclde Vo = [ [co0)lmo< T [

Combining these two cases and using (3.16) and Hélder’s inequality, we obtain

/27 ¢(p, 0 pdpd9</27r / ¢(p,0) pdp'd0+/27 |d(p0¢|dpdd
\FR ( /0 2ﬂ/r p_ldpd0> v (3.17)

-
_ ﬁ (1+ W)RQIIOKH%

as claimed. O

Remark 3.8. By Corollary 4.7 below, C' can in fact be chosen to be a constant function. Corol-
lary 3.7 suffices for gluing J-holomorphic maps in symplectic topology, but Corollary 4.7 leads to
a sharper version of Proposition 4.14; see Remark 4.13.

3.3 Exponential-like maps and differentiation

Let (M, g,exp, V) be a smooth Riemannian manifold with an exponential-like map exp and con-
nection V in T M, which is g-compatible, but not necessarily torsion-free. Let

To(§(),¢(2) = (Ve = V& — [6:C])],  VaweM, & CeT(M;TM),
be the torsion tensor of V. If a:(—¢,€) — M is a smooth curve and { €T'(a; T M), put

D

P

) =1 (e ()], ) =11l (e e} €0),

where £'(0) € Tg(o)(T'M) is the tangent vector to the curve £: (—¢,¢) —TM at s=0.

Pago) (@ (0):(0),

Lemma 3.9. If (M, g,exp, V) is a smooth Riemannian manifold with an exponential-like map and
a g-compatible connection, there exists C € C°(TM;R) such that

O, (v; wo, wi) — (v+w1—Tv(v,wo))) < C(wo) ([v]|wo|2+|wo||wr )

for all te M and v, wy,w; €T, M.

Proof. Let a: (—e,e) —» M be a smooth curve and £ €T'(«; T M) such that



Put

Ffu,wmwl (t) = % exp (t&(S)) ’5:0 = {dtwo exp} (dwomt(ﬁl(O))),
Hy o, (1) = Ty, (U+tw1 —tTy (v, 'UJ(])) ,

where m;: TM — T M is the scalar multiplication by ¢. Then,

Fy g0, (0) = 70‘(8)

=0 = Hywy,u (O)a
s=0

D D d
&Fv,wo,wl (t> =0 = && exp (tg(S)) ‘

see Corollary 3.3. Since

F',wow(t) - H',wov'(t) S Hom(TIM@TxM’ Texp(two)M)7

D

Hey w1 (t) )

— Ty (v, wo) = w1 — Ty (v, wp) = ) o

t:O‘s:O

combining the last two equations, we obtain
| Py 00 (1) = Ho oo (B)] < Clwo, )8 (o] +|wi]) ¥ v,wo, w1 €ToM, x€M, teR,
where C' is a smooth function on TM xR. Since
Fy wo,w1 (1) = Huwgun (8) = Fo tw twn (1) — Hy gt (1),

we conclude that there exists C'e C*°(T'M) such that

| o ,01 (1) = Howouw: (1)] < C(wo) (Jwol*|v]+|wol[wi]) ¥ v, wo, w1 €Ty M, x €M, (3.18)
as claimed. 0
For any v, wg,wy € T, M, let éx(v;wo,wl) =, (v;wp, wy) — (’U‘F’U)l*Tv(U,UJo)).

Corollary 3.10. If (M, g,exp, V) is a smooth Riemannian manifold with an exponential-like map
and a g-compatible connection, there exists C € C°(TM X,y TM;R) such that

B, (v; wo, wy) — Py (v; wh, W)

< O(u, 1) (((wo] + ) o1+ [+ 10, ) g — + (ol+ oo~
for all x€ M and v, wo, wy, w), w) €T, M.
Proof. By the proof of Lemma 3.9,
&)(v;wo, wy) = :151(100; v) + éz(wo; wy)

for some smooth bundle sections ®1, ®y: TM — i/ Hom(T'M, T M) such that

B+ (wo; -)| < Ch(wo)|wol?, | @2 (wo; -)| < Colwo)|wo| ¥ woeTM.
Thus,
&y (w ;- — 9 wh: )| < O (wo, wh) (|wo] 4w ) |wo —w
!~1( 05°) ~1( : )| < }( 0 ?)(l ol /| ol ) [wo—wy| v wo,wl € T, M.
| @2 (wo; ) — Pa(wp; )| < Ch(wo, wp)|wo—wp]
From the linearity of ®(wp;-) and ®5(wp;-) in the second input, we conclude that

|1 (wo; v) — 1 (whs v)| < C (wo, wh) (Jwol+[wh|) [wo —wp o],
[auwos wr) = Bawos wh)| < Chluwo, wh)lwo—whlwn| + Co(wh)luwhllws —w .

This establishes the claim. O
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3.4 Expansion of the J-operator
Let (M, J) and (3,j) be almost-complex manifolds. If u: ¥ — M is a smooth map, let
D(u) =T(Su'TM),  T9(u) =T(S TS @cu*TM),
Oyju = %(du + Joduoj) € F?,Jl(u),
as in (2.5). If V is a connection in T'M, define

1 1 .
DYju:T(w) — Tyi(uw) by DY6 = (V% +IVE) — o (To(du,§) + JTy(duoj,£)).
If in addition exp: TM — M is an exponential-like map and VJ =0, define
exp,: T(u) — C®(8; M), 9y, Nypy: T(u) — T (u) by

exp *
{expu(f)}(z) = exp(f(z)) Vzey, {éuﬁ} v) = Z)({aj,j(expu(é))}z(v)) VzeX, vel,X,
Ou§ = Dyju+ D6 + Noo €).
Lemma 3.11. If (M, J, g,exp, V) is an almost-complex Riemannian manifold with an exponential-
like map and a g-compatible connection in (T'M,J), there exists C € C°(TM x p; TM;R) with the

following property. If (£,i) is an almost complex manifold, uw: ¥ — M is a smooth map, and
Ef’GF(u) then

(N, — (NS ()}, 0)] < C(62), €) ((E@N+E ) V(€= )] + [Tn(e— €))
+((Idzu(v)!+!dzuofu)\)(\f(z)\+\£’(z>\) (Vo] +Vit] + V08| +[9306D) [6(2) =€ (2)] )
for all z€¥, veT,X. Furthermore, Ny (0)=0.

exp

Proof. Since the connection V commutes with J, so does the parallel transport II. Thus, with
notation as in Section 3.3,

1/~ ~
INTH(O)}.(0) = 5 (B(deu(@)s€(2), Vi) +J (u(2)) B (d:u(iv): £(2), Vink) ).
The claim now follows from Corollary 3.10. O

Definition 3.12. Let M be a smooth manifold and (E,(,),V) a normed vector bundle with con-
nection over M. If Co € RT, (X,]) is an almost complex manifold, and uw: ¥ — M is a smooth
map, norms || - |lp1 and || - ||, on T'(w; E) and T1(u; E), respectively, are Co-admissible if for all
cel(u; E), nelY(u; E), and every continuous function f: ¥ —R,

1fnllp < Ifllcollnllp, — lneilly = llnllp, V€l < I€llpas  lI€llco < Collllp,-

Proposition 3.13. If (M, J,g,exp,V) is an almost-complex Riemannian manifold with an
exponential-like map and a g-compatible connection in (TM,J), for every compact subset K C M
there exists Cx € C°(R;R) with the following property. If (X,j) is an almost complex manifold,

u: ¥ — K is a smooth map, and || - ||p1 and || - ||, are Co-admissible norms on I'(u; TM) and
Y (u; TM), respectively, then
[N (€) = N (€], < Cxe (Co+lldullp+ 1€l + 1€ 1p.1) (1€lp, 1+ 1€ llp, 1) 16 =€ llp.1

for all £,&" €T(u). Furthermore, NeY(p(O) =0. If the g-ball Bys5(u(z)) of radius § around f(z) for
some z €Y is isomorphic to an open subset of C" and |£(z)| <6, then {Ny,&}.=0.
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Proof. The first two statements follow from Lemma 3.11 and Definition 3.12. The last claim is

clear from the definition of Nezp. O
Remark 3.14. As the notation suggests, one possibility for the norms || - ||, and || - ||, is the

usual Sobolev L} and LP-norms with respect to some Riemannian metric on X, where p>dimg3.
Another natural possibility in the dimgp¥ =2 case is the modified Sobolev norms introduced in |3,
Section 3]; these are particularly suited for gluing pseudo-holomorphic curves. By Proposition 4.10
below, in the dimgpX =2 case the constant Cy itself is a function of ||dul|, only for either of these
two choices of norms.

Remark 3.15. By Proposition 3.13, the operator Dymu defined above is a linearization of the
0-operator on the space of smooth maps to M at u. If V'’ is any connection in 7'M, the connection

V:T(M;TM) — T(M; T*M®@gTM), V&= %(vgg - JVQ,(J{)) VoeTM, £eT(M;TM),

is J-compatible. If in addition V' and J are compatible with a Riemannian metric g on M, then
so is V. If V' is also the Levi-Civita connection of the metric g (i.e. Ty =0),

Ty (v,w) = = (J(Vi,J)v — J(Vy,J)w) Vo,weTyM, € M.

N

If the 2-form w(-,-)=g(J-, ) is closed as well, then
hod = —=JVLJ  NYveTM

by [4, (C.7.5)] and thus

Tv(v,w):—i(J(V;J)w—J(V;,J)U—( e w+ (Vi J)v) = —As(v,w) Vo,weT,M, z€M,

where A; is the Nijenhuis tensor of J as in (2.27). The operator D%;u then becomes
DY T(u) — T (u),  DY;,6 = 0vuf + As(0s5u,€), (3.19)
where
Fyué = %(v% +JVIE) € T (u),
djju = %(du —Jodu oj) € I‘(Z;T*El’()@(cu*TM).

This agrees with [4, (3.1.5)], since the Nijenhuis tensor of J is defined to be —4A; in [4, p18].

4 Sobolev and elliptic inequalities

This appendix refines, in the n =2 case, the proofs of Sobolev Embedding Theorems given in (5]
to obtain a C-estimate in Proposition 4.10 and elliptic estimates for the d-operator in Proposi-
tions 4.14 and 4.16. If R,r€R, let

Br={z€R?: |z|<R}, Br,=Br—B,, Bgr,=Br-B.
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4.1 FEucledian case

If £ is an R¥-valued function defined on a subset B of R2, let suppgz(£) be the closure of supp(¢) C B
in R2. If U is an open subset of R?, £ € C™®(U;R¥), and p>1, let

1/p
||£sz( / rap) €l = Nl + el

be the usual Sobolev norms of &.

Lemma 4.1. For every bounded convex domain D CR?, £ € C®°(D;R¥), and x€D,

2r0

d il
< [ ely—altay,

where 2rq is the diameter of D, |D| is the area of D, and

& = 51 [ cway)

|ép — &(2)|

is the average value of € on D.

Proof. For any y€D,

1 1
6w~ €)= | Gelrtr—o)dt = [ oo tlr—oi

Putting g(z)=|d;¢| if z€D and g(z) =0 otherwise, we obtain

1 1 e
— d — — —z|dtdy.
oo <] < 5y | e —e@lv < gy [ [ et p—siary

Rewriting the last integral in polar coordinates (r,6) centered at z, we obtain

1 21 2rg oo
ép — E(2)] < = / / / g(tr, 0)r’dtdrd
|D| 0 Jo 0
1 21 2rg poo 27% 21 oo
= — t,0)rdtdrdd = / / t,0)dtdo
o), ), ), a0 oy Jy 77

2
2rg

_“'0 -1
=2 [ 1aly—altay

This establishes the claim. O

Corollary 4.2. For every p>2, there exists C, >0 such that

p=2
rel0,R/2], £eC™®(BruRY) = |¢@)—£&W)| < CyR v ||dEll, Ya,y€Br,.
Proof. For any x € Br,, put

D, = {y€Bp,: (z,|z|ly—rz)>0}.
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(x,y—rz/lx])=0

Figure 2: A convex region D, of the annulus Dg, containing x

If x #0, D, is the part of the annulus on the same side of the line (z,y—rz/|z|) =0 as x; see
Figure 2. In particular,

diam(D,) < 2R,  |Dy| > (g—‘f)}zz.

Thus, by Lemma 4.1 and Holder’s inequality,

€(x) — ép,| < 12 / ldyelly-={dy
e - (4.1)

_p \ p p=2
<12 / 2 71) " el < GRS [1de]y,
yEBgR(J})

since p%l<2. Let
zy = (£ (R-71)/2,0),  yx=(0,£(R-7)/2).

Since each of the convex regions D, intersects D,, and D,  and D, intersects at least one (in
fact precisely two if 7#0) of these four convex regions for every = € Bg,,

() — &(y)| < 8C,RF |lde], Va,y€ B,

by (4.1) and triangle inequality. O

Corollary 4.3. For every p>2, there exists Cp, € C*°(R™;R) such that
rel0,R/2], £€€C®(BriRY) = |¢llco < Cp(R)|I€]Ip1-

Proof. By Corollary 4.2 and Holder’s inequality, for every x € Bg

1 p—2
g el + Cplt v lde]l,
|BR.| (4.2)

_1 p—2 _2
< |Brao| 7 |Igllp + CoR 7 [|dEllp, < (1+Cp) R ([I€llp + RIdE]l).

p—2
+CpR 7 deup <

€(@)] < [Ba.,

This implies the claim. O
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Lemma 4.4. For all R>0 and r€[0, R),
(EC™(BrriRY), suppga(()CBry = [Cll2 < [[d¢].

Proof. Such a function ¢ can be viewed as a function on the complement of the ball B, in R?.
Since ¢ vanishes at infinity, for any (z,y) € Br,

S JE o Csls,y)ds, i 2 <0; PGl tdt, iy <O0;
Sa,y) = {—fzoo Cs(s,y)ds, if 2>0; Cavy) = —fyoo Ce(x, t)dt, if y>0.

Taking the absolute value in these equations, we obtain

C(y)| < /_ ldpClds and  [¢(z,p)| < / ldgsCldt, (4.3)

—0o0

where we formally set ¢ and d{ to be zero on the smaller disk. Multiplying the two inequalities in
(4.3) and integrating with respect to = and y, we conclude

/Z/Z}C(x’y)fdxdy = (/:/Z\d(x,y)C}dxdy)Q,

as claimed. O
Corollary 4.5. For all p,q>1 with 1—-2/p > —2/q, there exists Cp s €RT such that
~ _2.2
re(0,R), £€C™®(BryiRY), suppee(€) CBrr = [€llg < CpgR' ™7 |||y

Proof. We can assume that k=1. For ¢>0, let {, = (52—|—€)% — et By Lemma 4.4 and Hélder’s
inequality,

\\é\IZ < HC€+€%H§ < QHdCEH% + 23 TR? = 2“%({24-6)%_16(1‘5“? + 2¢3 T R?

. (4.4)
< @[+t 2a¢|)? + 2637 R? < ¢)|d¢ 2| (€2 +€) T ||°,. + 227 R2.
p—1
Note that 5 5 5 5 9
P q 4 p—1 4 q—2 2
Thus, letting € go to zero in (4.4), we obtain
lElE < alldElZIENE™ = 11€llq < glld€]lp-
The case 1—% > —% follows by Holder’s inequality. O

Remark 4.6. By Holder’s inequality, the constant C), ; can be taken to be

1(1_2,2
Cp,q = max(2,q)m? (1 ”+‘1) .

Corollary 4.7 (of Lemmas 4.1, 4.4). There exists C >0 such that for all RER™

rel0,R], ¢€C™(Bpr,;R"), (=0 = |[[¢/i < CR*||d¢]2.
BR,T‘
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Proof. (1) If (€ C*°(Bg,;RF) integrates to 0 over its domain, then so does the function
CeC™(BiymRY).  ((2) = ((Re).
Furthermore, ||C||1=||¢|l1/R? and ||d|j2=||d¢||2. Thus, it is sufficient to prove the claim for R=1.

(2) If »=0, for some open half-disk DC By o

1
[e=0. Idloll, = 5lcls- (15)

By the first condition, Lemma 4.1, and Holder’s inequality
4 _
I¢lolly <= [ [ layClly=al"dude <16 [ a,cldy < 8VERdc]
T JDJD D
Along with the second assumption in (4.5), this implies the claim for r=0 with C' =16+/27.

(3) Let 8: R—0, 1] be a smooth function such that

1, ift<1/2
£) = =
) {0, it > 1.

It remains to prove the claim for all »>0 and R=1. By (3.17), we can assume that

1 1

r < < . 4.6
—48V37||f |lco 963 (4.6)
We first consider the case 1
Using polar coordinates, define E €C®(By,,;RF) by
C(p,0) = B(p)S(p,0).
By Holder’s inequality and Lemma 4.4,
1150, 1y < V3arlCll2 < V3mrldllh < V3mr (S + 18 lleollC 5y 1 o)
Along with the assumptions (4.6) and (4.7), this implies the bound with
_ o5 V3mr < 25
1 — 24378 cor ~ 48~
Finally, suppose
1
615y < 5l (1)

Split the annulus By, into 3 wedges of equal area; split each wedge into a large convex outer
portion and a small inner portion by drawing the line segment tangent to the circle of radius r and
with the end points on the sides of the wedges 2r from the center as in Figure 3. By (4.8),

8
A=|lclo, |l = 55lchh (4.9)
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Figure 3: A large convex region D4 of an annulus D

for the outer piece D4 of some wedge D. If

/ c‘ <24,
D, 10
then by Lemma 4.1, (4.6), and Holder’s inequality,
3 1
A< 10A ‘dyCHZ/ x| dyd
% (1 (96\/3? )

3 9 7
SEA—FQ* \[ 2%\[/ |dyC|dy<—A+7\/ m||d¢]|2 -

Along with the assumption (4.9), this implies the bound with C=125v2x/4. If

_10’

fdz
then by (4.8), (4.9), and (3.16),

1
a<etoll < etoll - | [ o]+ [7| [ ctr. 010

0
1 3 1 m 19 T
<|A+-A)—-|—=4--A — =—A — .
< (a+34) - (S4-34) +[3lacl = 4+ | Thacle

Along with the assumption (4.9), this implies the bound with C' = 125v/27/4. Since 8 can be
chosen so that [|3'||co <3 (actually arbitrarily close to 2), comparing with (3.17) for R/r=144v/37
we conclude that the claim holds with C'=125+/27/4 for all r. O
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4.2 Bundle sections along smooth maps

Let (M,g) be a Riemannian manifold and (F, (,), V) a normed vector bundle with connection
over M. If ue C*®°(Bg,; M), €T’ (w; E), and p>1, let

1/p
usupz( / rap) el = Nl + 1€ -
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Lemma 4.8. If (M,g) is a Riemannian manifold, (E,(,),V) is a normed vector bundle with
connection over M, and p,q>1 are such that 1-2/p > —2/q, for every compact subset K C M
there exists C.pq €ERT with the following property. If RERT, re (0, R), ue C*°(Bp,; M) is such
that InuC K, and {€l¢(u; E), then

2

1-24 u
1€l < Cripglt 7?7 e (HV €llp + H{@dqu).

Proof. Let exp: TM — M be an exponential-like map and {U;: i € [N]} a finite open cover of K
such that the g-diameter of each set U; is at most r&,(K)/2. Let {W;: i€ [N]} be an open cover
of K such that W; CU;. Choose smooth functions 7;: M — [0, 1] such that ;=1 on W; and 1, =0
outside of U;. For each i€ [N], pick z; € W;. For each z€u™1(U;) C ER,T, define w;(z) € T, M and
gl(z) € kg, by

exp,, Ui(2) = u(2), |wi(z)|<rexp(@i);  Ilg»&(2) = €(2).

For any z € Br,, put &i(2) =mi(u(2))& (). Since & € C°(Bp.; Ey,), by Corollary 4.5 there exists
Ci.p,q >0 such that

~ 1-242 ~
q < |&illg < CippgR 7 a|d&llp - (4.10)

[€lu-1will, = 1€ilu-10w2)

Since d&; = (dn;o du)&; + (no u)dé; on w='(U;) and vanishes outside of u=!(U;),

1d&llp < [|déilu-1wyll, + Cill&@dullp. (4.11)
On the other hand, by Corollary 3.3, if u(z) € U;
V€. = Mg, o0d.&s| < Cicldaullg(2)] (4.12)

Combining equations (4.10)-(4.12), we obtain

~ 1-242
H§|u*1(W¢)Hq < CipgR 774 (Hf“p,l + H§®du||p)-
The claim follows by summing the last inequality over all . O

Lemma 4.9. If (M,g) is a Riemannian manifold, (E,{(,),V) is a normed vector bundle with
connection over M, and p > 2, for every compact subset K C M there exists Ck,, € C°(RT;R)
with the following property. If RERY, r€[0,R/2], ue C*(Br,; M) is such that Inu C K, and
¢el(u; E), then

I€llce < Crp(R)(I€llp1 + €@dullp).

Proof. We continue with the setup in the proof of Lemma 4.8. By Corollary 4.3,

el lloo < 1€lo0 < ConBIElpa < Cin(R) (€, + 14E ).
As above, we obtain N
1d&illp < Ci(IIV €llp + [€@dullp),
and the claim follows. O
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Proposition 4.10. If (M, g) is a Riemannian manifold, (E, (,), V) is a normed vector bundle with
connection over M, and p>2, for every compact subset K C M there exists Cr.p € C° (R xR;R)
with the following property. If RERT, r€[0,R/2], u€ C*(Bg,; M) is such that Inu C K, and
£elo(u; E), then

1€llco < Crip (R, lldullp) 1€]Ip,1-

The same statement holds if Br, is replaced by a fixred compact Riemann surface (X, gs).

Proof. By Lemma 4.9 applied with p = (p+2)/2 and Hélder’s inequality,

l€lco < Crep(R)(I€llp + €@ dulls) < Crp(R) (€llpr + lldullpli€llq,). (4.13)

where ¢1 = p(p+2)/(p—2). If g1 <p, then the proof is complete. Otherwise, apply Lemma 4.8 with
p1 = 2¢q1/(q1+2) and Hélder’s inequality:

I€llgr < Creipran (B ([1€llpra + IE@dullp,) < Cren(R)(I€llpa + lIdullpli€llg) (4.14)

where g2 = pp1/(p—p1). If g2 < p, then the claim follows from equations (4.13) and (4.14).
Otherwise, we can continue and construct sequences {p;}, {q;}, {Ck.} such that

24 PP
a+2 T p—p
1€llg: < Crei(R) ([I€llp,1 + dullpll€ll gy )- (4.16)

pi = (4.15)

The recursion (4.15) implies that

2p

——q = ifg; >0, then 0< g1 < ¢q.
2+ (p*Q)Qi% qi qi+1 qi

qi+1 =

Thus, if ¢; >2 for all 7, then the sequence {g;} must have a limit ¢>2 with

2p

=5 o4 = @—-2)¢=0 = ¢=0
2p+ (p—2)q =2

q

since p > 2 by assumption. Thus, gy < p for N sufficiently large and the first claim follows from
(4.13) and the equations (4.16) with 7 running from 1 to N, where N is the smallest integer such
that gny4+1 <p. The second claim follows immediately from the first. O
4.3 Elliptic estimates

If Ay=DBg,, and Ay :BRM2 are two annuli in R?, we write As €5 A; if Ri—Ry > and ro—r; > 4.

Lemma 4.11. For any § >0, p>1, and open annulus Ay, there exists Cs,(A1) >0 such that for
any annulus Ay €5 Ay and £ € C°(Ay; CF),
€14 ]],1 < Cop(Ar) (19€]lp + 1€l + [1€]11),

where the norms are taken with respect to the standard metric on R2.
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Proof. We can assume that As is the maximal annulus such that Ay €5 A;. Let n: A} —[0,1] be
a compactly supported smooth function such that n|4, =1. By the fundamental elliptic inequality
for the J-operator on S? [4, Lemma C.2.1],

€laall, 1 < In€lls < Co(AD (10E) Iy +Imely)
< Cp(An) ([|O€lp 1 (dm)E lp+ 1€ 1) -
By Corollary 4.5 with (p,q)=(2,p) and (p,q)=(1,2) and Holder’s inequality,

(4.17)

17€]lp < Co(AD)Id@mE)ll2 < Cp(Ar) (Id€ ]2 + [1(dn)é]l2)
< Cp(A1) ([ld€ll2 + [d((dm)r) < Cps(Ar) (1dE]l2 + €11 + I€]11) (4.18)
< Cop(An)(lldellz + lI€]h)-
Similarly,
1(dn)élly < Cop(A) (1]l + l1€]11)- (4.19)
The claim follows by plugging (4.18) and (4.19) into (4.17). O

Corollary 4.12. For any §>0, p>1, and open annulus Ay, there exists Csp(A1) >0 such that for
any annulus Ay €5 A1, and € C®(A1;C"),

1d€| a2 lp < Cop(A1) (10€]lp + Il dE]l2).-
Proof. With |A;| denoting the area of Aj, let

_ 1
=)t

be the average value of £&. By Lemma 4.11,

€]zl = 1A(E=)laz llp < Cp(A) (19E=E)llp + 1AE=E) 2 + 1E=€1)
= Csp(A1) ([10€]lp + 1€ ]Iz + 11§ =&]l1)-

The claim follows by applying Corollary 4.7 with (=& —¢. O

(4.20)

Remark 4.13. The case r; > 0 (which is the case needed for gluing pseudo-holomorphic maps
in symplectic topology) follows from Corollary 3.7; Corollary 4.7 can be used to obtain a sharper
statement in this case (that Cj,(A;) does not depend on 7). The 7 =0 case requires only the
first two steps in the proof of Corollary 4.7.

A smooth generalized CR-operator in a smooth complex vector bundle (E, V) with connection over
an almost complex manifold (M, J) is an operator of the form

D=8y +A:T(M;E) — T(M; T*M*' @¢E),
where

_ 1
dot = §(vg +iV€) VEeT(M;TM),  AeT(M;Hom(E;T*M* ®cE)).

If in addition u: ¥ — M is a smooth map from an almost complex manifold (3,j), the pull-back
CR-operator is given by

Dy = Ovyu + Ao du: T(u; E) — TN (u; E).
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Proposition 4.14. If (M,g) is a Riemannian manifold with an almost complex structure J,
(E,(,),V) is a normed complex vector bundle with connection over M and a smooth generalized
CR-operator D, and p>1, then for every compact subset K C M, § >0, and open annulus A1 CR?,
there exists C5,,(A1) ERY with the following property. If ue C®(Ay; M) is such that InuC K,
¢el(u; E), and Ay €5 Ay is an annulus, then

V€l as ], < Crcap(AD) (1 Dullp + 19612 + €@ dul,),
where the norms are taken with respect to the standard metric on R?.
Proof. We continue with the setup in the proof of Lemma 4.8. By Corollary 4.12,

[d&ilas [, < Cirgp(AD) (10ill + [|d&ill2)

, i (4.21)
< O, (A1) (|0l w1 (1) T | dilu-1(0r)

Since V commutes with the complex structure in E and &=¢&; on u~2(W;), it follows from (4.12)
and (4.21) that

L < |[d&ila, ||, + Crll€@dull,
< Ciogp(A1) (|0vu]lp + [VE]|2 + €@ du],) (4.22)
< CZ{§5,p(A1)(||Du§Hp +IV¥]|2 + ||£®du|]p),

“vuglAzﬂu_l(Wi)

The claim is obtained by summing the last equation over all . O

Lemma 4.15. If (M, g) is a Riemannian manifold with an almost complex structure J, (E, (,), V)
s a normed complex vector bundle with connection over M and a smooth generalized CR-operator D,
and p > 2, then for every compact subset K C M and open ball B C R?, there exists Ck.Bp €
C>*(R;R) with the following property. If ue C*(B; M) is such that Inu C K and { € To(u; E),
then

1€llp.1 < Creipplldully) (1Dl + [1E]lp)

where the norms are taken with respect to the standard metric on R?.

Proof. By an argument nearly identical to the proof of Proposition 4.14,

€l 1 < Crepr (B) (I Dutlly + Il + €@ dull,y)

for any p’>1. On the other hand, by Proposition 4.10,

I€llco < Cr:pplldullp)I€]7.1,

where p=(p + 2)/2. Proceeding as in the proof of Proposition 4.10, we then obtain

I€llp1 < Criipp(lldullz) (1Dugllp + 1€l + ldullpllgl71)
I€ll71 < Crig(B) (I1Dutllp + €1l + lldullplIE]lq ),
I€]lg; < Creipr,i (B) (I€]lpir + IE 2 dullp,)

< Crpillldullp) (1Dugllp + 1€l + ldullpliéllg. )

we stop the recursion at the same value of =N as in the proof of Proposition 4.10. O
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Proposition 4.16. If (M,g) is a Riemannian manifold with an almost complex structure J,
(E,(,),V) is a normed complex vector bundle with connection over M and a smooth generalized
CR-operator D, and p > 2, then for every compact subset K C M and compact Riemann surface
(X, 95), there ezists Cr.xp € C°(R;R) with the following property. If ue C*°(X; M) is such that
ImuC K and £€T(u; E), then

I1€llp1 < Creimp (Idullp) (I1Dugllp + l1E]lp)-

Proof. This statement is immediate from Lemma 4.15. O
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