Basic Riemannian Geometry and Sobolev Estimates used in Symplectic Topology

Aleksey Zinger*

April 25, 2017

Abstract

This note collects a number of standard statements in Riemannian geometry and in Sobolevspace theory that play a prominent role in analytic approaches to symplectic topology. These include relations between connections and complex structures, estimates on exponential-like maps, and dependence of constants in Sobolev and elliptic estimates.

Contents

1 Connections in real vector bundles 2
1.1 Connections and splittings 2
1.2 Metric-compatible connections 5
1.3 Torsion-free connections 5
2 Complex structures 6
2.1 Complex linear connections 6
2.2 Generalized $\bar{\partial}$-operators 8
2.3 Connections and $\bar{\partial}$-operators 10
2.4 Holomorphic vector bundles 11
2.5 Deformations of almost complex submanifolds 12
3 Riemannian geometry estimates 15
3.1 Parallel transport 15
3.2 Poincare lemmas 19
3.3 Exponential-like maps and differentiation 21
3.4 Expansion of the $\bar{\partial}$-operator 23
4 Sobolev and elliptic inequalities 24
4.1 Eucledian case 25
4.2 Bundle sections along smooth maps 29
4.3 Elliptic estimates 31

[^0]
1 Connections in real vector bundles

1.1 Connections and splittings

Suppose M is a smooth manifold and $\pi_{E}: E \longrightarrow M$ is a vector bundle. We identify M with the zero section of E. Denote by

$$
\mathfrak{a}: E \oplus E \longrightarrow E \quad \text { and } \quad \pi_{E \oplus E}: E \oplus E \longrightarrow M
$$

the associated addition map and the induced projection map, respectively. For $f \in C^{\infty}(M ; \mathbb{R})$, define

$$
\begin{equation*}
m_{f}: E \longrightarrow E \quad \text { by } \quad m_{f}(v)=f\left(\pi_{E}(v)\right) \cdot v \quad \forall v \in E . \tag{1.1}
\end{equation*}
$$

In particular,

$$
\pi_{E \oplus E}=\pi_{E} \circ \mathfrak{a}, \quad \pi_{E}=\pi_{E} \circ m_{f} \quad \forall f \in C^{\infty}(M ; \mathbb{R})
$$

The total spaces of the vector bundles

$$
\pi_{E \oplus E}: E \oplus E \longrightarrow M \quad \text { and } \quad \pi_{E}^{*} E \longrightarrow E
$$

consist of the pairs (v, w) in $E \times E$ such that $\pi_{E}(v)=\pi_{E}(w)$.
Define a smooth bundle homomorphism

$$
\begin{equation*}
\iota_{E}: \pi_{E}^{*} E \longrightarrow T E, \quad \iota_{E}(v, w)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}(v+t w)\right|_{t=0} . \tag{1.2}
\end{equation*}
$$

Since the restriction of ι_{E} to the fiber over $v \in E$ is the composition of the isomorphism

$$
E_{\pi_{E}(v)} \longrightarrow T_{v} E_{\pi_{E}(v)},\left.\quad w \longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}(v+t w)\right|_{t=0},
$$

with the differential of the embedding of the fiber $E_{\pi_{E}(v)}$ into E, ι_{E} is an injective bundle homomorphism. Furthermore,

$$
\begin{gather*}
\mathrm{d} \pi_{E} \circ \iota_{E}=0, \quad m_{f}^{*} \iota_{E} \circ \pi_{E}^{*} m_{f}=\mathrm{d} m_{f} \circ \iota_{E}, \quad \mathfrak{a}^{*} \iota_{E} \circ \pi_{E \oplus E}^{*} \mathfrak{a}=\mathrm{d} \mathfrak{a} \circ \iota_{E \oplus E}, \tag{1.3}\\
\left.T E\right|_{M} \approx T M \oplus \operatorname{Im} \iota_{E} . \tag{1.4}
\end{gather*}
$$

By the first statement in (1.3), the injectivity of ι_{E}, and surjectivity of $\mathrm{d} \pi_{E}$,

$$
\begin{equation*}
0 \longrightarrow \pi_{E}^{*} E \xrightarrow{\iota_{E}} T E \xrightarrow{\mathrm{~d} \pi_{E}} \pi_{E}^{*} T M \longrightarrow 0 \tag{1.5}
\end{equation*}
$$

is an exact sequence of vector bundles over E. By the second statement in (1.3), the diagram

of vector bundle homomorphisms over E commutes. By the third statement in (1.3), the diagram

of vector bundle homomorphisms over $E \oplus E$ commutes.
A connection in E is an \mathbb{R}-linear map

$$
\begin{gather*}
\nabla: \Gamma(M ; E) \longrightarrow \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} E\right) \quad \text { s.t. } \\
\nabla(f \xi)=\mathrm{d} f \otimes \xi+f \nabla \xi \quad \forall f \in C^{\infty}(M), \quad \xi \in \Gamma(M ; E) \tag{1.8}
\end{gather*}
$$

The Leibnitz property (1.8) implies that any two connections in E differ by a 1-form on M. In other words, if ∇ and $\widetilde{\nabla}$ are connections in E there exists

$$
\begin{gather*}
\theta \in \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(E, E)\right) \quad \text { s.t. } \\
\widetilde{\nabla}_{v} \xi=\nabla_{v} \xi+\{\theta(v)\} \xi \quad \forall \xi \in \Gamma(M ; E), v \in T_{x} M, x \in M \tag{1.9}
\end{gather*}
$$

If U is a neighborhood of $x \in M$ and f is a smooth function on M supported in U such that $f(x)=1$, then

$$
\begin{equation*}
\left.\nabla \xi\right|_{x}=\left.\nabla(f \xi)\right|_{x}-\mathrm{d}_{x} f \otimes \xi(x) \tag{1.10}
\end{equation*}
$$

by (1.8). The right-hand side of (1.10) depends only on $\left.\xi\right|_{\mathrm{U}}$. Thus, a connection ∇ in E is a local operator, i.e. the value of $\nabla \xi$ at a point $x \in M$ depends only on the restriction of ξ to any neighborhood U of x.

Suppose U is an open subset of M and $\xi_{1}, \ldots, \xi_{n} \in \Gamma(\mathrm{U} ; E)$ is a frame for E on U , i.e.

$$
\xi_{1}(x), \ldots, \xi_{n}(x) \in E_{x}
$$

is a basis for E_{x} for all $x \in \mathrm{U}$. By definition of ∇, there exist

$$
\theta_{l}^{k} \in \Gamma\left(U ; T^{*} U\right) \quad \text { s.t. } \quad \nabla \xi_{l}=\sum_{k=1}^{k=n} \xi_{k} \theta_{l}^{k} \equiv \sum_{k=1}^{k=n} \theta_{l}^{k} \otimes \xi_{k} \quad \forall l=1, \ldots, n
$$

We call

$$
\theta \equiv\left(\theta_{l}^{k}\right)_{k, l=1, \ldots, n} \in \Gamma\left(U ; T^{*} U \otimes_{\mathbb{R}} \operatorname{Mat}_{n} \mathbb{R}\right)
$$

the connection 1-form of ∇ with respect to the frame $\left(\xi_{k}\right)_{k}$.
For an arbitrary section

$$
\xi=\sum_{l=1}^{l=n} f^{l} \xi_{l} \in \Gamma(\mathrm{U} ; E)
$$

by (1.8) we have

$$
\begin{gather*}
\nabla \xi=\sum_{k=1}^{k=n} \xi_{k}\left(\mathrm{~d} f^{k}+\sum_{l=1}^{l=n} \theta_{l}^{k} f^{l}\right), \quad \text { i.e. } \quad \nabla\left(\underline{\xi} \cdot \underline{f}^{t}\right)=\underline{\xi} \cdot\{\mathrm{d}+\theta\} \underline{f}^{t}, \tag{1.11}\\
\text { where } \quad \underline{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad \underline{f}=\left(f^{1}, \ldots, f^{n}\right) . \tag{1.12}
\end{gather*}
$$

This implies that

$$
\begin{equation*}
\left.\nabla \xi\right|_{x}=\left.\pi_{2}\right|_{x} \circ \mathrm{~d}_{x} \xi: T_{x} M \longrightarrow E_{x} \quad \forall \xi \in \Gamma(U ; E) \text { s.t. } \xi(x)=0, \tag{1.13}
\end{equation*}
$$

where $\left.\pi_{2}\right|_{x}: T_{x} E \longrightarrow E_{x}$ is the projection to the second component in (1.4).
By (1.11), ∇ is a first-order differential operator. By (1.8), its symbol is given by

$$
\sigma_{\nabla}: T^{*} M \longrightarrow \operatorname{Hom}\left(E, T^{*} M \otimes_{\mathbb{R}} E\right), \quad\left\{\sigma_{\nabla}(\eta)\right\}(f)=\eta \otimes f .
$$

Lemma 1.1. Suppose M is a smooth manifold and $\pi_{E}: E \longrightarrow M$ is a vector bundle. A connection ∇ in E induces a splitting

$$
\begin{equation*}
T E \approx \pi_{E}^{*} T M \oplus \pi_{E}^{*} E \tag{1.14}
\end{equation*}
$$

of the exact sequence (1.5) extending the splitting (1.4) such that

$$
\begin{equation*}
\left.\nabla \xi\right|_{x}=\left.\pi_{2}\right|_{x} \circ \mathrm{~d}_{x} \xi: T_{x} M \longrightarrow E_{x} \quad \forall \xi \in \Gamma(M ; E), x \in M, \tag{1.15}
\end{equation*}
$$

where $\left.\pi_{2}\right|_{x}: T_{x} E \longrightarrow E_{x}$ is the projection onto the second component in (1.14). Furthermore,

$$
\begin{equation*}
\mathrm{d} m_{t} \approx \pi_{E}^{*} \operatorname{id} \oplus \pi_{E}^{*} m_{t} \quad \forall t \in \mathbb{R} \quad \text { and } \quad \mathfrak{a} \approx \pi_{E \oplus E}^{*} \mathrm{id} \oplus \pi_{E \oplus E}^{*} \mathfrak{a}, \tag{1.16}
\end{equation*}
$$

with respect to the splitting (1.14), i.e. it is consistent with the commutative diagrams (1.6) and (1.7). Proof. Given $x \in M$ and $v \in E_{x}$, choose $\xi \in \Gamma(M ; E)$ such that $\xi(x)=v$ and let

$$
T_{v} E^{\mathrm{h}}=\left.\operatorname{Im}\{\mathrm{d} \xi-\nabla \xi\}\right|_{x} \subset T_{v} E
$$

Since $\pi_{E} \circ \xi=\operatorname{id}_{M}$,

$$
\left.\mathrm{d}_{v} \pi_{E} \circ\{\mathrm{~d} \xi-\nabla \xi\}\right|_{x}=\operatorname{id}_{T_{x} M} \quad \Longrightarrow \quad T_{v} E \approx T_{v} E^{\mathrm{h}} \oplus E_{x} \approx T_{x} M \oplus E_{x}
$$

This splitting of $T_{v} E$ satisfies (1.15) at v.
With the notation as in (1.11),

$$
\left.\{\mathrm{d} \xi-\nabla \xi\}\right|_{x}=\left(\mathrm{d}_{x} \mathrm{id}_{M},\left.\sum_{l=1}^{l=n} f^{l}(x) \theta_{l}^{1}\right|_{x},\left.\ldots \sum_{l=1}^{l=n} f^{l}(x) \theta_{l}^{n}\right|_{x}\right): T_{x} M \longrightarrow T_{x} M \oplus \mathbb{R}^{n}
$$

with respect to the identification $\left.E\right|_{U} \approx U \times \mathbb{R}^{k}$ determined by the frame $\left(\xi_{k}\right)_{k}$. Thus, $T_{v} E^{\mathrm{h}}$ is independent of the choice of ξ. Furthermore, the resulting splitting (1.14) of (1.5) extends (1.4) and satisfies (1.16).

1.2 Metric-compatible connections

Suppose $E \longrightarrow M$ is a smooth vector bundle. Let g be a metric on E, i.e.

$$
g \in \Gamma\left(M ; E^{*} \otimes_{\mathbb{R}} E^{*}\right) \quad \text { s.t. } \quad g(v, w)=g(w, v), \quad g(v, v)>0 \quad \forall v, w \in E_{x}, v \neq 0, x \in M .
$$

A connection ∇ in E is g-compatible if

$$
\mathrm{d}(g(\xi, \zeta))=g(\nabla \xi, \zeta)+g(\xi, \nabla \zeta) \in \Gamma\left(M ; T^{*} M\right) \quad \forall \xi, \zeta \in \Gamma(M ; E) .
$$

Suppose U is an open subset of M and $\xi_{1}, \ldots, \xi_{n} \in \Gamma(\mathrm{U} ; E)$ is a frame for E on U . For $i, j=1, \ldots, n$, let

$$
g_{i j}=g\left(\xi_{i}, \xi_{j}\right) \in C^{\infty}(\mathrm{U}) .
$$

If ∇ is a connection in E and $\theta_{k l}$ is the connection 1-form for ∇ with respect to the frame $\left\{\xi_{k}\right\}_{k}$, then ∇ is g-compatible on U if and only if

$$
\begin{equation*}
\sum_{k=1}^{k=n}\left(g_{i k} \theta_{j}^{k}+g_{j k} \theta_{i}^{k}\right)=\mathrm{d} g_{i j} \quad \forall i, j=1,2, \ldots, n . \tag{1.17}
\end{equation*}
$$

1.3 Torsion-free connections

If M is a smooth manifold, a connection ∇ in $T M$ is torsion-free if

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y] .
$$

If $\left(x_{1}, \ldots, x_{n}\right): \mathrm{U} \longrightarrow \mathbb{R}^{n}$ is a coordinate chart on M, let

$$
\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}} \in \Gamma(\mathrm{U} ; T M)
$$

be the corresponding frame for $T M$ on U . If ∇ is a connection in $T M$, the corresponding connection 1 -form θ can be written as

$$
\theta_{j}^{k}=\sum_{i=1}^{i=n} \Gamma_{i j}^{k} \mathrm{~d} x^{i}, \quad \text { where } \quad \nabla_{\partial / \partial x_{i}} \frac{\partial}{\partial x_{j}}=\sum_{k=1}^{k=n} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}} .
$$

The connection ∇ is torsion-free on $\left.T M\right|_{\mathrm{U}}$ if and only if

$$
\begin{equation*}
\Gamma_{i j}^{k}=\Gamma_{j i}^{k} \quad \forall i, j, k=1, \ldots, n . \tag{1.18}
\end{equation*}
$$

Lemma 1.2. If (M, g) is a Riemannian manifold, there exists a unique torsion-free g-compatible connection ∇ in $T M$.

Proof. (1) Suppose ∇ and $\widetilde{\nabla}$ are torsion-free g-compatible connections in $T M$. By (1.9), there exists

$$
\begin{gathered}
\theta \in \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(T M, T M)\right) \quad \text { s.t. } \\
\widetilde{\nabla}_{X} Y-\nabla_{X} Y=\{\theta(X)\} Y \quad \forall Y \in \Gamma(M ; T M), X \in T_{x} M, x \in M .
\end{gathered}
$$

Since ∇ and $\widetilde{\nabla}$ are torsion-free,

$$
\begin{equation*}
\{\theta(X)\} Y=\{\theta(Y)\} X \quad \forall X, Y \in T_{x} M, x \in M \tag{1.19}
\end{equation*}
$$

Since ∇ and $\widetilde{\nabla}$ are g-compatible,

$$
\left\{\begin{array}{l}
g(\{\theta(X)\} Y, Z)+g(Y,\{\theta(X)\} Z)=0 \tag{1.20}\\
g(\{\theta(Y)\} X, Z)+g(X,\{\theta(Y)\} Z)=0 \\
g(\{\theta(Z)\} X, Y)+g(X,\{\theta(Z)\} Y)=0
\end{array} \quad \forall X, Y, Z \in T_{x} M, x \in M\right.
$$

Adding the first two equations in (1.20), subtracting the third, and using (1.19) and the symmetry of g, we obtain

$$
2 g(\{\theta(X)\} Y, Z)=0 \quad \forall X, Y, Z \in T_{x} M, x \in M \quad \Longrightarrow \quad \theta \equiv 0
$$

Thus, $\widetilde{\nabla}=\nabla$.
(2) Let $\left(x_{1}, \ldots, x_{n}\right): \mathrm{U} \longrightarrow \mathbb{R}^{n}$ be a coordinate chart on M. With notation as in the paragraph preceding Lemma 1.2, ∇ is g-compatible on $\left.T M\right|_{\mathrm{U}}$ if and only if

$$
\begin{equation*}
\sum_{l=1}^{l=n}\left(g_{i l} \Gamma_{k j}^{l}+g_{j l} \Gamma_{k i}^{l}\right)=\partial_{x_{k}} g_{i j} \tag{1.21}
\end{equation*}
$$

see (1.17). Define a connection ∇ in $\left.T M\right|_{\mathrm{U}}$ by

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{l=n} g^{k l}\left(\partial_{x_{i}} g_{j l}+\partial_{x_{j}} g_{i l}-\partial_{x_{l}} g_{i j}\right) \quad \forall i, j, k=1, \ldots, n
$$

where $g^{i j}$ is the (i, j)-entry of the inverse of the matrix $\left(g_{i j}\right)_{i, j=1, \ldots, n}$. Since $g_{i j}=g_{j i}, \Gamma_{i j}^{k}$ satisfies (1.18); a direct computation shows that $\Gamma_{i j}^{k}$ also satisfies (1.21). Therefore, ∇ is a torsion-free g compatible connection on $\left.T M\right|_{\mathrm{U}}$. In this way, we can define a torsion-free g-compatible connection on every coordinate chart. By the uniqueness property, these connections agree on the overlaps.

2 Complex structures

2.1 Complex linear connections

Suppose M is a smooth manifold and $\pi:(E, \mathfrak{i}) \longrightarrow M$ is a complex vector bundle. Similarly to Section 1.1, there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow \pi_{E}^{*} E \xrightarrow{\iota_{E}} T E \xrightarrow{\mathrm{~d} \pi_{E}} \pi_{E}^{*} T M \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

of vector bundles over E. The homomorphism ι_{E} is now \mathbb{C}-linear. If $f \in C^{\infty}(M ; \mathbb{C})$ and $m_{f}: E \longrightarrow E$ is defined as in (1.1), there is a commutative diagram

of bundle maps over E.
Suppose

$$
\nabla: \Gamma(M ; E) \longrightarrow \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} E\right)
$$

is a \mathbb{C}-linear connection, i.e.

$$
\nabla_{v}(\mathfrak{i} \xi)=\mathfrak{i}\left(\nabla_{v} \xi\right) \quad \forall \xi \in \Gamma(M ; E), v \in T M .
$$

If U is an open subset of M and $\xi_{1}, \ldots, \xi_{n} \in \Gamma(\mathrm{U} ; E)$ is a \mathbb{C}-frame for E on U , then there exist

$$
\theta_{l}^{k} \in \Gamma\left(M ; T^{*} M\right) \quad \text { s.t. } \quad \nabla \xi_{l}=\sum_{k=1}^{k=n} \xi_{k} \theta_{l}^{k} \equiv \sum_{k=1}^{k=n} \theta_{l}^{k} \otimes \xi_{k} \quad \forall l=1, \ldots, n .
$$

We will call

$$
\theta \equiv\left(\theta_{l}^{k}\right)_{k, l=1, \ldots, n} \in \Gamma\left(\Sigma ; T^{*} M \otimes_{\mathbb{R}} \operatorname{Mat}_{n} \mathbb{C}\right)
$$

the complex connection 1-form of ∇ with respect to the frame $\left(\xi_{k}\right)_{k}$. For an arbitrary section

$$
\xi=\sum_{l=1}^{l=n} f^{l} \xi_{l} \in \Gamma(\mathrm{U} ; E),
$$

by (1.8) and \mathbb{C}-linearity of ∇ we have

$$
\begin{equation*}
\nabla \xi=\sum_{k=1}^{k=n} \xi_{k}\left(\mathrm{~d} f^{k}+\sum_{l=1}^{l=n} \theta_{l}^{k} f^{l}\right), \quad \text { i.e. } \quad \nabla\left(\underline{\xi} \cdot \underline{f}^{t}\right)=\underline{\xi} \cdot\{\mathrm{d}+\theta\} \underline{f}^{t} \tag{2.3}
\end{equation*}
$$

where $\underline{\xi}$ and \underline{f} are as (1.12).
Let g be a hermitian metric on E, i.e.

$$
g \in \Gamma\left(M ; \operatorname{Hom}_{\mathbb{C}}\left(\bar{E} \otimes_{\mathbb{C}} E, \mathbb{C}\right)\right) \quad \text { s.t. } \quad g(v, w)=\overline{g(w, v)}, \quad g(v, v)>0 \quad \forall v, w \in E_{x}, v \neq 0, x \in M .
$$

A \mathbb{C}-linear connection ∇ in E is g-compatible if

$$
\mathrm{d}(g(\xi, \zeta))=g(\nabla \xi, \zeta)+g(\xi, \nabla \zeta) \in \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} \mathbb{C}\right) \quad \forall \xi, \zeta \in \Gamma(M ; E) .
$$

With notation as in the previous paragraph, let

$$
g_{i j}=g\left(\xi_{i}, \xi_{j}\right) \in C^{\infty}(\mathrm{U} ; \mathbb{C}) \quad \forall i, j=1, \ldots, n
$$

Then ∇ is g-compatible on U if and only if

$$
\begin{equation*}
\sum_{k=1}^{k=n}\left(g_{i k} \theta_{j}^{k}+\bar{g}_{j k} \bar{\theta}_{i}^{k}\right)=\mathrm{d} g_{i j} \quad \forall i, j=1,2, \ldots, n \tag{2.4}
\end{equation*}
$$

2.2 Generalized $\bar{\partial}$-operators

If (Σ, \mathfrak{j}) is an almost complex manifold, let

$$
T^{*} \Sigma^{1,0} \equiv\left\{\eta \in T^{*} \Sigma \otimes_{\mathbb{R}} \mathbb{C}: \eta \circ \mathfrak{j}=\mathfrak{i} \eta\right\} \quad \text { and } \quad T^{*} \Sigma^{0,1} \equiv\left\{\eta \in T^{*} \Sigma \otimes_{\mathbb{R}} \mathbb{C}: \eta \circ \mathfrak{j}=-\mathfrak{i} \eta\right\}
$$

be the bundles of \mathbb{C}-linear and \mathbb{C}-antilinear 1-forms on Σ. If (Σ, \mathfrak{j}) and (M, J) are smooth almost complex manifolds and $u: \Sigma \longrightarrow M$ is a smooth function, define

$$
\begin{equation*}
\bar{\partial}_{J, j} u \in \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} u^{*} T M\right) \quad \text { by } \quad \bar{\partial}_{J, j} u=\frac{1}{2}(\mathrm{~d} u+J \circ \mathrm{~d} u \circ \mathfrak{j}) . \tag{2.5}
\end{equation*}
$$

A smooth map $u:(\Sigma, \mathfrak{j}) \longrightarrow(M, J)$ will be called (J, \mathfrak{j})-holomorphic if $\bar{\partial}_{J, \mathfrak{j}} u=0$.
Definition 2.1. Suppose (Σ, \mathfrak{j}) is an almost complex manifold and $\pi:(E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle. $A \bar{\partial}$-operator on (E, \mathfrak{i}) is a \mathbb{C}-linear map

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

such that

$$
\begin{equation*}
\bar{\partial}(f \xi)=(\bar{\partial} f) \otimes \xi+f(\bar{\partial} \xi) \quad \forall f \in C^{\infty}(\Sigma), \xi \in \Gamma(\Sigma ; E), \tag{2.6}
\end{equation*}
$$

where $\bar{\partial} f=\bar{\partial}_{\mathrm{i}, \mathrm{j}} f$ is the usual $\bar{\partial}$-operator on complex-valued functions.
Similarly to Section 1.1, a $\bar{\partial}$-operator on (E, \mathfrak{i}) is a first-order differential operator. If U is an open subset of M and $\xi_{1}, \ldots, \xi_{n} \in \Gamma(\mathrm{U} ; E)$ is a \mathbb{C}-frame for E on U , then there exist

$$
\theta_{l}^{k} \in \Gamma\left(U ; T^{*} U^{0,1}\right) \quad \text { s.t. } \quad \bar{\partial} \xi_{l}=\sum_{k=1}^{k=n} \xi_{k} \theta_{l}^{k} \equiv \sum_{k=1}^{k=n} \theta_{l}^{k} \otimes \xi_{k} \quad \forall l=1, \ldots, n .
$$

We call

$$
\theta \equiv\left(\theta_{l}^{k}\right)_{k, l=1, \ldots, n} \in \Gamma\left(U ; T^{*} U^{0,1} \otimes_{\mathbb{C}} \operatorname{Mat}_{n} \mathbb{C}\right)
$$

the connection 1-form of $\bar{\partial}$ with respect to the frame $\left(\xi_{k}\right)_{k}$. For an arbitrary section

$$
\xi=\sum_{l=1}^{l=n} f^{l} \xi_{l} \in \Gamma(\mathrm{U} ; E),
$$

by (2.6) we have

$$
\begin{equation*}
\bar{\partial} \xi=\sum_{k=1}^{k=n} \xi_{k}\left(\bar{\partial} f^{k}+\sum_{l=1}^{l=n} \theta_{l}^{k} f^{l}\right), \quad \text { i.e. } \quad \bar{\partial}\left(\underline{\xi} \cdot \underline{f}^{t}\right)=\underline{\xi} \cdot\{\bar{\partial}+\theta\} \underline{f}^{t}, \tag{2.7}
\end{equation*}
$$

where $\underline{\xi}$ and \underline{f} are as in (1.12). It is immediate from (2.6) that the symbol of $\bar{\partial}$ is given by

$$
\sigma_{\bar{\partial}}: T^{*} \Sigma \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(E, T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right), \quad\left\{\sigma_{\bar{\partial}}(\eta)\right\}(f)=(\eta+\mathfrak{i} \eta \circ \mathfrak{j}) \otimes f
$$

In particular, $\bar{\partial}$ is an elliptic operator (i.e. $\sigma_{\bar{\partial}}(\eta)$ is an isomorphism for $\left.\eta \neq 0\right)$ if (Σ, \mathfrak{j}) is a Riemann surface.

Lemma 2.2. Suppose (Σ, \mathfrak{j}) is an almost complex manifold and $\pi:(E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle. If

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

is a $\bar{\partial}$-operator on (E, \mathfrak{i}), there exists a unique almost complex structure $J=J_{\bar{\partial}}$ on (the total space of) E such that π is a (\mathfrak{j}, J)-holomorphic map, the restriction of J to the vertical tangent bundle $T E^{\mathrm{v}} \approx \pi^{*} E$ agrees with \mathfrak{i}, and

$$
\begin{equation*}
\bar{\partial}_{J, j} \xi=0 \in \Gamma\left(\mathrm{U} ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} \xi^{*} T E\right) \quad \Longleftrightarrow \quad \bar{\partial} \xi=0 \in \Gamma\left(\mathrm{U} ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right) \tag{2.8}
\end{equation*}
$$

for every open subset U of Σ and $\xi \in \Gamma(\mathrm{U} ; E)$.
Proof. (1) With notation as above, define

$$
\varphi: \mathrm{U} \times\left.\mathbb{C}^{n} \longrightarrow E\right|_{\mathrm{U}} \quad \text { by } \quad \varphi\left(x, c^{1}, \ldots, c^{n}\right)=\underline{\xi}(x) \cdot \underline{c}^{t} \equiv \sum_{k=1}^{k=n} c^{k} \xi_{k}(x) \in E_{x}
$$

The map φ is a trivialization of E over U . If $J \equiv J_{\bar{\partial}}$ is an almost complex structure on E, let \widetilde{J} be the almost complex structure on $\mathrm{U} \times \mathbb{C}^{n}$ given by

$$
\begin{equation*}
\widetilde{J}_{(x, \underline{c})}=\left\{\mathrm{d}_{(x, \underline{c})} \varphi\right\}^{-1} \circ J_{\varphi(x, \underline{c})} \circ \mathrm{d}_{(x, \underline{c})} \varphi \quad \forall(x, \underline{c}) \in \mathrm{U} \times \mathbb{C}^{n} \tag{2.9}
\end{equation*}
$$

The almost complex structure J restricts to \mathfrak{i} on $T E^{\mathrm{v}}$ if and only if

$$
\begin{equation*}
\widetilde{J}_{(x, \underline{c})} w=\mathfrak{i} w \in T_{\underline{\underline{c}}} \mathbb{C}^{n} \subset T_{(x, \underline{c})}\left(\mathrm{U} \times \mathbb{C}^{n}\right) \quad \forall w \in T_{\underline{c}} \mathbb{C}^{n} \tag{2.10}
\end{equation*}
$$

If J restricts to \mathfrak{i} on $T E^{\mathrm{v}}$, the projection π is (\mathfrak{j}, J)-holomorphic on $\left.E\right|_{\mathrm{U}}$ if and only if there exists

$$
\begin{align*}
\widetilde{J}^{\mathrm{vh}} & \in \Gamma\left(\mathrm{U} \times \mathbb{C}^{n} ; \operatorname{Hom}_{\mathbb{R}}\left(\pi_{\mathrm{U}}^{*} T \mathrm{U}, \pi_{\mathbb{C}^{n}}^{*} T \mathbb{C}^{n}\right)\right) \quad \text { s.t. } \\
\widetilde{J}_{(x, \underline{c})} w & =\mathfrak{j}_{x} w+\widetilde{J}_{(x, \underline{c})}^{\mathrm{vh}} w \quad \forall w \in T_{x} \mathrm{U} \subset T_{(x, \underline{c})}\left(\mathrm{U} \times \mathbb{C}^{n}\right) \tag{2.11}
\end{align*}
$$

If $\xi \in \Gamma(\mathrm{U} ; E)$, let

$$
\widetilde{\xi} \equiv \varphi^{-1} \circ \xi \equiv\left(\operatorname{id}_{\mathrm{U}}, \underline{f}\right), \quad \text { where } \quad \underline{f} \in C^{\infty}\left(\mathrm{U} ; \mathbb{C}^{n}\right) .
$$

By (2.9)-(2.11),

$$
\begin{align*}
\left.2 \bar{\partial}_{J, j} \xi\right|_{x}=\left.\mathrm{d}_{\widetilde{\xi}(x)} \varphi \circ 2 \bar{\partial}_{\widetilde{J}, \mathfrak{j}} \widetilde{\xi}\right|_{x} & =\mathrm{d}_{\widetilde{\xi}(x)} \varphi \circ\left\{\left(\operatorname{Id}_{T_{x} \mathrm{U}}, \mathrm{~d}_{x} \underline{f}\right)+\widetilde{J}_{\widetilde{\xi}(x)} \circ\left(\operatorname{Id}_{T_{x} \mathrm{U}}, \mathrm{~d}_{x} \underline{f}\right) \circ \mathfrak{j}_{x}\right\} \\
& =\mathrm{d}_{\widetilde{\xi}(x)} \varphi \circ\left(0,\left.2 \bar{\partial} f\right|_{x}+\widetilde{J}_{\widetilde{\xi}(x)}^{\mathrm{vh}} \circ \mathrm{j}_{x}\right) . \tag{2.12}
\end{align*}
$$

On the other hand, by (2.7),

$$
\begin{align*}
\left.\bar{\partial} \xi\right|_{x}=\left.\bar{\partial}\left(\underline{\xi} \cdot f^{t}\right)\right|_{x} & =\left.\underline{\xi}(x) \cdot\{\bar{\partial}+\theta\} f^{t}\right|_{x} \tag{2.13}\\
& =\varphi\left(\left.\bar{\partial} f\right|_{x}+\theta_{x} \cdot f(x)^{t}\right)
\end{align*}
$$

By (2.12) and (2.13), the property (2.8) is satisfied for all $\xi \in \Gamma(\mathrm{U} ; E)$ if and only if

$$
\widetilde{J}_{(x, \underline{c})}^{\mathrm{vh}}=2\left(\theta_{x} \cdot \underline{c}^{t}\right) \circ\left(-\mathfrak{j}_{x}\right)=2 \mathfrak{i} \theta_{x} \cdot \underline{c}^{t} \quad \forall(x, \underline{c}) \in \mathrm{U} \times \mathbb{C}^{n}
$$

In summary, the almost complex structure $J=J_{\bar{\partial}}$ on E has the three desired properties if and only if for every trivialization of E over an open subset U of Σ

$$
\begin{gather*}
\widetilde{J}_{(x, \underline{c})}\left(w_{1}, w_{2}\right)=\left(\mathfrak{j}_{x} w_{1}, \mathfrak{i} w_{2}+2 \mathfrak{i} \theta_{x}\left(w_{1}\right) \cdot \underline{c}^{t}\right) \tag{2.14}\\
\forall(x, \underline{c}) \in \mathrm{U} \times \mathbb{C}^{n},\left(w_{1}, w_{2}\right) \in T_{x} \mathrm{U} \oplus T_{\underline{c}} \mathbb{C}^{n}=T_{(x, \underline{c})}\left(\mathrm{U} \times \mathbb{C}^{n}\right)
\end{gather*}
$$

where \widetilde{J} is the almost complex structure on $\mathrm{U} \times \mathbb{C}^{n}$ induced by J via the trivialization and θ is the connection 1-form corresponding to $\bar{\partial}$ with respect to the frame inducing the trivialization.
(2) By (2.14), there exists at most one almost complex structure J satisfying the three properties. Conversely, (2.14) determines such an almost complex structure on E. Since

$$
\begin{aligned}
\widetilde{J}_{(x, \underline{c})}^{2}\left(w_{1}, w_{2}\right)=\widetilde{J}_{(x, \underline{c})}\left(\mathfrak{j} w_{1}, \mathfrak{i} w_{2}+2 \mathfrak{i} \theta_{x}\left(w_{1}\right) \cdot \underline{c}^{t}\right) & =\left(\mathfrak{j}^{2} w_{1}, \mathfrak{i}\left(\mathfrak{i} w_{2}+2 \mathfrak{i} \theta_{x}\left(w_{1}\right) \cdot \underline{c}^{t}\right)+2 \mathfrak{i} \theta_{x}\left(\mathfrak{j} w_{1}\right) \cdot \underline{c}^{t}\right) \\
& =-\left(w_{1}, w_{2}\right)
\end{aligned}
$$

\widetilde{J} is indeed an almost complex structure on E. The almost complex structure induced by \widetilde{J} on $\left.E\right|_{\mathrm{U}}$ satisfies the three properties by part (a). By the uniqueness property, the almost complex structures on E induced by the different trivializations agree on the overlaps. Therefore, they define an almost complex structure $J=J_{\bar{\partial}}$ on the total space of E with the desired properties.

2.3 Connections and $\bar{\partial}$-operators

Suppose (Σ, \mathfrak{j}) is an almost complex manifold, $\pi:(E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle, and

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

is a $\bar{\partial}$-operator on (E, \mathfrak{i}). A \mathbb{C}-linear connection ∇ in (E, \mathfrak{i}) is $\bar{\partial}$-compatible if

$$
\begin{equation*}
\bar{\partial} \xi=\bar{\partial}_{\nabla} \xi \equiv \frac{1}{2}(\nabla \xi+\mathfrak{i} \nabla \xi \circ \mathfrak{j}) \quad \forall \xi \in \Gamma(M ; \Sigma) \tag{2.15}
\end{equation*}
$$

Lemma 2.3. Suppose (Σ, \mathfrak{j}) is an almost complex manifold, $\pi:(E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle,

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

is a $\bar{\partial}$-operator on (E, \mathfrak{i}), and $J_{\bar{\partial}}$ is the complex structure in the vector bundle $T E \longrightarrow E$ provided by Lemma 2.2. $A \mathbb{C}$-linear connection ∇ in (E, \mathfrak{i}) is $\bar{\partial}$-compatible if and only if the splitting (1.14) determined by ∇ respects the complex structures.

Proof. Since $J_{\bar{\partial}}=\pi^{*} \mathfrak{i}$ on $\pi^{*} E \subset T E$, the splitting (1.14) determined by ∇ respects the complex structures if and only if

$$
\left.\left.J_{\bar{\partial}}\right|_{v} \circ\{\mathrm{~d} \xi-\nabla \xi\}\right|_{x}=\left.\{\mathrm{d} \xi-\nabla \xi\}\right|_{x} \circ \mathfrak{j}_{x}: T_{x} \Sigma \longrightarrow T_{v} E
$$

for all $x \in \Sigma, v \in E_{x}$, and $\xi \in \Gamma(\Sigma ; E)$ such that $\xi(x)=0$; see the proof of Lemma 1.1. This identity is equivalent to

$$
\begin{equation*}
\bar{\partial}_{J_{\bar{\partial},}, j} \xi=\bar{\partial}_{\nabla} \xi \quad \forall \xi \in \Gamma(\Sigma ; E) \tag{2.16}
\end{equation*}
$$

On the other hand, by the proof of Lemma 2.2,

$$
\begin{equation*}
\bar{\partial}_{J_{\bar{\partial}}, j} \xi=\bar{\partial} \xi \quad \forall \xi \in \Gamma(\Sigma ; E) \tag{2.17}
\end{equation*}
$$

see (2.12)-(2.14). The lemma follows immediately from (2.16) and (2.17).

2.4 Holomorphic vector bundles

Let (Σ, \mathfrak{j}) be a complex manifold. A holomorphic vector bundle (E, \mathfrak{i}) on (Σ, \mathfrak{j}) is a complex vector bundle with a collection of trivializations that overlap holomorphically.

A collection of holomorphically overlapping trivializations of (E, i) determines a holomorphic structure J on the total space of E and a $\bar{\partial}$-operator

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

The latter is defined as follows. If ξ_{1}, \ldots, ξ_{n} is a holomorphic complex frame for E over an open subset U of M, then

$$
\bar{\partial} \sum_{k=1}^{k=n} f^{k} \xi_{k}=\sum_{k=1}^{k=n} \bar{\partial} f^{k} \otimes \xi_{k} \quad \forall f^{1}, \ldots, f^{k} \in C^{\infty}(\mathrm{U} ; \mathbb{C})
$$

In particular, for all $\xi \in \Gamma(M ; E)$

$$
\bar{\partial}_{J, j} \xi=0 \quad \Longleftrightarrow \quad \bar{\partial} \xi=0
$$

Thus, $J=J_{\bar{\partial}}$; see Lemma 2.2.
Lemma 2.4. Suppose (Σ, \mathfrak{j}) is a Riemann surface and $\pi:(E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle. If

$$
\bar{\partial}: \Gamma(\Sigma ; E) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} E\right)
$$

is a $\bar{\partial}$-operator on (E, \mathfrak{i}), the almost complex structure $J=J_{\bar{\partial}}$ on E is integrable. With this complex structure, $\pi: E \longrightarrow \Sigma$ is a holomorphic vector bundle and $\bar{\partial}$ is the corresponding $\bar{\partial}$-operator.

Proof. By (2.8), it is sufficient to show that there exists a (J, \mathfrak{j})-holomorphic local section through every point $v \in E$, i.e. there exist a neighborhood U of $x \equiv \pi(v)$ in Σ and $\xi \in \Gamma(\mathrm{U} ; E)$ such that

$$
\xi(x)=v \quad \text { and } \quad \bar{\partial}_{J, j} \xi=0
$$

By Lemma 2.2 and (2.13), this is equivalent to showing that the equation

$$
\begin{equation*}
\{\bar{\partial}+\theta\} f^{t}=0, \quad f(x)=v, \quad f \in C^{\infty}\left(\mathrm{U} ; \mathbb{C}^{n}\right) \tag{2.18}
\end{equation*}
$$

has a solution for every $v \in \mathbb{C}^{n}$. We can assume that U is a small disk contained in S^{2}. Let

$$
\eta: S^{2} \longrightarrow[0,1]
$$

be a smooth function supported in U and such that $\eta \equiv 1$ on a neighborhood of x. Then,

$$
\eta \theta \in \Gamma\left(S^{2} ;\left(T^{*} S^{2}\right)^{0,1} \otimes_{\mathbb{C}} \operatorname{Mat}_{n} \mathbb{C}\right)
$$

Choose $p>2$. The operator

$$
\Theta: L_{1}^{p}\left(S^{2} ; \mathbb{C}^{n}\right) \longrightarrow L^{p}\left(S^{2} ;\left(T^{*} S^{2}\right)^{0,1} \otimes_{\mathbb{C}} \mathbb{C}^{n}\right) \oplus \mathbb{C}^{n}, \quad \Theta(f)=\left(\bar{\partial}_{\mathrm{i}, \mathrm{j}} f, f(x)\right),
$$

is surjective. If η has sufficiently small support, so is the operator

$$
\Theta_{\eta}: L_{1}^{p}\left(S^{2} ; \mathbb{C}^{n}\right) \longrightarrow L^{p}\left(S^{2} ;\left(T^{*} S^{2}\right)^{0,1} \otimes_{\mathbb{C}} \mathbb{C}^{n}\right) \oplus \mathbb{C}^{n}, \quad \Theta_{\eta}(f)=\left(\left\{\bar{\partial}_{\mathrm{i}, \mathrm{j}}+\eta \theta\right\} f, f(x)\right)
$$

Then, the restriction of $\Theta_{\eta}^{-1}(0, v)$ to a neighborhood of x on which $\eta \equiv 1$ is a solution of (2.18). By elliptic regularity, $\Theta_{\eta}^{-1}(0, v) \in C^{\infty}\left(S^{2} ; \mathbb{C}^{n}\right)$.

2.5 Deformations of almost complex submanifolds

If (M, J) is a complex manifold, holomorphic coordinate charts on (M, J) determine a holomorphic structure in the vector bundle $(T M, \mathfrak{i}) \longrightarrow M$. If $(\Sigma, \mathfrak{j}) \subset(M, J)$ is a complex submanifold, holomorphic coordinate charts on Σ can be extended to holomorphic coordinate charts on M. Thus, the holomorphic structure in $T \Sigma \longrightarrow \Sigma$ induced from (Σ, \mathfrak{j}) is the restriction of the holomorphic structure in $\left.T M\right|_{\Sigma}$. It follows that

$$
\bar{\partial}_{M}=\bar{\partial}_{\Sigma}: \Gamma(\Sigma ; T \Sigma) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T \Sigma\right) \subset \Gamma\left(\Sigma ;\left.T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}\right)
$$

where $\bar{\partial}_{M}$ and $\bar{\partial}_{\Sigma}$ are the $\bar{\partial}$-operators in $\left.T M\right|_{\Sigma}$ and $T \Sigma$ induced from the holomorphic structures in Σ and M. Therefore, $\bar{\partial}_{M}$ descends to a $\bar{\partial}$-operator on the quotient

$$
\bar{\partial}: \Gamma\left(\Sigma ; \mathcal{N}_{M} \Sigma\right)=\Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right) / \Gamma(\Sigma ; T \Sigma) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} \mathcal{N}_{M} \Sigma\right)
$$

where

$$
\left.\mathcal{N}_{M} \Sigma \equiv T M\right|_{\Sigma} / T \Sigma \longrightarrow \Sigma
$$

is the normal bundle of Σ in M. This vector bundle inherits a holomorphic structure from that of $\left.T M\right|_{\Sigma}$ and Σ. The above $\bar{\partial}$-operator on \mathcal{N}_{M} is the $\bar{\partial}$-operator corresponding to this induced holomorphic structure on $\mathcal{N}_{M} \Sigma$.

Suppose (M, J) is an almost complex manifold and $(\Sigma, \mathfrak{j}) \subset(M, J)$ is an almost complex submanifold. Let ∇ be a torsion-free connection in $T M$. Define

$$
\begin{gather*}
D_{J ; \Sigma}: \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right) \longrightarrow \Gamma\left(\Sigma ;\left.T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}\right) \quad \text { by } \\
D_{J ; \Sigma}=\frac{1}{2}(\nabla \xi+J \circ \nabla \xi \circ \mathfrak{j})-\frac{1}{2} J \circ \nabla_{\xi} J:\left.T \Sigma \longrightarrow T M\right|_{\Sigma} . \tag{2.19}
\end{gather*}
$$

If ∇ is the Levi-Civita connection (the connection of Lemma 1.2) for a J-compatible metric on M (and Σ is a Riemann surface), then $D_{J ; \Sigma}$ is the linearization of the $\bar{\partial}_{J}$-operator at the inclusion map $\iota: \Sigma \longrightarrow M$; see [4, Proposition 3.1.1].

In fact, $D_{J ; \Sigma}$ is independent of the choice of a torsion-free connection in $T M$. Let

$$
\begin{equation*}
\tilde{\nabla}=\nabla+\theta, \quad \theta \in \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(T M, T M)\right), \tag{2.20}
\end{equation*}
$$

be another torsion-free connection; see (1.9). Since $\widetilde{\nabla}$ and ∇ are torsion-free connections,

$$
\begin{equation*}
\{\theta(X)\} Y=\{\theta(Y)\} X \quad \forall X, Y \in T_{x} M, x \in M . \tag{2.21}
\end{equation*}
$$

If $x \in M$ and $X, Y \in \Gamma(M ; T M)$,

$$
\begin{gather*}
\left\{\nabla_{Y} J\right\} X=\nabla_{Y}(J X)-J \nabla_{Y} X, \quad\left\{\widetilde{\nabla}_{Y} J\right\} X=\widetilde{\nabla}_{Y}(J X)-J \widetilde{\nabla}_{Y} X \Longrightarrow \\
\left\{\widetilde{\nabla}_{Y} J\right\} X-\left\{\nabla_{Y} J\right\} X=\{\theta(Y)\}(J X)-J\{\theta(Y)\} X=\{\theta(J X)\} Y-J\{\theta(X)\} Y \tag{2.22}
\end{gather*}
$$

by (2.20) and (2.21). On the other hand, by (2.20) for all $X \in T \Sigma$ and $\xi \in \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right)$,

$$
\begin{array}{r}
\{\widetilde{\nabla} \xi+J \circ \widetilde{\nabla} \xi \circ \mathfrak{j}\}(X)-\{\nabla \xi+J \circ \nabla \xi \circ \mathfrak{j}\}(X)=\{\theta(X)\} \xi+J\{\theta(\mathfrak{j} X)\} \xi \tag{2.23}\\
=J(\{\theta(J X)\} \xi-J\{\theta(X)\} \xi),
\end{array}
$$

since $\mathfrak{j}=\left.J\right|_{T \Sigma}$ and $J^{2}=-\mathrm{Id}$. By (2.22) and (2.23), $D_{J, \Sigma}$ is independent of the choice of torsion-free connection ∇.

Since any torsion-free connection on Σ extends to a torsion-free connection on M, the above observation implies that

$$
\begin{equation*}
D_{J ; \Sigma}: \Gamma(\Sigma ; T \Sigma) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T \Sigma\right) \subset \Gamma\left(\Sigma ;\left.T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}\right) \tag{2.24}
\end{equation*}
$$

Thus, an almost complex submanifold (Σ, \mathfrak{j}) of an almost complex manifold (M, J) induces a welldefined generalized Cauchy-Riemann operator ${ }^{1}$ on the normal bundle of Σ in M,

$$
D_{J ; \Sigma}^{\mathcal{N}}: \Gamma\left(\Sigma ; \mathcal{N}_{M} \Sigma\right) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} \mathcal{N}_{M} \Sigma\right), \quad D_{J ; \Sigma}^{\mathcal{N}}(\pi(\xi))=\pi\left(D_{J ; \Sigma}(\xi)\right) \quad \forall \xi \in \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right),
$$

where $\pi:\left.T M\right|_{\Sigma} \longrightarrow \mathcal{N}_{M} \Sigma$ is the quotient projection map. The \mathbb{C}-linear part of $D_{J ; \Sigma}^{\mathcal{N}}$ determines a $\bar{\partial}$-operator on the normal bundle of Σ in M :

$$
\begin{gathered}
\bar{\partial}_{J ; \Sigma \Sigma}^{\mathcal{N}}: \Gamma\left(\Sigma ; \mathcal{N}_{M} \Sigma\right) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} \mathcal{N}_{M} \Sigma\right), \\
\bar{\partial}_{J ; \Sigma}^{\mathcal{N}}(\xi)=\frac{1}{2}\left(D_{J ; \Sigma}^{\mathcal{N}}(\xi)-J D_{J ; \Sigma}^{\mathcal{N}}(J \xi)\right) \quad \forall \xi \in \Gamma\left(\Sigma ; \mathcal{N}_{M} \Sigma\right) .
\end{gathered}
$$

Both operators are determined by the almost complex submanifold (Σ, \mathfrak{j}) of the almost complex manifold (M, J) only and are independent of the choice of torsion-free connection ∇ in (2.19).

Any connection ∇ in $T M$ induces a J-linear connection in $T M$ by

$$
\begin{equation*}
\nabla_{X}^{J} \xi=\nabla_{X} \xi-\frac{1}{2} J\left(\nabla_{X} J\right) \xi \quad \forall X \in T M, \xi \in \Gamma(M ; T M) . \tag{2.25}
\end{equation*}
$$

If ∇ is as in (2.19),

$$
\begin{equation*}
\left\{D_{J ; \Sigma} \xi\right\}(X)=\left\{\bar{\partial}_{\nabla^{J}} \xi\right\}(X)+A_{J}(X, \xi)-\frac{1}{4}\left\{\left(\nabla_{J \xi} J\right)+J\left(\nabla_{\xi} J\right)\right\}(X) \tag{2.26}
\end{equation*}
$$

for all $\xi \in \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right)$ and $X \in T \Sigma$, where A_{J} is the Nijenhuis tensor of J :

$$
\begin{equation*}
A_{J}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(\left[\xi_{1}, \xi_{2}\right]+J\left[\xi_{1}, J \xi_{2}\right]+J\left[J \xi_{1}, \xi_{2}\right]-\left[J \xi_{1}, J \xi_{2}\right]\right) \quad \forall \xi_{1}, \xi_{2} \in \Gamma(M ; T M) \tag{2.27}
\end{equation*}
$$

Since the sum of the terms in the curly brackets in (2.26) is \mathbb{C}-linear in ξ, while the Nijenhuis tensor is \mathbb{C}-antilinear, the \mathbb{C}-linear operator

$$
\begin{equation*}
\Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right) \longrightarrow \Gamma\left(\Sigma ;\left.T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}\right), \quad \xi \longrightarrow \bar{\partial}_{\nabla^{J}}(\xi)-\frac{1}{4}\left\{\left(\nabla_{J \xi} J\right)+J\left(\nabla_{\xi} J\right)\right\} \tag{2.28}
\end{equation*}
$$

takes $\Gamma(\Sigma ; T \Sigma)$ to $\Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T \Sigma\right)$ by (2.24). Thus, it induces a $\bar{\partial}$-operator on $\mathcal{N}_{M} \Sigma$ and this induced operator is $\overline{\partial_{J ; \Sigma}} \mathcal{N}$. If the image of the homomorphism

$$
\left.T M \longrightarrow T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}, \quad \xi \longrightarrow \nabla_{\xi} J-J \nabla_{J \xi} J
$$

[^1]is contained in $T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T \Sigma$, then $\bar{\partial}_{\nabla^{J}}$ preserves $T \Sigma$ and induces a $\bar{\partial}$-operator $\bar{\partial}_{\nabla^{J}}^{\mathcal{N}}$ on $\mathcal{N}_{M} \Sigma$ with $\bar{\partial}_{\nabla^{J}}^{\mathcal{N}}=\bar{\partial}_{J ; \Sigma}^{\mathcal{N}}$. In this case,
$$
D_{J ; \Sigma}^{\mathcal{N}}(\pi(\xi))=\pi\left(\bar{\partial}_{\nabla^{J}} \xi+A_{J}(\cdot, \xi)\right): T \Sigma \longrightarrow \mathcal{N}_{M} \Sigma \quad \forall \xi \in \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right) .
$$

This is the case in particular if J is compatible with a symplectic form ω on M and ∇ is the Levi-Civita connection for the metric $g(\cdot, \cdot)=\omega(\cdot, J \cdot)$, as the sum in the curly brackets in (2.26) then vanishes by [4, (C.7.5)].

It is immediate that A_{J} takes $T \Sigma \otimes_{\mathbb{R}} T \Sigma$ to $T \Sigma$ and thus induces a bundle homomorphism

$$
A_{J}^{\mathcal{N}}: T \Sigma \otimes_{\mathbb{R}} \mathcal{N}_{M} \Sigma \longrightarrow \mathcal{N}_{M} \Sigma
$$

If ζ is any vector field on M such that $\zeta(x)=X \in T_{x} \Sigma$ for some $x \in \Sigma$, then

$$
\begin{align*}
\left\{D_{J ; \Sigma} \xi\right\}(X) & =\left.\frac{1}{2}([\zeta, \xi]+J[J \zeta, \xi])\right|_{x}, \tag{2.29}\\
\left\{\bar{\partial}_{\nabla^{J}}(\xi)-\frac{1}{4}\left(\left(\nabla_{J \xi} J\right)+J\left(\nabla_{\xi} J\right)\right)\right\}(X) & =\left.\frac{1}{4}([\zeta, \xi]+J[J \zeta, \xi]-J[\zeta, J \xi]+[J \zeta, J \xi])\right|_{x},
\end{align*}
$$

since ∇ is torsion-free. ${ }^{2}$ These two identities immediately imply that the operators (2.19) and (2.28) preserve $\left.T \Sigma \subset T M\right|_{\Sigma}$ and thus induce operators

$$
\Gamma\left(\Sigma ; \mathcal{N}_{M} \Sigma\right) \longrightarrow \Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} \mathcal{N}_{M} \Sigma\right)
$$

as claimed above.
If g is a J-compatible metric on $\left.T M\right|_{\Sigma}$ and $\pi^{\perp}:\left.T M\right|_{\Sigma} \longrightarrow T \Sigma^{\perp}$ is the projection to the g-orthogonal complement of $T \Sigma$ in $\left.T M\right|_{\Sigma}$, the composition ∇^{\perp}

$$
\Gamma\left(\Sigma ; T \Sigma^{\perp}\right) \hookrightarrow \Gamma\left(\Sigma ;\left.T M\right|_{\Sigma}\right) \xrightarrow{\nabla^{J}} \Gamma\left(\Sigma ;\left.T^{*} \Sigma \otimes_{\mathbb{R}} T M\right|_{\Sigma}\right) \xrightarrow{\pi^{\perp}} \Gamma\left(\Sigma ; T^{*} \Sigma \otimes_{\mathbb{R}} T \Sigma^{\perp}\right),
$$

with ∇^{J} as in (2.25), is a g-compatible J-linear connection in $T \Sigma^{\perp}$. Via the isomorphism $\pi: T \Sigma^{\perp} \longrightarrow \mathcal{N}_{M} \Sigma$, it induces a J-linear connection $\nabla^{\mathcal{N}}$ in $\mathcal{N}_{M} \Sigma$ which is compatible with the metric $g^{\mathcal{N}}$ induced via this isomorphism from $\left.g\right|_{T \Sigma^{\perp}}$. If the image of the homomorphism

$$
\begin{equation*}
\left.T \Sigma^{\perp} \longrightarrow T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T M\right|_{\Sigma}, \quad \xi \longrightarrow \nabla_{\xi} J-J \nabla_{J \xi} J \tag{2.30}
\end{equation*}
$$

is contained in $T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} T \Sigma$, then $\bar{\partial}_{\nabla \mathcal{N}}=\bar{\partial}_{J ; \Sigma}^{\mathcal{N}}$ and so

$$
D_{J ; \Sigma}^{\mathcal{N}}(\pi(\xi))=\pi\left(\bar{\partial}_{\nabla^{\perp}} \xi+A_{J}(\cdot, \xi)\right): T \Sigma \longrightarrow \mathcal{N}_{M} \Sigma \quad \forall \xi \in \Gamma\left(\Sigma ; T \Sigma^{\perp}\right) .
$$

This is the case if Σ is a divisor in M, i.e. $\mathrm{rk}_{\mathbb{C}} \mathcal{N}=1$, since $\left(\nabla_{\zeta} J\right) \xi$ is g-orthogonal to ξ and $J \xi$ for all $\xi, \zeta \in T_{x} M$ and $x \in M$ by [4, (C.7.1)]. This is also the case if J is compatible with a symplectic form ω on M and $g(\cdot, \cdot)=\omega(\cdot, J \cdot)$, as the homomorphism (2.30) is then trivial by [4, (C.7.5)].

[^2]
3 Riemannian geometry estimates

This section is based on [1, Chapter 1] and [2, Section 3] and culminates in a Poincare lemma for closed curves in Proposition 3.6 and an expansion for the $\bar{\partial}$-operator in Proposition 3.13. If $u: \Sigma \longrightarrow M$ is a smooth map between smooth manifolds and $E \longrightarrow M$ is a smooth vector bundle, let

$$
\Gamma(u ; E)=\Gamma\left(\Sigma ; u^{*} E\right), \quad \Gamma^{1}(u ; E)=\Gamma\left(\Sigma ; T^{*} \Sigma \otimes_{\mathbb{R}} u^{*} E\right) .
$$

We denote the subspace of compactly supported sections in $\Gamma(u ; E)$ by $\Gamma_{c}(u ; E)$.
An exponential-like map on a smooth manifold M is a smooth map exp : $T M \longrightarrow M$ such that $\left.\exp \right|_{M}=\mathrm{id}_{M}$ and

$$
\mathrm{d}_{x} \exp =\left(\mathrm{id}_{T_{x} M} \operatorname{id}_{T_{x} M}\right): T_{x}(T M)=T_{x} M \oplus T_{x} M \longrightarrow T_{x} M \quad \forall x \in M
$$

where the second equality is the canonical splitting of $T_{x}(T M)$ into the horizontal and vertical tangent space along the zero section. Any connection ∇ in $T M$ gives rise to a smooth map $\exp ^{\nabla}: W \longrightarrow M$ from some neighborhood W of the zero section M in $T M$; see [1, Section 1.3]. If $\eta: T M \longrightarrow \mathbb{R}$ is a smooth function which equals 1 on a neighborhood of M in $T M$ and 0 outside of W, then

$$
\exp : T M \longrightarrow M, \quad v \longrightarrow \exp ^{\nabla}(\eta(v) v)
$$

is an exponential-like map. If M is compact, then W can be taken to be all of $T M$ and $\exp =\exp { }^{\nabla}$.
If (M, g, \exp) is a Riemannian manifold with an exponential-like map and $x \in M$, let $r_{\exp }(x) \in \mathbb{R}^{+}$ be the supremum of the numbers $r \in \mathbb{R}$ such that the restriction

$$
\exp :\left\{v \in T_{x} M:|v|<r\right\} \longrightarrow M
$$

is a diffeomorphism onto an open subset of M. Set

$$
r_{\exp }^{g}(x)=\inf \left\{d_{g}(x, \exp (v)): v \in T_{x} M,|v|=r_{\exp }(x)\right\} \in \mathbb{R}^{+},
$$

where d_{g} is the metric on M induced by g. If $K \subset M$, let

$$
r_{\exp }^{g}(K)=\inf _{x \in K} r_{\exp }^{g}(x) ;
$$

this number is positive if $\bar{K} \subset M$ is compact.

3.1 Parallel transport

Let $(E,\langle\rangle,, \nabla) \longrightarrow M$ be a vector bundle, real or complex, with an inner-product \langle,$\rangle and a metric-$ compatible connection ∇. If $\alpha:(a, b) \longrightarrow M$ is a piecewise smooth curve, denote by

$$
\Pi_{\alpha}: E_{\alpha(a)} \longrightarrow E_{\alpha(b)}
$$

the parallel-transport map along α with respect to the connection ∇. If $\exp : T M \longrightarrow M$ is an exponential-like map, $x \in M$, and $v \in T_{x} M$, let

$$
\Pi_{v}: E_{x} \longrightarrow E_{\exp (v)}
$$

be the parallel transport along the curve

$$
\gamma_{v}:[0,1] \longrightarrow M, \quad \gamma_{v}(t)=\exp (t v)
$$

If $u:[a, b] \times[c, d] \longrightarrow M$ is a smooth map, let

$$
\Pi_{\partial u}: E_{u(a, c)} \longrightarrow E_{u(a, c)}
$$

be the parallel transport along u restricted to the boundary of the rectangle traversed in the positive direction. If $u: \Sigma \longrightarrow M$ is any smooth map, ∇ induces a connection

$$
\nabla^{u}: \Gamma(u ; E) \longrightarrow \Gamma^{1}(u ; E)
$$

in the vector bundle $u^{*} E \longrightarrow \Sigma$. If α is a smooth curve as above and $\zeta \in \Gamma(\alpha ; E)$, let

$$
\frac{D}{\mathrm{~d} t} \zeta=\nabla_{\partial_{t}}^{\alpha} \zeta \in \Gamma(\alpha ; E)
$$

where ∂_{t} is the standard unit vector field on \mathbb{R}.
Lemma 3.1. If (M, g) is a Riemannian manifold and $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, for every compact subset $K \subset M$ there exists $C_{K} \in \mathbb{R}^{+}$such that for every smooth map $u:[a, b] \times[c, d] \longrightarrow M$ with $\operatorname{Im} u \subset K$

$$
\left|\Pi_{\partial u}-\mathbb{I}\right| \leq C_{K} \int_{c}^{d} \int_{a}^{b}\left|u_{s}\right|\left|u_{t}\right| \mathrm{d} s \mathrm{~d} t
$$

where the norm of $\left(\Pi_{\partial u}-\mathbb{I}\right) \in \operatorname{End}\left(E_{u(a, c)}\right)$ is computed with respect to the inner-product in $E_{u(a, c)}$. Proof. (1) Choose an orthonormal frame $\left\{v_{i}\right\}$ for $E_{u(a, c)}$. Extend each v_{i} to

$$
\xi_{i} \in \Gamma\left(\left.u\right|_{a \times[c, d]} ; E\right)
$$

by parallel-transporting along the curve $t \longrightarrow u(a, t)$ and then to $\zeta_{i} \in \Gamma(u ; E)$ by parallel-transporting $\xi_{i}(a, t)$ along the curve $s \longrightarrow u(s, t)$; see Figure 1. By construction,

$$
\frac{D}{\mathrm{~d} s} \zeta_{i}=0 \in \Gamma(u ; E)
$$

Let A be the matrix-valued function on $[a, b] \times[c, d]$ such that

$$
\begin{equation*}
\left.\frac{D}{\mathrm{~d} t} \zeta_{i}\right|_{(s, t)}=\sum_{l=1}^{l=k} A_{i l}(s, t) \zeta_{l}(s, t) \tag{3.1}
\end{equation*}
$$

where k is the rank of E. Note that $A_{i j}(a, t)=0$ and

$$
\begin{equation*}
\left\langle\mathcal{R}_{\nabla}\left(u_{s}, u_{t}\right) \zeta_{i}, \zeta_{j}\right\rangle=\left\langle\frac{D}{\mathrm{~d} s} \frac{D}{\mathrm{~d} t} \zeta_{i}-\frac{D}{\mathrm{~d} t} \frac{D}{\mathrm{~d} s} \zeta_{i}, \zeta_{j}\right\rangle=\sum_{l=1}^{l=k}\left\langle\left(\frac{\partial}{\partial s} A_{i l}\right) \zeta_{l}, \zeta_{j}\right\rangle=\frac{\partial}{\partial s} A_{i j} \tag{3.2}
\end{equation*}
$$

where \mathcal{R}_{∇} is the curvature tensor of the connection of ∇. Since K is compact and the image of u is contained in K, it follows that

$$
\begin{equation*}
\left|A_{i j}(b, t)\right| \leq C_{K} \int_{a}^{b}\left|u_{s}\right|_{(s, t)}\left|u_{t}\right|_{(s, t)} \mathrm{d} s \tag{3.3}
\end{equation*}
$$

Figure 1: Extending a basis $\left\{v_{i}\right\}$ for $E_{u(a, c)}$ to a frame $\left\{\zeta_{i}\right\}$ over $[a, b] \times[c, d]$
(2) The parallel transport of ζ_{i} along the curves

$$
\tau \longrightarrow u(\tau, c), \quad \tau \longrightarrow u(\tau, d), \quad \tau \longrightarrow u(a, \tau)
$$

is ζ_{i} itself. Thus, it remains to estimate the parallel transport of each ζ_{i} along the curve $\tau \longrightarrow u(b, \tau)$. Let $h_{i j}$ be the SO_{k}-valued function (U_{k}-valued function if E is complex) on $[c, d]$ such that

$$
h(c)=\mathbb{I},\left.\quad \sum_{j=1}^{j=k} \frac{D}{\mathrm{~d} t}\left(h_{i j} \zeta_{j}\right)\right|_{(b, t)}=0 \quad \forall i, t .
$$

The second equation is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{j=k} h_{i j}^{\prime}(t) \zeta_{j}(b, t)+\sum_{j=1}^{j=k} \sum_{l=1}^{l=k} h_{i j}(t) A_{j l}(b, t) \zeta_{l}(b, t)=0 \quad \Longleftrightarrow \quad h^{\prime}=-h A(b, \cdot) . \tag{3.4}
\end{equation*}
$$

Since (the real part of) the trace of $\left(A_{i j}\right)$ is zero by (3.2), equation (3.4) has a unique solution in $\mathrm{SO}_{k}\left(\right.$ or $\left.\mathrm{U}_{k}\right)$ such that $h(c)=\mathbb{I}$. Furthermore, by (3.3)

$$
\begin{equation*}
|h(d)-\mathbb{I}| \leq \int_{c}^{d}\left|h^{\prime}(t)\right| \mathrm{d} t \leq \int_{c}^{d}|h||A| \mathrm{d} t \leq k^{2} \int_{c}^{d} \int_{a}^{b} C_{K}\left|u_{s}\right|\left|u_{t}\right| \mathrm{d} s \mathrm{~d} t . \tag{3.5}
\end{equation*}
$$

Since $\Pi_{\partial \alpha} v_{i}=\sum_{j=1}^{j=k} h_{i j}(d) v_{j}$ by the above, the claim follows from equation (3.5).
Corollary 3.2. If (M, g) is a Riemannian manifold and $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, for every compact subset $K \subset M$ there exists $C_{K} \in \mathbb{R}^{+}$such that for every smooth closed curve $\alpha:[a, b] \longrightarrow M$ with $\operatorname{Im} \alpha \subset K$

$$
\left|\Pi_{\alpha}-\mathbb{I}\right| \leq C_{K} \min \left(\|\mathrm{~d} \alpha\|_{1},(b-a)\|\mathrm{d} \alpha\|_{2}^{2}\right) .
$$

Proof. Let $\exp : T M \longrightarrow M$ be an exponential-like map. Since the group SO_{k} (or U_{k} if E is complex) is compact and

$$
\|\mathrm{d} \alpha\|_{1}^{2} \leq(b-a)\|\mathrm{d} \alpha\|_{2}^{2}
$$

by Hölder's inequality, it is enough to assume that

$$
\|\mathrm{d} \alpha\|_{1} \leq \min \left(r_{\exp }^{g}(K) / 2,1\right)
$$

Thus, there exists

$$
\widetilde{\alpha} \in C^{\infty}\left([a, b] ; T_{\alpha(a)} M\right) \quad \text { s.t. } \quad \alpha(t)=\exp (\widetilde{\alpha}(t)), \quad|\widetilde{\alpha}(t)|_{\alpha(a)}<r_{\exp }(\alpha(a)) .
$$

Define

$$
u:[0,1] \times[a, b] \longrightarrow K \subset M \quad \text { by } \quad u(s, t)=\exp (s \widetilde{\alpha}(t))
$$

Using

$$
\begin{aligned}
& |\widetilde{\alpha}(t)| \leq C_{K} d_{g}(\alpha(a), \alpha(t)) \leq C_{K}\|\mathrm{~d} \alpha\|_{1}, \\
& \left|\widetilde{\alpha}^{\prime}(t)\right|=\left|\left\{\mathrm{d}_{\widetilde{\alpha}(t)} \exp \right\}^{-1}\left(\alpha^{\prime}(t)\right)\right| \leq C_{K}\left|\mathrm{~d}_{t} \alpha\right|,
\end{aligned}
$$

we find that

$$
\begin{array}{rlll}
u_{s}(s, t) & =\left\{\mathrm{d}_{s \widetilde{\alpha}(t)} \exp \right\}(\widetilde{\alpha}(t)) & \Longrightarrow & \\
u_{t}(s, t)=s\left\{\left.u_{s}\right|_{(s, t)} \leq C_{K}^{\prime}\|\mathrm{d} \alpha\|_{1} ;\right. \tag{3.7}\\
\left.\mathrm{d}_{s(t)} \exp \right\}\left(\widetilde{\alpha}^{\prime}(t)\right) & \Longrightarrow & & \left|u_{t}\right|_{(s, t)} \leq C_{K}^{\prime}\left|\mathrm{d}_{t} \alpha\right| .
\end{array}
$$

Thus, by Lemma 3.1,

$$
\left|\Pi_{\alpha}-\mathbb{I}\right|=\left|\Pi_{\partial u}-\mathbb{I}\right| \leq C_{K} \int_{0}^{1} \int_{a}^{b}\left|u_{s}\right|\left|u_{t}\right| \mathrm{d} s \mathrm{~d} t \leq C_{K}^{\prime}\|\mathrm{d} \alpha\|_{1}^{2} \leq C_{K}^{\prime}(b-a)\|\mathrm{d} \alpha\|_{2}^{2}
$$

Since $\|\mathrm{d} \alpha\|_{1} \leq r_{\exp }^{g}(K)$, it follows that $\left|\Pi_{\alpha}-\mathbb{I}\right| \leq C_{K}\|\mathrm{~d} \alpha\|_{1}$.
Corollary 3.3. If (M, g, \exp) is a Riemannian manifold with an exponential-like map and $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, for every compact subset $K \subset M$ there exists $C_{K} \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ such that for all $x \in K$ and smooth maps $\widetilde{\alpha}:(-\epsilon, \epsilon) \longrightarrow T_{x} M$ and $\xi:(-\epsilon, \epsilon) \longrightarrow E_{x}$

$$
\begin{equation*}
\left.\left|\frac{D}{\mathrm{~d} t}\left(\Pi_{\widetilde{\alpha}(t)} \xi(t)\right)\right|_{t=0}-\Pi_{\widetilde{\alpha}(0)} \xi^{\prime}(0)\left|\leq C_{K}(|\widetilde{\alpha}(0)|)\right| \widetilde{\alpha}(0)| | \widetilde{\alpha}^{\prime}(0)| | \xi(0) \right\rvert\, . \tag{3.8}
\end{equation*}
$$

Proof. Define

$$
u:[0,1] \times[0, \epsilon / 2] \longrightarrow K \subset M \quad \text { by } \quad u(s, t)=\exp (s \widetilde{\alpha}(t))
$$

Let $\left\{v_{i}\right\}$ be an orthonormal basis for E_{x}. Extend each v_{i} to

$$
\zeta_{i} \in \Gamma\left(\left.u\right|_{[0,1] \times t} ; E\right)
$$

by parallel-transporting along the curves $s \longrightarrow u(s, t)$. If

$$
\xi(t)=\sum_{i=1}^{i=k} f_{i}(t) v_{i},
$$

where k is the rank of E, then

$$
\begin{align*}
\Pi_{\widetilde{\alpha}(t)} \xi(t) & =\sum_{i=1}^{i=k} f_{i}(t) \zeta_{i}(1, t) \\
\left.\frac{D}{\mathrm{~d} t}\left(\Pi_{\widetilde{\alpha}(t)} \xi(t)\right)\right|_{t=0} & =\sum_{i=1}^{i=k} f_{i}^{\prime}(0) \zeta_{i}(1,0)+\left.\sum_{i=1}^{i=k} f_{i}(0) \frac{D}{\mathrm{~d} t} \zeta_{i}(1, t)\right|_{t=0} \tag{3.9}\\
& =\Pi_{\tilde{\alpha}(0)} \xi^{\prime}(0)+\left.\sum_{i=1}^{i=k} f_{i}(0) \frac{D}{\mathrm{~d} t} \zeta_{i}(1, t)\right|_{t=0} .
\end{align*}
$$

On the other hand, by (3.1), (3.3), and the first identities in (3.6) and (3.7),

$$
\begin{align*}
\left|\frac{D}{\mathrm{~d} t} \zeta_{i}(1, t)\right|_{t=0} & =\sum_{j=1}^{j=k}\left|A_{i j}(1,0)\right| \leq k C_{K}^{\prime}(|\widetilde{\alpha}(0)|) \int_{0}^{1}\left|u_{s}\right|_{(s, 0)}\left|u_{t}\right|_{(s, 0)} \mathrm{d} s \tag{3.10}\\
& \leq C_{K}(|\widetilde{\alpha}(0)|)|\widetilde{\alpha}(0)|\left|\widetilde{\alpha}^{\prime}(0)\right| .
\end{align*}
$$

The claim follows from (3.9) and (3.10).
Remark 3.4. Note that (3.3) is applied above with K replaced by the compact set

$$
\exp \left(\left\{v \in T_{x} M: x \in K,|v| \leq|\widetilde{\alpha}(0)|\right\}\right) .
$$

Thus, the constants $C_{K}^{\prime}(|\widetilde{\alpha}(0)|)$ and $C_{K}(|\widetilde{\alpha}(0)|)$ may depend on $|\widetilde{\alpha}(0)|$. If M is compact, then the first constant does not depend on $|\widetilde{\alpha}(0)|$, since (3.3) can then be applied with $K=M$. The second constant is then also independent of K and $|\widetilde{\alpha}(0)|$ if $\exp =\exp ^{\nabla}$ for some connection ∇ in $T M$. So, in this case, the function C_{K} in (3.8) can be taken to be a constant independent of K.

3.2 Poincare lemmas

Lemma 3.5. If $\zeta: S^{1} \longrightarrow \mathbb{R}^{k}$ is a smooth function such that $\int_{0}^{2 \pi} \zeta(\theta) \mathrm{d} \theta=0$,

$$
\int_{0}^{2 \pi}|\zeta(\theta)|^{2} \mathrm{~d} \theta \leq \int_{0}^{2 \pi}\left|\zeta^{\prime}(\theta)\right|^{2} \mathrm{~d} \theta
$$

Proof. Write

$$
\zeta(\theta)=\sum_{n>-\infty}^{n<\infty} \zeta_{n} e^{\mathrm{i} n \theta} ;
$$

see [6, Section 6.16]. Since ζ integrates to $0, \zeta_{0}=0$. Thus,

$$
\int_{0}^{2 \pi}|\zeta(\theta)|^{2} \mathrm{~d} \theta=2 \pi \sum_{n>-\infty}^{n<\infty}\left|\zeta_{n}\right|^{2} \leq 2 \pi \sum_{n>-\infty}^{n<\infty}\left|n \zeta_{n}\right|^{2}=\int_{0}^{2 \pi}\left|\zeta^{\prime}(\theta)\right|^{2} \mathrm{~d} \theta,
$$

as claimed.
Proposition 3.6. If (M, g) is a Riemannian manifold and $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, for every compact subset $K \subset M$ there exists $C_{K} \in \mathbb{R}^{+}$with the following property. If $\alpha \in C^{\infty}\left(S^{1} ; M\right)$ is such that $\operatorname{Im} \alpha \subset K$ and $\xi, \zeta \in \Gamma(\alpha ; E)$, then

$$
\left|\left\langle\left\langle\nabla_{\theta} \xi, \zeta\right\rangle\right\rangle\right| \leq\left\|\nabla_{\theta} \xi\right\|_{2}\left\|\nabla_{\theta} \zeta\right\|_{2}+C_{K} \min \left(\|\mathrm{~d} \alpha\|_{1},\|\mathrm{~d} \alpha\|_{2}^{2}\right)\|\xi\|_{2,1}\|\zeta\|_{2},
$$

where $\nabla_{\theta} \equiv \nabla_{\partial_{\theta}}^{\alpha}$ is the covariant derivative with respect to the oriented unit field on S^{1} and all the norms are computed with respect to the standard metric on S^{1}.

Proof. Identify $E_{\alpha(0)}$ with \mathbb{R}^{k} (or \mathbb{C}^{k}), preserving the metric. Denote by $s o\left(E_{\alpha(0)}\right) \approx s o_{k}$ (or $\left.u\left(E_{\alpha(0)}\right) \approx u_{k}\right)$ the Lie algebra of the Lie group $\mathrm{SO}\left(E_{\alpha(0)}\right) \approx \mathrm{SO}_{k}$ (or of $\left.\mathrm{U}\left(E_{\alpha(0)}\right) \approx \mathrm{U}_{k}\right)$. For each $\chi \in \operatorname{so}\left(E_{\alpha(0)}\right)$ (or $\chi \in u\left(E_{\alpha(0)}\right)$), let $\mathrm{e}^{\chi} \in \mathrm{SO}\left(E_{\alpha(0)}\right)$ (or $\mathrm{e}^{\chi} \in \mathrm{U}\left(E_{\alpha(0)}\right)$) be the exponential of χ. Let

$$
\Pi_{\theta}: E_{\alpha(0)} \longrightarrow E_{\alpha(\theta)}
$$

be the parallel transport along the curve $t \longrightarrow \alpha(t)$ with $t \in[0, \theta]$. By Corollary 3.2, there exists $\chi \in \operatorname{so}\left(E_{\alpha(0)}\right)$ (or $\chi \in u\left(E_{\alpha(0)}\right)$) such that

$$
\begin{equation*}
\Pi_{2 \pi}=\mathrm{e}^{\chi} \quad \text { and } \quad|\chi| \leq C_{K} \min \left(\|\mathrm{~d} \alpha\|_{1},\|\mathrm{~d} \alpha\|_{2}^{2}\right) . \tag{3.11}
\end{equation*}
$$

By the first statement in (3.11),

$$
\Psi: S^{1} \times E_{\alpha(0)} \longrightarrow \alpha^{*} E, \quad(\theta, v) \longrightarrow \mathrm{e}^{-\theta \chi / 2 \pi} \Pi_{\theta}(v)
$$

is a smooth isometry. Let $\Phi_{2}=\pi_{2} \circ \Psi^{-1}: \alpha^{*} E \longrightarrow E_{\alpha(0)}$ and

$$
\bar{\zeta}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\Phi_{2} \zeta\right\}(\theta) \mathrm{d} \theta \in E_{\alpha(0)}
$$

By Hölder's inequality and Lemma 3.5,

$$
\begin{align*}
\left|\left\langle\left\langle\nabla_{\theta} \xi, \zeta-\Psi \bar{\zeta}\right\rangle\right\rangle\right| & \leq\left\|\nabla_{\theta} \xi\right\|_{2}\|\zeta-\Psi \bar{\zeta}\|_{2} \\
& =\left\|\nabla_{\theta} \xi\right\|_{2}\left\|\Phi_{2} \zeta-\bar{\zeta}\right\|_{2} \leq\left\|\nabla_{\theta} \xi\right\|_{2}\left\|\mathrm{~d}\left(\Phi_{2} \zeta\right)\right\|_{2} . \tag{3.12}
\end{align*}
$$

By the product rule,

$$
\begin{align*}
\left\|\mathrm{d}\left(\Phi_{2} \zeta\right)\right\|_{2} & \leq\left\|\mathrm{d}\left(\Pi^{-1} \zeta\right)\right\|_{2}+|\chi / 2 \pi|\left\|\Pi^{-1} \zeta\right\|_{2}=\left\|\nabla_{\theta} \zeta\right\|_{2}+|\chi / 2 \pi|\|\zeta\|_{2} \tag{3.13}\\
& \leq\left\|\nabla_{\theta} \zeta\right\|_{2}+C_{K} \min \left(\|\mathrm{~d} \alpha\|_{1},\|\mathrm{~d} \alpha\|_{2}^{2}\right)\|\zeta\|_{2} .
\end{align*}
$$

On the other hand, by integration by parts, we obtain

$$
\begin{equation*}
\left\langle\left\langle\nabla_{\theta} \xi, \zeta-\Psi \bar{\zeta}\right\rangle\right\rangle=\left\langle\left\langle\nabla_{\theta} \xi, \zeta\right\rangle\right\rangle+\left\langle\left\langle\xi, \nabla_{\theta}(\Psi \bar{\zeta})\right\rangle\right\rangle . \tag{3.14}
\end{equation*}
$$

Since $\Psi \bar{\zeta}$ is the parallel transport of $\mathrm{e}^{\theta \chi / 2 \pi} \bar{\zeta}$,

$$
\begin{align*}
\left|\left\langle\left\langle\xi, \nabla_{\theta}(\Psi \bar{\zeta})\right\rangle\right\rangle\right| & \leq\|\xi\|_{2}\left\|\nabla_{\theta}(\Psi \bar{\zeta})\right\|_{2}=\|\xi\|_{2}|\chi / 2 \pi|\|\Psi \bar{\zeta}\|_{2} \\
& \leq C_{K} \min \left(\|\mathrm{~d} \alpha\|_{1},\|\mathrm{~d} \alpha\|_{2}^{2}\right)\|\xi\|_{2}\|\zeta\|_{2} . \tag{3.15}
\end{align*}
$$

The claim follows from equations (3.12)-(3.15).
Let $B_{R, r} \subset \mathbb{R}^{2}$ denote the open annulus with radii $r<R$ centered at the origin.
Corollary 3.7 (of Lemma 3.5). There exists $C \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ such that for all $R \in \mathbb{R}^{+}$

$$
r \in(0, R], \quad \zeta \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right), \quad \int_{B_{R, r}} \zeta=0 \quad \Longrightarrow \quad\|\zeta\|_{1} \leq C(R / r) R^{2}\|\mathrm{~d} \zeta\|_{2}
$$

Proof. It is sufficient to assume that $k=1$. Define

$$
\xi: S^{1} \longrightarrow \mathbb{R} \quad \text { by } \quad \xi(\theta)=\int_{r}^{R} \zeta(\rho, \theta) \rho \mathrm{d} \rho .
$$

By Hölder's inequality and Lemma 3.5,

$$
\begin{align*}
\left(\int_{0}^{2 \pi}\left|\int_{r}^{R} \zeta(\rho, \theta) \rho \mathrm{d} \rho\right| \mathrm{d} \theta\right)^{2} & \leq 2 \pi \int_{0}^{2 \pi}|\xi(\theta)|^{2} \mathrm{~d} \theta \leq 2 \pi \int_{0}^{2 \pi}\left|\xi^{\prime}(\theta)\right|^{2} \mathrm{~d} \theta \\
& \leq 2 \pi \int_{0}^{2 \pi}\left(\int_{r}^{R}\left|\mathrm{~d}_{(\rho, \theta)} \zeta\right| \rho^{2} \mathrm{~d} \rho\right)^{2} \mathrm{~d} \theta \tag{3.16}\\
& \leq \frac{\pi R^{4}}{2} \int_{0}^{2 \pi} \int_{r}^{R}\left|\mathrm{~d}_{(\rho, \theta)} \zeta\right|^{2} \rho \mathrm{~d} \rho \mathrm{~d} \theta=\frac{\pi R^{4}}{2}\|\mathrm{~d} \zeta\|_{2}^{2}
\end{align*}
$$

If the function $\rho \longrightarrow \zeta(\rho, \theta)$ does not change sign on (r, R), then

$$
\int_{r}^{R}|\zeta(\rho, \theta)| \rho \mathrm{d} \rho=\left|\int_{r}^{R} \zeta(\rho, \theta) \rho \mathrm{d} \rho\right| .
$$

On the other hand, if this function vanishes somewhere on (r, R), then

$$
|\zeta(\rho, \theta)| \leq \int_{r}^{R}\left|\mathrm{~d}_{(t, \theta)} \zeta\right| \mathrm{d} t \forall \rho \quad \Longrightarrow \quad \int_{r}^{R}|\zeta(\rho, \theta)| \rho \mathrm{d} \rho \leq \frac{R^{2}}{2} \int_{r}^{R}\left|\mathrm{~d}_{(t, \theta)} \zeta\right| \mathrm{d} t .
$$

Combining these two cases and using (3.16) and Hölder's inequality, we obtain

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{r}^{R}|\zeta(\rho, \theta)| \rho \mathrm{d} \rho \mathrm{~d} \theta & \leq \int_{0}^{2 \pi}\left|\int_{r}^{R} \zeta(\rho, \theta) \rho \mathrm{d} \rho\right| \mathrm{d} \theta+\frac{R^{2}}{2} \int_{0}^{2 \pi} \int_{r}^{R}\left|\mathrm{~d} \mathrm{~d}_{(\rho, \theta)} \zeta\right| \mathrm{d} \rho \mathrm{~d} \theta \\
& \leq \frac{\sqrt{\pi} R^{2}}{\sqrt{2}}\|\mathrm{~d} \zeta\|_{2}+\frac{R^{2}}{2}\|\mathrm{~d} \zeta\|_{2}\left(\int_{0}^{2 \pi} \int_{r}^{R} \rho^{-1} \mathrm{~d} \rho \mathrm{~d} \theta\right)^{1 / 2} \tag{3.17}\\
& =\sqrt{\frac{\pi}{2}}(1+\sqrt{\ln (R / r)}) R^{2}\|\mathrm{~d} \zeta\|_{2}
\end{align*}
$$

as claimed.
Remark 3.8. By Corollary 4.7 below, C can in fact be chosen to be a constant function. Corollary 3.7 suffices for gluing J-holomorphic maps in symplectic topology, but Corollary 4.7 leads to a sharper version of Proposition 4.14; see Remark 4.13.

3.3 Exponential-like maps and differentiation

Let (M, g, \exp , ∇) be a smooth Riemannian manifold with an exponential-like map exp and connection ∇ in $T M$, which is g-compatible, but not necessarily torsion-free. Let

$$
\left.T_{\nabla}(\xi(x), \zeta(x)) \equiv\left(\nabla_{\xi} \zeta-\nabla_{\zeta} \xi-[\xi, \zeta]\right)\right|_{x} \quad \forall x \in M, \xi, \zeta \in \Gamma(M ; T M)
$$

be the torsion tensor of ∇. If $\alpha:(-\epsilon, \epsilon) \longrightarrow M$ is a smooth curve and $\xi \in \Gamma(\alpha ; T M)$, put

$$
\Phi_{\alpha(0)}\left(\alpha^{\prime}(0) ; \xi(0),\left.\frac{D}{\mathrm{~d} s} \xi\right|_{s=0}\right)=\Pi_{\xi(0)}^{-1}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} s} \exp (\xi(s))\right|_{s=0}\right)=\Pi_{\xi(0)}^{-1}\left(\left\{\mathrm{~d}_{\xi(0)} \exp \right\}\left(\xi^{\prime}(0)\right)\right)
$$

where $\xi^{\prime}(0) \in T_{\xi(0)}(T M)$ is the tangent vector to the curve $\xi:(-\epsilon, \epsilon) \longrightarrow T M$ at $s=0$.
Lemma 3.9. If (M, g, \exp , ∇) is a smooth Riemannian manifold with an exponential-like map and a g-compatible connection, there exists $C \in C^{\infty}(T M ; \mathbb{R})$ such that

$$
\left|\Phi_{x}\left(v ; w_{0}, w_{1}\right)-\left(v+w_{1}-T_{\nabla}\left(v, w_{0}\right)\right)\right| \leq C\left(w_{0}\right)\left(|v|\left|w_{0}\right|^{2}+\left|w_{0}\right|\left|w_{1}\right|\right)
$$

for all $x \in M$ and $v, w_{0}, w_{1} \in T_{x} M$.
Proof. Let $\alpha:(-\epsilon, \epsilon) \longrightarrow M$ be a smooth curve and $\xi \in \Gamma(\alpha ; T M)$ such that

$$
\alpha(0)=x, \quad \alpha^{\prime}(0)=v, \quad \xi(0)=w_{0},\left.\quad \frac{D}{\mathrm{~d} s} \xi(s)\right|_{s=0}=w_{1} .
$$

Put

$$
\begin{aligned}
F_{v, w_{0}, w_{1}}(t) & =\left.\frac{\mathrm{d}}{\mathrm{~d} s} \exp (t \xi(s))\right|_{s=0}=\left\{\mathrm{d}_{t w_{0}} \exp \right\}\left(\mathrm{d}_{w_{0}} m_{t}\left(\xi^{\prime}(0)\right)\right), \\
H_{v, w_{0}, w_{1}}(t) & =\Pi_{t w_{0}}\left(v+t w_{1}-t T_{\nabla}\left(v, w_{0}\right)\right)
\end{aligned}
$$

where $m_{t}: T M \longrightarrow T M$ is the scalar multiplication by t. Then,

$$
\begin{gathered}
F_{v, w_{0}, w_{1}}(0)=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \alpha(s)\right|_{s=0}=v=H_{v, w_{0}, w_{1}}(0) \\
\left.\frac{D}{\mathrm{~d} t} F_{v, w_{0}, w_{1}}(t)\right|_{t=0}=\left.\left.\frac{D}{\mathrm{~d} s} \frac{\mathrm{~d}}{\mathrm{~d} t} \exp (t \xi(s))\right|_{t=0}\right|_{s=0}-T_{\nabla}\left(v, w_{0}\right)=w_{1}-T_{\nabla}\left(v, w_{0}\right)=\left.\frac{D}{\mathrm{~d} t} H_{v, w_{0}, w_{1}}(t)\right|_{t=0}
\end{gathered}
$$

see Corollary 3.3. Since

$$
F_{\cdot, w_{0}, \cdot}(t)-H_{\cdot, w_{0}, \cdot}(t) \in \operatorname{Hom}\left(T_{x} M \oplus T_{x} M, T_{\exp \left(t w_{0}\right)} M\right)
$$

combining the last two equations, we obtain

$$
\left|F_{v, w_{0}, w_{1}}(t)-H_{v, w_{0}, w_{1}}(t)\right| \leq C\left(w_{0}, t\right) t^{2}\left(|v|+\left|w_{1}\right|\right) \quad \forall v, w_{0}, w_{1} \in T_{x} M, x \in M, t \in \mathbb{R}
$$

where C is a smooth function on $T M \times \mathbb{R}$. Since

$$
F_{v, w_{0}, w_{1}}(t)-H_{v, w_{0}, w_{1}}(t)=F_{v, t w_{0}, t w_{1}}(1)-H_{v, t w_{0}, t w_{1}}(1),
$$

we conclude that there exists $C \in C^{\infty}(T M)$ such that

$$
\begin{equation*}
\left|F_{v, w_{0}, w_{1}}(1)-H_{v, w_{0}, w_{1}}(1)\right| \leq C\left(w_{0}\right)\left(\left|w_{0}\right|^{2}|v|+\left|w_{0}\right|\left|w_{1}\right|\right) \quad \forall v, w_{0}, w_{1} \in T_{x} M, x \in M, \tag{3.18}
\end{equation*}
$$

as claimed.
For any $v, w_{0}, w_{1} \in T_{x} M$, let $\widetilde{\Phi}_{x}\left(v ; w_{0}, w_{1}\right)=\Phi_{x}\left(v ; w_{0}, w_{1}\right)-\left(v+w_{1}-T_{\nabla}\left(v, w_{0}\right)\right)$.
Corollary 3.10. If (M, g, \exp , ∇) is a smooth Riemannian manifold with an exponential-like map and a g-compatible connection, there exists $C \in C^{\infty}\left(T M \times_{M} T M ; \mathbb{R}\right)$ such that

$$
\begin{aligned}
\mid \widetilde{\Phi}_{x}\left(v ; w_{0}, w_{1}\right) & -\widetilde{\Phi}_{x}\left(v ; w_{0}^{\prime}, w_{1}^{\prime}\right) \mid \\
& \leq C\left(w_{0}, w_{0}^{\prime}\right)\left(\left(\left(\left|w_{0}\right|+\left|w_{0}^{\prime}\right|\right)|v|+\left|w_{1}\right|+\left|w_{1}^{\prime}\right|\right)\left|w_{0}-w_{0}^{\prime}\right|+\left(\left|w_{0}\right|+\left|w_{0}^{\prime}\right|\right)\left|w_{1}-w_{1}^{\prime}\right|\right)
\end{aligned}
$$

for all $x \in M$ and $v, w_{0}, w_{1}, w_{0}^{\prime}, w_{1}^{\prime} \in T_{x} M$.
Proof. By the proof of Lemma 3.9,

$$
\widetilde{\Phi}\left(v ; w_{0}, w_{1}\right)=\widetilde{\Phi}_{1}\left(w_{0} ; v\right)+\widetilde{\Phi}_{2}\left(w_{0} ; w_{1}\right)
$$

for some smooth bundle sections $\widetilde{\Phi}_{1}, \widetilde{\Phi}_{2}: T M \longrightarrow \pi_{T M}^{*} \operatorname{Hom}(T M, T M)$ such that

$$
\left|\widetilde{\Phi}_{1}\left(w_{0} ; \cdot\right)\right| \leq C_{1}\left(w_{0}\right)\left|w_{0}\right|^{2}, \quad\left|\widetilde{\Phi}_{2}\left(w_{0} ; \cdot\right)\right| \leq C_{2}\left(w_{0}\right)\left|w_{0}\right| \quad \forall w_{0} \in T M
$$

Thus,

$$
\begin{aligned}
& \left|\widetilde{\Phi}_{1}\left(w_{0} ; \cdot\right)-\widetilde{\Phi}_{1}\left(w_{0}^{\prime} ; \cdot\right)\right| \leq C_{1}^{\prime}\left(w_{0}, w_{0}^{\prime}\right)\left(\left|w_{0}\right|+\left|w_{0}^{\prime}\right|\right)\left|w_{0}-w_{0}^{\prime}\right| \quad \forall w_{0}, w_{0}^{\prime} \in T_{x} M . \\
& \left|\widetilde{\Phi}_{2}\left(w_{0} ; \cdot\right)-\widetilde{\Phi}_{2}\left(w_{0}^{\prime} ; \cdot\right)\right| \leq C_{2}^{\prime}\left(w_{0}, w_{0}^{\prime}\right)\left|w_{0}-w_{0}^{\prime}\right|
\end{aligned}
$$

From the linearity of $\widetilde{\Phi}_{1}\left(w_{0} ; \cdot\right)$ and $\widetilde{\Phi}_{2}\left(w_{0} ; \cdot\right)$ in the second input, we conclude that

$$
\begin{aligned}
\left|\widetilde{\Phi}_{1}\left(w_{0} ; v\right)-\widetilde{\Phi}_{1}\left(w_{0}^{\prime} ; v\right)\right| & \leq C_{1}^{\prime}\left(w_{0}, w_{0}^{\prime}\right)\left(\left|w_{0}\right|+\left|w_{0}^{\prime}\right|\right)\left|w_{0}-w_{0}^{\prime}\right||v| \\
\left|\widetilde{\Phi}_{2}\left(w_{0} ; w_{1}\right)-\widetilde{\Phi}_{2}\left(w_{0} ; w_{1}^{\prime}\right)\right| & \leq C_{2}^{\prime}\left(w_{0}, w_{0}^{\prime}\right)\left|w_{0}-w_{0}^{\prime}\right|\left|w_{1}\right|+C_{2}\left(w_{0}^{\prime}\right)\left|w_{0}^{\prime}\right|\left|w_{1}-w_{1}^{\prime}\right| .
\end{aligned}
$$

This establishes the claim.

3.4 Expansion of the $\bar{\partial}$-operator

Let (M, J) and (Σ, \mathfrak{j}) be almost-complex manifolds. If $u: \Sigma \longrightarrow M$ is a smooth map, let

$$
\begin{gathered}
\Gamma(u)=\Gamma\left(\Sigma ; u^{*} T M\right), \quad \Gamma_{J, \mathfrak{j}}^{0,1}(u)=\Gamma\left(\Sigma ; T^{*} \Sigma^{0,1} \otimes_{\mathbb{C}} u^{*} T M\right), \\
\bar{\partial}_{J, \mathfrak{j}} u=\frac{1}{2}(\mathrm{~d} u+J \circ \mathrm{~d} u \circ \mathfrak{j}) \in \Gamma_{J, \mathfrak{j}}^{0,1}(u),
\end{gathered}
$$

as in (2.5). If ∇ is a connection in $T M$, define

$$
D_{J, j ; u}^{\nabla}: \Gamma(u) \longrightarrow \Gamma_{J, \mathfrak{j}}^{0,1}(u) \quad \text { by } \quad D_{J, j ; u}^{\nabla} \xi=\frac{1}{2}\left(\nabla^{u} \xi+J \nabla_{\mathrm{j}}^{u} \xi\right)-\frac{1}{2}\left(T_{\nabla}(\mathrm{d} u, \xi)+J T_{\nabla}(\mathrm{d} u \circ \mathfrak{j}, \xi)\right) .
$$

If in addition $\exp : T M \longrightarrow M$ is an exponential-like map and $\nabla J=0$, define

$$
\begin{gathered}
\exp _{u}: \Gamma(u) \longrightarrow C^{\infty}(\Sigma ; M), \quad \bar{\partial}_{u}, N_{\exp }^{\nabla}: \Gamma(u) \longrightarrow \Gamma_{J, \mathfrak{j}}^{0,1}(u) \quad \text { by } \\
\left\{\exp _{u}(\xi)\right\}(z)=\exp (\xi(z)) \quad \forall z \in \Sigma, \quad\left\{\bar{\partial}_{u} \xi\right\}_{z}(v)=\Pi_{\xi(z)}^{-1}\left(\left\{\bar{\partial}_{J, \mathfrak{j}}\left(\exp _{u}(\xi)\right)\right\}_{z}(v)\right) \quad \forall z \in \Sigma, v \in T_{z} \Sigma, \\
\bar{\partial}_{u} \xi=\bar{\partial}_{J, \mathfrak{j}} u+D_{J, \mathfrak{j} ; u}^{\nabla} \xi+N_{\exp }^{\nabla}(\xi) .
\end{gathered}
$$

Lemma 3.11. If (M, J, g, \exp , ∇) is an almost-complex Riemannian manifold with an exponentiallike map and a g-compatible connection in $(T M, J)$, there exists $C \in C^{\infty}\left(T M \times_{M} T M ; \mathbb{R}\right)$ with the following property. If (Σ, \mathfrak{j}) is an almost complex manifold, $u: \Sigma \longrightarrow M$ is a smooth map, and $\xi, \xi^{\prime} \in \Gamma(u)$, then

$$
\begin{array}{r}
\left|\left\{N_{\exp }^{\nabla}(\xi)\right\}_{z}(v)-\left\{N_{\exp }^{\nabla}\left(\xi^{\prime}\right)\right\}_{z}(v)\right| \leq C\left(\xi(z), \xi^{\prime}(z)\right)\left(\left(|\xi(z)|+\left|\xi^{\prime}(z)\right|\right)\left(\left|\nabla_{v}\left(\xi-\xi^{\prime}\right)\right|+\left|\nabla_{\mathrm{j} v}\left(\xi-\xi^{\prime}\right)\right|\right)\right. \\
\left.+\left(\left(\left|\mathrm{d}_{z} u(v)\right|+\left|\mathrm{d}_{z} u(\mathrm{j} v)\right|\right)\left(|\xi(z)|+\left|\xi^{\prime}(z)\right|\right)+\left(\left|\nabla_{v} \xi\right|+\left|\nabla_{\mathrm{j} v} \xi\right|+\left|\nabla_{v} \xi^{\prime}\right|+\left|\nabla_{\mathrm{j} v} \xi\right|\right)\right)\left|\xi(z)-\xi^{\prime}(z)\right|\right)
\end{array}
$$

for all $z \in \Sigma, v \in T_{z} \Sigma$. Furthermore, $N_{\exp }^{\nabla}(0)=0$.
Proof. Since the connection ∇ commutes with J, so does the parallel transport Π. Thus, with notation as in Section 3.3,

$$
\left\{N_{\exp }^{\nabla}(\xi)\right\}_{z}(v)=\frac{1}{2}\left(\widetilde{\Phi}\left(\mathrm{~d}_{z} u(v) ; \xi(z), \nabla_{v} \xi\right)+J(u(z)) \widetilde{\Phi}\left(\mathrm{d}_{z} u(\mathfrak{j} v) ; \xi(z), \nabla_{\mathfrak{j} v} \xi\right)\right)
$$

The claim now follows from Corollary 3.10.
Definition 3.12. Let M be a smooth manifold and $(E,\langle\rangle,, \nabla)$ a normed vector bundle with connection over M. If $C_{0} \in \mathbb{R}^{+},(\Sigma, \mathfrak{j})$ is an almost complex manifold, and $u: \Sigma \longrightarrow M$ is a smooth map, norms $\|\cdot\|_{p, 1}$ and $\|\cdot\|_{p}$ on $\Gamma(u ; E)$ and $\Gamma^{1}(u ; E)$, respectively, are C_{0}-admissible if for all $\xi \in \Gamma(u ; E), \eta \in \Gamma^{1}(u ; E)$, and every continuous function $f: \Sigma \longrightarrow \mathbb{R}$,

$$
\|f \eta\|_{p} \leq\|f\|_{C^{0}}\|\eta\|_{p}, \quad\|\eta \circ \mathfrak{j}\|_{p}=\|\eta\|_{p}, \quad\left\|\nabla^{u} \xi\right\|_{p} \leq\|\xi\|_{p, 1}, \quad\|\xi\|_{C^{0}} \leq C_{0}\|\xi\|_{p, 1}
$$

Proposition 3.13. If (M, J, g, \exp , ∇) is an almost-complex Riemannian manifold with an exponential-like map and a g-compatible connection in $(T M, J)$, for every compact subset $K \subset M$ there exists $C_{K} \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ with the following property. If (Σ, \mathfrak{j}) is an almost complex manifold, $u: \Sigma \longrightarrow K$ is a smooth map, and $\|\cdot\|_{p, 1}$ and $\|\cdot\|_{p}$ are C_{0}-admissible norms on $\Gamma(u ; T M)$ and $\Gamma^{1}(u ; T M)$, respectively, then

$$
\left\|N_{\exp }^{\nabla}(\xi)-N_{\exp }^{\nabla}\left(\xi^{\prime}\right)\right\|_{p} \leq C_{K}\left(C_{0}+\|\mathrm{d} u\|_{p}+\|\xi\|_{p, 1}+\left\|\xi^{\prime}\right\|_{p, 1}\right)\left(\|\xi\|_{p, 1}+\left\|\xi^{\prime}\right\|_{p, 1}\right)\left\|\xi-\xi^{\prime}\right\|_{p, 1}
$$

for all $\xi, \xi^{\prime} \in \Gamma(u)$. Furthermore, $N_{\exp }^{\nabla}(0)=0$. If the g-ball $B_{g ; \delta}(u(z))$ of radius δ around $f(z)$ for some $z \in \Sigma$ is isomorphic to an open subset of \mathbb{C}^{n} and $|\xi(z)|<\delta$, then $\left\{N_{\mathrm{exp}}^{\nabla} \xi\right\}_{z}=0$.

Proof. The first two statements follow from Lemma 3.11 and Definition 3.12. The last claim is clear from the definition of $N_{\text {exp }}^{\nabla}$.

Remark 3.14. As the notation suggests, one possibility for the norms $\|\cdot\|_{p, 1}$ and $\|\cdot\|_{p}$ is the usual Sobolev L_{1}^{p} and L^{p}-norms with respect to some Riemannian metric on Σ, where $p>\operatorname{dim}_{\mathbb{R}} \Sigma$. Another natural possibility in the $\operatorname{dim}_{\mathbb{R}} \Sigma=2$ case is the modified Sobolev norms introduced in [3, Section 3]; these are particularly suited for gluing pseudo-holomorphic curves. By Proposition 4.10 below, in the $\operatorname{dim}_{\mathbb{R}} \Sigma=2$ case the constant C_{0} itself is a function of $\|\mathrm{d} u\|_{p}$ only for either of these two choices of norms.

Remark 3.15. By Proposition 3.13, the operator $D_{J, j ; u}^{\nabla}$ defined above is a linearization of the $\bar{\partial}$-operator on the space of smooth maps to M at u. If ∇^{\prime} is any connection in $T M$, the connection

$$
\nabla: \Gamma(M ; T M) \longrightarrow \Gamma\left(M ; T^{*} M \otimes_{\mathbb{R}} T M\right), \quad \nabla_{v} \xi=\frac{1}{2}\left(\nabla_{v}^{\prime} \xi-J \nabla_{v}^{\prime}(J \xi)\right) \quad \forall v \in T M, \xi \in \Gamma(M ; T M)
$$

is J-compatible. If in addition ∇^{\prime} and J are compatible with a Riemannian metric g on M, then so is ∇. If ∇^{\prime} is also the Levi-Civita connection of the metric $g\left(\right.$ i.e. $T_{\nabla^{\prime}}=0$),

$$
T_{\nabla}(v, w)=\frac{1}{2}\left(J\left(\nabla_{w}^{\prime} J\right) v-J\left(\nabla_{v}^{\prime} J\right) w\right) \quad \forall v, w \in T_{x} M, x \in M
$$

If the 2-form $\omega(\cdot, \cdot) \equiv g(J \cdot, \cdot)$ is closed as well, then

$$
\nabla_{J v}^{\prime} J=-J \nabla_{v}^{\prime} J \quad \forall v \in T M
$$

by $[4,(\mathrm{C} .7 .5)]$ and thus
$T_{\nabla}(v, w)=-\frac{1}{4}\left(J\left(\nabla_{v}^{\prime} J\right) w-J\left(\nabla_{w}^{\prime} J\right) v-\left(\nabla_{J v}^{\prime} J\right) w+\left(\nabla_{J w}^{\prime} J\right) v\right)=-A_{J}(v, w) \quad \forall v, w \in T_{x} M, x \in M$,
where A_{J} is the Nijenhuis tensor of J as in (2.27). The operator $D_{J, \mathfrak{j} ; u}^{\nabla}$ then becomes

$$
\begin{equation*}
D_{J, \mathfrak{j} ; u}^{\nabla}: \Gamma(u) \longrightarrow \Gamma_{J, \mathfrak{j}}^{0,1}(u), \quad D_{J, \mathfrak{j} ; u}^{\nabla} \xi=\bar{\partial}_{\nabla^{u}} \xi+A_{J}\left(\partial_{J, \mathfrak{j}} u, \xi\right) \tag{3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\partial}_{\nabla^{u}} \xi=\frac{1}{2}\left(\nabla^{u} \xi+J \nabla_{\mathfrak{j}}^{u} \xi\right) \in \Gamma_{J, \mathfrak{j}}^{0,1}(u) \\
& \partial_{J, \mathfrak{j}} u=\frac{1}{2}(\mathrm{~d} u-J \circ \mathrm{~d} u \circ \mathfrak{j}) \in \Gamma\left(\Sigma ; T^{*} \Sigma^{1,0} \otimes_{\mathbb{C}} u^{*} T M\right)
\end{aligned}
$$

This agrees with $[4,(3.1 .5)]$, since the Nijenhuis tensor of J is defined to be $-4 A_{J}$ in $[4, \mathrm{p} 18]$.

4 Sobolev and elliptic inequalities

This appendix refines, in the $n=2$ case, the proofs of Sobolev Embedding Theorems given in [5] to obtain a C^{0}-estimate in Proposition 4.10 and elliptic estimates for the $\bar{\partial}$-operator in Propositions 4.14 and 4.16. If $R, r \in \mathbb{R}$, let

$$
B_{R}=\left\{x \in \mathbb{R}^{2}:|x|<R\right\}, \quad B_{R, r}=B_{R}-\bar{B}_{r}, \quad \widetilde{B}_{R, r}=B_{R}-B_{r}
$$

4.1 Eucledian case

If ξ is an \mathbb{R}^{k}-valued function defined on a subset B of \mathbb{R}^{2}, let $\operatorname{supp}_{\mathbb{R}^{2}}(\xi)$ be the closure of $\operatorname{supp}(\xi) \subset B$ in \mathbb{R}^{2}. If U is an open subset of $\mathbb{R}^{2}, \xi \in C^{\infty}\left(U ; \mathbb{R}^{k}\right)$, and $p \geq 1$, let

$$
\|\xi\|_{p} \equiv\left(\int_{U}|\xi|^{p}\right)^{1 / p}, \quad\|\xi\|_{p, 1} \equiv\|\xi\|_{p}+\|\mathrm{d} \xi\|_{p}
$$

be the usual Sobolev norms of ξ.
Lemma 4.1. For every bounded convex domain $\mathcal{D} \subset \mathbb{R}^{2}, \xi \in C^{\infty}\left(\mathcal{D} ; \mathbb{R}^{k}\right)$, and $x \in \mathcal{D}$,

$$
\left|\xi_{\mathcal{D}}-\xi(x)\right| \leq \frac{2 r_{0}^{2}}{|\mathcal{D}|} \int_{\mathcal{D}}\left|\mathrm{d}_{y} \xi\right||y-x|^{-1} \mathrm{~d} y
$$

where $2 r_{0}$ is the diameter of $\mathcal{D},|\mathcal{D}|$ is the area of \mathcal{D}, and

$$
\xi_{\mathcal{D}}=\frac{1}{|\mathcal{D}|}\left(\int_{\mathcal{D}} \xi(y) \mathrm{d} y\right)
$$

is the average value of ξ on \mathcal{D}.
Proof. For any $y \in \mathcal{D}$,

$$
\xi(y)-\xi(x)=\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} \xi(x+t(y-x)) \mathrm{d} t=\int_{0}^{1} \mathrm{~d}_{x+t(y-x)} \xi(y-x) \mathrm{d} t .
$$

Putting $g(z)=\left|\mathrm{d}_{z} \xi\right|$ if $z \in \mathcal{D}$ and $g(z)=0$ otherwise, we obtain

$$
\left|\xi_{\mathcal{D}}-\xi(x)\right| \leq \frac{1}{|\mathcal{D}|} \int_{y \in \mathcal{D}}|\xi(y)-\xi(x)| \mathrm{d} y \leq \frac{1}{|\mathcal{D}|} \int_{y \in \mathcal{D}} \int_{0}^{\infty} g(x+t(y-x))|y-x| \mathrm{d} t \mathrm{~d} y
$$

Rewriting the last integral in polar coordinates (r, θ) centered at x, we obtain

$$
\begin{aligned}
\left|\xi_{\mathcal{D}}-\xi(x)\right| & \leq \frac{1}{|\mathcal{D}|} \int_{0}^{2 \pi} \int_{0}^{2 r_{0}} \int_{0}^{\infty} g(t r, \theta) r^{2} \mathrm{~d} t \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{1}{|\mathcal{D}|} \int_{0}^{2 \pi} \int_{0}^{2 r_{0}} \int_{0}^{\infty} g(t, \theta) r \mathrm{~d} t \mathrm{~d} r \mathrm{~d} \theta=\frac{2 r_{0}^{2}}{|\mathcal{D}|} \int_{0}^{2 \pi} \int_{0}^{\infty} g(t, \theta) \mathrm{d} t \mathrm{~d} \theta \\
& =\frac{2 r_{0}^{2}}{|\mathcal{D}|} \int_{\mathcal{D}}\left|\mathrm{d}_{y} \xi \| y-x\right|^{-1} \mathrm{~d} y
\end{aligned}
$$

This establishes the claim.
Corollary 4.2. For every $p>2$, there exists $C_{p}>0$ such that

$$
r \in[0, R / 2], \quad \xi \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right) \quad \Longrightarrow \quad|\xi(x)-\xi(y)| \leq C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \quad \forall x, y \in B_{R, r}
$$

Proof. For any $x \in B_{R, r}$, put

$$
\mathcal{D}_{x}=\left\{y \in B_{R, r}:\langle x,| x|y-r x\rangle>0\right\} .
$$

Figure 2: A convex region \mathcal{D}_{x} of the annulus $\mathcal{D}_{R, r}$ containing x

If $x \neq 0, \mathcal{D}_{x}$ is the part of the annulus on the same side of the line $\langle x, y-r x /| x\rangle=0$ as x; see Figure 2. In particular,

$$
\operatorname{diam}\left(\mathcal{D}_{x}\right) \leq 2 R, \quad\left|\mathcal{D}_{x}\right| \geq\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right) R^{2}
$$

Thus, by Lemma 4.1 and Hölder's inequality,

$$
\begin{align*}
\left|\xi(x)-\xi_{\mathcal{D}_{x}}\right| & \leq 12 \int_{y \in \mathcal{D}_{x}}\left|\mathrm{~d}_{y} \xi\right||y-x|^{-1} \mathrm{~d} y \\
& \leq 12\left(\int_{y \in B_{2 R}(x)}|y-x|^{-\frac{p}{p-1}}\right)^{\frac{p-1}{p}}\|\mathrm{~d} \xi\|_{p} \leq C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \tag{4.1}
\end{align*}
$$

since $\frac{p}{p-1}<2$. Let

$$
x_{ \pm}=(\pm(R-r) / 2,0), \quad y_{ \pm}=(0, \pm(R-r) / 2) .
$$

Since each of the convex regions $\mathcal{D}_{x_{ \pm}}$intersects $\mathcal{D}_{y_{+}}$and $\mathcal{D}_{y_{-}}$and \mathcal{D}_{x} intersects at least one (in fact precisely two if $r \neq 0$) of these four convex regions for every $x \in B_{R, r}$,

$$
|\xi(x)-\xi(y)| \leq 8 C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \quad \forall x, y \in B_{R, r}
$$

by (4.1) and triangle inequality.
Corollary 4.3. For every $p>2$, there exists $C_{p} \in C^{\infty}\left(\mathbb{R}^{+} ; \mathbb{R}\right)$ such that

$$
r \in[0, R / 2], \quad \xi \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right) \quad \Longrightarrow \quad\|\xi\|_{C^{0}} \leq C_{p}(R)\|\xi\|_{p, 1} .
$$

Proof. By Corollary 4.2 and Hölder's inequality, for every $x \in B_{R, r}$

$$
\begin{align*}
|\xi(x)| & \leq\left|\xi_{B_{R, r}}\right|+C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \leq \frac{1}{\left|B_{R, r}\right|}\|\xi\|_{1}+C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \tag{4.2}\\
& \leq\left|B_{R, r}\right|^{-\frac{1}{p}}\|\xi\|_{p}+C_{p} R^{\frac{p-2}{p}}\|\mathrm{~d} \xi\|_{p} \leq\left(1+C_{p}\right) R^{-\frac{2}{p}}\left(\|\xi\|_{p}+R\|\mathrm{~d} \xi\|_{p}\right) .
\end{align*}
$$

This implies the claim.

Lemma 4.4. For all $R>0$ and $r \in[0, R)$,

$$
\zeta \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right), \quad \operatorname{supp}_{\mathbb{R}^{2}}(\zeta) \subset \widetilde{B}_{R, r} \quad \Longrightarrow \quad\|\zeta\|_{2} \leq\|\mathrm{d} \zeta\|_{1} .
$$

Proof. Such a function ζ can be viewed as a function on the complement of the ball B_{r} in \mathbb{R}^{2}. Since ζ vanishes at infinity, for any $(x, y) \in B_{R, r}$

$$
\zeta(x, y)=\left\{\begin{array}{ll}
\int_{-\infty}^{x} \zeta_{s}(s, y) \mathrm{d} s, & \text { if } x \leq 0 ; \\
-\int_{x}^{\infty} \zeta_{s}(s, y) \mathrm{d} s, & \text { if } x \geq 0 ;
\end{array} \quad \zeta(x, y)= \begin{cases}\int_{-\infty}^{y} \zeta_{t}(x, t) \mathrm{d} t, & \text { if } y \leq 0 \\
-\int_{y}^{\infty} \zeta_{t}(x, t) \mathrm{d} t, & \text { if } y \geq 0\end{cases}\right.
$$

Taking the absolute value in these equations, we obtain

$$
\begin{equation*}
|\zeta(x, y)| \leq \int_{-\infty}^{\infty}\left|\mathrm{d}_{(s, y)} \zeta\right| \mathrm{d} s \quad \text { and } \quad|\zeta(x, y)| \leq \int_{-\infty}^{\infty}\left|\mathrm{d}_{(x, t)} \zeta\right| \mathrm{d} t \tag{4.3}
\end{equation*}
$$

where we formally set ζ and $\mathrm{d} \zeta$ to be zero on the smaller disk. Multiplying the two inequalities in (4.3) and integrating with respect to x and y, we conclude

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\zeta(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y \leq\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\mathrm{d}_{(x, y)} \zeta\right| \mathrm{d} x \mathrm{~d} y\right)^{2},
$$

as claimed.
Corollary 4.5. For all $p, q \geq 1$ with $1-2 / p \geq-2 / q$, there exists $C_{p, q} \in \mathbb{R}^{+}$such that

$$
r \in[0, R), \quad \xi \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right), \quad \operatorname{supp}_{\mathbb{R}^{2}}(\xi) \subset \widetilde{B}_{R, r} \quad \Longrightarrow \quad\|\xi\|_{q} \leq C_{p, q} R^{1-\frac{2}{p}+\frac{2}{q}}\|\mathrm{~d} \xi\|_{p}
$$

Proof. We can assume that $k=1$. For $\epsilon>0$, let $\zeta_{\epsilon}=\left(\xi^{2}+\epsilon\right)^{\frac{q}{4}}-\epsilon^{\frac{q}{4}}$. By Lemma 4.4 and Hölder's inequality,

$$
\begin{align*}
\|\xi\|_{q}^{q} & \leq\left\|\zeta_{\epsilon}+\epsilon^{\frac{q}{4}}\right\|_{2}^{2} \leq 2\left\|\mathrm{~d} \zeta_{\epsilon}\right\|_{1}^{2}+2 \epsilon^{\frac{q}{2}} \pi R^{2}=2\left\|\frac{q}{2}\left(\xi^{2}+\epsilon\right)^{\frac{q}{4}-1} \xi \mathrm{~d} \xi\right\|_{1}^{2}+2 \epsilon^{\frac{q}{2}} \pi R^{2} \\
& \leq q^{2}\left\|\left(\xi^{2}+\epsilon\right)^{\frac{q}{4}-\frac{1}{2}} \mathrm{~d} \xi\right\|_{1}^{2}+2 \epsilon^{\frac{q}{2}} \pi R^{2} \leq q^{2}\|\mathrm{~d} \xi\|_{p}^{2}\left\|\left(\xi^{2}+\epsilon\right)^{\frac{q-2}{4}}\right\|_{\frac{p}{p-1}}^{2}+2 \epsilon^{\frac{q}{2}} \pi R^{2} . \tag{4.4}
\end{align*}
$$

Note that

$$
1-\frac{2}{p}=-\frac{2}{q} \quad \Longrightarrow \quad \frac{q-2}{4} \frac{p}{p-1}=\frac{q-2}{4} \frac{2 q}{q-2}=\frac{q}{2} .
$$

Thus, letting ϵ go to zero in (4.4), we obtain

$$
\|\xi\|_{q}^{q} \leq q^{2}\|\mathrm{~d} \xi\|_{p}^{2}\|\xi\|_{q}^{q-2} \quad \Longrightarrow \quad\|\xi\|_{q} \leq q\|\mathrm{~d} \xi\|_{p}
$$

The case $1-\frac{2}{p}>-\frac{2}{q}$ follows by Hölder's inequality.
Remark 4.6. By Hölder's inequality, the constant $C_{p, q}$ can be taken to be

$$
C_{p, q}=\max (2, q) \pi^{\frac{1}{2}\left(1-\frac{2}{p}+\frac{2}{q}\right)} .
$$

Corollary 4.7 (of Lemmas $4.1,4.4$). There exists $C>0$ such that for all $R \in \mathbb{R}^{+}$

$$
r \in[0, R], \quad \zeta \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right), \quad \int_{B_{R, r}} \zeta=0 \quad \Longrightarrow \quad\|\zeta\|_{1} \leq C R^{2}\|\mathrm{~d} \zeta\|_{2} .
$$

Proof. (1) If $\zeta \in C^{\infty}\left(B_{R, r} ; \mathbb{R}^{k}\right)$ integrates to 0 over its domain, then so does the function

$$
\widetilde{\zeta} \in C^{\infty}\left(B_{1, r / R} ; \mathbb{R}^{k}\right), \quad \widetilde{\zeta}(z)=\zeta(R z)
$$

Furthermore, $\|\widetilde{\zeta}\|_{1}=\|\zeta\|_{1} / R^{2}$ and $\|\mathrm{d} \widetilde{\zeta}\|_{2}=\|\mathrm{d} \zeta\|_{2}$. Thus, it is sufficient to prove the claim for $R=1$.
(2) If $r=0$, for some open half-disk $\mathcal{D} \subset B_{1,0}$

$$
\begin{equation*}
\int_{\mathcal{D}} \zeta=0, \quad\left\|\left.\zeta\right|_{\mathcal{D}}\right\|_{1} \geq \frac{1}{2}\|\zeta\|_{1} \tag{4.5}
\end{equation*}
$$

By the first condition, Lemma 4.1, and Hölder's inequality

$$
\left\|\left.\zeta\right|_{\mathcal{D}}\right\|_{1} \leq \frac{4}{\pi} \int_{\mathcal{D}} \int_{\mathcal{D}}\left|\mathrm{d}_{y} \zeta\right||y-x|^{-1} \mathrm{~d} y \mathrm{~d} x \leq 16 \int_{\mathcal{D}}\left|\mathrm{d}_{y} \zeta\right| \mathrm{d} y \leq 8 \sqrt{2 \pi}\|\mathrm{~d} \zeta\|_{2} .
$$

Along with the second assumption in (4.5), this implies the claim for $r=0$ with $C=16 \sqrt{2 \pi}$.
(3) Let $\beta: \mathbb{R} \longrightarrow[0,1]$ be a smooth function such that

$$
\beta(t)= \begin{cases}1, & \text { if } t \leq 1 / 2 \\ 0, & \text { if } t \geq 1\end{cases}
$$

It remains to prove the claim for all $r>0$ and $R=1$. By (3.17), we can assume that

$$
\begin{equation*}
r \leq \frac{1}{48 \sqrt{3 \pi}\left\|\beta^{\prime}\right\|_{C^{0}}}<\frac{1}{96 \sqrt{3 \pi}} \tag{4.6}
\end{equation*}
$$

We first consider the case

$$
\begin{equation*}
\left\|\left.\zeta\right|_{B_{2 r, r}}\right\|_{1} \geq \frac{1}{25}\|\zeta\|_{1} . \tag{4.7}
\end{equation*}
$$

Using polar coordinates, define $\widetilde{\zeta} \in C^{\infty}\left(B_{1, r} ; \mathbb{R}^{k}\right)$ by

$$
\widetilde{\zeta}(\rho, \theta)=\beta(\rho) \zeta(\rho, \theta) .
$$

By Hölder's inequality and Lemma 4.4,

$$
\left\|\left.\zeta\right|_{B_{2 r, r}}\right\|_{1} \leq \sqrt{3 \pi} r\|\widetilde{\zeta}\|_{2} \leq \sqrt{3 \pi} r\|\mathrm{~d} \widetilde{\zeta}\|_{1} \leq \sqrt{3 \pi} r\left(\|\mathrm{~d} \zeta\|_{1}+\left\|\beta^{\prime}\right\|_{C^{0}}\left\|\left.\zeta\right|_{B_{1,1 / 2}}\right\|_{1}\right) .
$$

Along with the assumptions (4.6) and (4.7), this implies the bound with

$$
C=25 \frac{\sqrt{3 \pi} r}{1-24 \sqrt{3 \pi}\|\beta\|_{C^{0}} r} \leq \frac{25}{48} .
$$

Finally, suppose

$$
\begin{equation*}
\left\|\left.\zeta\right|_{B_{2 r, r}}\right\|_{1} \leq \frac{1}{25}\|\zeta\|_{1} . \tag{4.8}
\end{equation*}
$$

Split the annulus $B_{1, r}$ into 3 wedges of equal area; split each wedge into a large convex outer portion and a small inner portion by drawing the line segment tangent to the circle of radius r and with the end points on the sides of the wedges $2 r$ from the center as in Figure 3. By (4.8),

$$
\begin{equation*}
A \equiv\left\|\left.\zeta\right|_{\mathcal{D}_{+}}\right\|_{1} \geq \frac{8}{25}\|\zeta\|_{1} \tag{4.9}
\end{equation*}
$$

Figure 3: A large convex region \mathcal{D}_{+}of an annulus \mathcal{D}
for the outer piece \mathcal{D}_{+}of some wedge \mathcal{D}. If

$$
\left|\int_{\mathcal{D}_{+}} \zeta\right| \leq \frac{3}{10} A
$$

then by Lemma 4.1, (4.6), and Hölder's inequality,

$$
\begin{aligned}
A & \leq \frac{3}{10} A+\frac{2\left(\frac{\sqrt{3}}{2}\right)^{2}}{\frac{\pi}{3}\left(1-\left(\frac{1}{96 \sqrt{3 \pi}}\right)^{2}\right)} \int_{\mathcal{D}_{+}} \int_{\mathcal{D}_{+}}\left|\mathrm{d}_{y} \zeta \| y-x\right|^{-1} \mathrm{~d} y \mathrm{~d} x \\
& \leq \frac{3}{10} A+\frac{9}{2 \pi} \cdot \frac{7 \sqrt{2}}{9} \cdot 2 \pi \sqrt{3} \int_{\mathcal{D}}\left|\mathrm{d}_{y} \zeta\right| \mathrm{d} y \leq \frac{3}{10} A+7 \sqrt{2 \pi}\|\mathrm{~d} \zeta\|_{2} .
\end{aligned}
$$

Along with the assumption (4.9), this implies the bound with $C=125 \sqrt{2 \pi} / 4$. If

$$
\left|\int_{\mathcal{D}_{+}} \zeta\right| \geq \frac{3}{10} A
$$

then by (4.8), (4.9), and (3.16),

$$
\begin{aligned}
A \leq\left\|\left.\xi\right|_{\mathcal{D}}\right\|_{1} & \leq\left\|\left.\zeta\right|_{\mathcal{D}}\right\|_{1}-\left|\int_{\mathcal{D}} \zeta\right|+\int_{0}^{2 \pi}\left|\int_{r}^{1} \zeta(\rho, \theta) \rho \mathrm{d} \rho\right| \mathrm{d} \theta \\
& \leq\left(A+\frac{1}{8} A\right)-\left(\frac{3}{10} A-\frac{1}{8} A\right)+\sqrt{\frac{\pi}{2}}\|\mathrm{~d} \zeta\|_{2}=\frac{19}{20} A+\sqrt{\frac{\pi}{2}}\|\mathrm{~d} \zeta\|_{2} .
\end{aligned}
$$

Along with the assumption (4.9), this implies the bound with $C=125 \sqrt{2 \pi} / 4$. Since β can be chosen so that $\left\|\beta^{\prime}\right\|_{C^{0}}<3$ (actually arbitrarily close to 2), comparing with (3.17) for $R / r=144 \sqrt{3 \pi}$ we conclude that the claim holds with $C=125 \sqrt{2 \pi} / 4$ for all r.

4.2 Bundle sections along smooth maps

Let (M, g) be a Riemannian manifold and $(E,\langle\rangle,, \nabla)$ a normed vector bundle with connection over M. If $u \in C^{\infty}\left(\widetilde{B}_{R, r} ; M\right), \xi \in \Gamma(u ; E)$, and $p \geq 1$, let

$$
\|\xi\|_{p} \equiv\left(\int_{\widetilde{B}_{R, r}}|\xi|^{p}\right)^{1 / p}, \quad\|\xi\|_{p, 1} \equiv\|\xi\|_{p}+\left\|\nabla^{u} \xi\right\|_{p}
$$

Lemma 4.8. If (M, g) is a Riemannian manifold, $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, and $p, q \geq 1$ are such that $1-2 / p \geq-2 / q$, for every compact subset $K \subset M$ there exists $C_{K ; p, q} \in \mathbb{R}^{+}$with the following property. If $R \in \mathbb{R}^{+}, r \in[0, R), u \in C^{\infty}\left(\widetilde{B}_{R, r} ; M\right)$ is such that $\operatorname{Im} u \subset K$, and $\xi \in \Gamma_{c}(u ; E)$, then

$$
\|\xi\|_{q} \leq C_{K ; p, q} R^{1-\frac{2}{p}+\frac{2}{q}}\left(\left\|\nabla^{u} \xi\right\|_{p}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
$$

Proof. Let exp : $T M \longrightarrow M$ be an exponential-like map and $\left\{U_{i}: i \in[N]\right\}$ a finite open cover of K such that the g-diameter of each set U_{i} is at most $r_{\exp }^{g}(K) / 2$. Let $\left\{W_{i}: i \in[N]\right\}$ be an open cover of K such that $\bar{W}_{i} \subset U_{i}$. Choose smooth functions $\eta_{i}: M \longrightarrow[0,1]$ such that $\eta_{i}=1$ on W_{i} and $\eta_{i}=0$ outside of U_{i}. For each $i \in[N]$, pick $x_{i} \in W_{i}$. For each $z \in u^{-1}\left(U_{i}\right) \subset \widetilde{B}_{R, r}$, define $\widetilde{u}_{i}(z) \in T_{x_{i}} M$ and $\xi_{i}(z) \in E_{x_{i}}$ by

$$
\exp _{x_{i}} \widetilde{u}_{i}(z)=u(z), \quad\left|\widetilde{u}_{i}(z)\right|<r_{\exp }\left(x_{i}\right) ; \quad \Pi_{\widetilde{u}_{i}(z)} \xi_{i}(z)=\xi(z)
$$

For any $z \in B_{R, r}$, put $\widetilde{\xi}_{i}(z)=\eta_{i}(u(z)) \xi_{i}(z)$. Since $\widetilde{\xi}_{i} \in C_{c}^{\infty}\left(\widetilde{B}_{R, r} ; E_{x_{i}}\right)$, by Corollary 4.5 there exists $C_{i ; p, q}>0$ such that

$$
\begin{equation*}
\left\|\left.\xi\right|_{u^{-1}\left(W_{i}\right)}\right\|_{q}=\left\|\left.\widetilde{\xi}_{i}\right|_{u^{-1}\left(W_{i}\right)}\right\|_{q} \leq\left\|\widetilde{\xi}_{i}\right\|_{q} \leq C_{i ; p, q} R^{1-\frac{2}{p}+\frac{2}{q}}\left\|\mathrm{~d} \widetilde{\xi}_{i}\right\|_{p} \tag{4.10}
\end{equation*}
$$

Since $\mathrm{d} \widetilde{\xi}_{i}=\left(\mathrm{d} \eta_{i} \circ \mathrm{~d} u\right) \xi_{i}+(\eta \circ u) \mathrm{d} \xi_{i}$ on $u^{-1}\left(U_{i}\right)$ and vanishes outside of $u^{-1}\left(U_{i}\right)$,

$$
\begin{equation*}
\left\|\mathrm{d} \widetilde{\xi}_{i}\right\|_{p} \leq\left\|\left.\mathrm{d} \xi_{i}\right|_{u^{-1}\left(U_{i}\right)}\right\|_{p}+C_{i}\left\|\xi_{i} \otimes \mathrm{~d} u\right\|_{p} \tag{4.11}
\end{equation*}
$$

On the other hand, by Corollary 3.3, if $u(z) \in U_{i}$

$$
\begin{equation*}
\left|\nabla^{u} \xi\right|_{z}-\Pi_{\widetilde{u}_{i}(z)} \circ \mathrm{d}_{z} \xi_{i}\left|\leq C_{K}\right| \mathrm{d}_{z} u| | \xi(z) \mid . \tag{4.12}
\end{equation*}
$$

Combining equations (4.10)-(4.12), we obtain

$$
\left\|\left.\xi\right|_{u^{-1}\left(W_{i}\right)}\right\|_{q} \leq \widetilde{C}_{i ; p, q} R^{1-\frac{2}{p}+\frac{2}{q}}\left(\|\xi\|_{p, 1}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
$$

The claim follows by summing the last inequality over all i.
Lemma 4.9. If (M, g) is a Riemannian manifold, $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, and $p>2$, for every compact subset $K \subset M$ there exists $C_{K ; p} \in C^{\infty}\left(\mathbb{R}^{+} ; \mathbb{R}\right)$ with the following property. If $R \in \mathbb{R}^{+}, r \in[0, R / 2], u \in C^{\infty}\left(B_{R, r} ; M\right)$ is such that $\operatorname{Im} u \subset K$, and $\xi \in \Gamma(u ; E)$, then

$$
\|\xi\|_{C^{0}} \leq C_{K ; p}(R)\left(\|\xi\|_{p, 1}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
$$

Proof. We continue with the setup in the proof of Lemma 4.8. By Corollary 4.3,

$$
\left\|\left.\xi\right|_{u^{-1}\left(W_{i}\right)}\right\|_{C^{0}} \leq\left\|\widetilde{\xi}_{i}\right\|_{C^{0}} \leq C_{i ; p}(R)\left\|\widetilde{\xi}_{i}\right\|_{p, 1} \leq C_{i ; p}(R)\left(\left\|\left.\xi\right|_{u^{-1}\left(U_{i}\right)}\right\|_{p}+\left\|\mathrm{d} \widetilde{\xi}_{i}\right\|_{p}\right)
$$

As above, we obtain

$$
\left\|\mathrm{d} \widetilde{\mathrm{~g}}_{i}\right\|_{p} \leq C_{i}\left(\left\|\nabla^{u} \xi\right\|_{p}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
$$

and the claim follows.

Proposition 4.10. If (M, g) is a Riemannian manifold, $(E,\langle\rangle,, \nabla)$ is a normed vector bundle with connection over M, and $p>2$, for every compact subset $K \subset M$ there exists $C_{K ; p} \in C^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R} ; \mathbb{R}\right)$ with the following property. If $R \in \mathbb{R}^{+}, r \in[0, R / 2], u \in C^{\infty}\left(B_{R, r} ; M\right)$ is such that $\operatorname{Im} u \subset K$, and $\xi \in \Gamma_{c}(u ; E)$, then

$$
\|\xi\|_{C^{0}} \leq C_{K ; p}\left(R,\|\mathrm{~d} u\|_{p}\right)\|\xi\|_{p, 1}
$$

The same statement holds if $B_{R, r}$ is replaced by a fixed compact Riemann surface $\left(\Sigma, g_{\Sigma}\right)$.
Proof. By Lemma 4.9 applied with $\widetilde{p}=(p+2) / 2$ and Hölder's inequality,

$$
\begin{equation*}
\|\xi\|_{C^{0}} \leq C_{K ; \tilde{p}}(R)\left(\|\xi\|_{\widetilde{p}, 1}+\|\xi \otimes \mathrm{d} u\|_{\tilde{p}}\right) \leq \widetilde{C}_{K ; \tilde{p}}(R)\left(\|\xi\|_{p, 1}+\|\mathrm{d} u\|_{p}\|\xi\|_{q_{1}}\right), \tag{4.13}
\end{equation*}
$$

where $q_{1}=p(p+2) /(p-2)$. If $q_{1} \leq p$, then the proof is complete. Otherwise, apply Lemma 4.8 with $p_{1}=2 q_{1} /\left(q_{1}+2\right)$ and Hölder's inequality:

$$
\begin{equation*}
\|\xi\|_{q_{1}} \leq C_{K ; p_{1}, q_{1}}(R)\left(\|\xi\|_{p_{1}, 1}+\|\xi \otimes \mathrm{d} u\|_{p_{1}}\right) \leq C_{K ; 1}(R)\left(\|\xi\|_{p, 1}+\|\mathrm{d} u\|_{p}\|\xi\|_{q_{2}}\right), \tag{4.14}
\end{equation*}
$$

where $q_{2}=p p_{1} /\left(p-p_{1}\right)$. If $q_{2} \leq p$, then the claim follows from equations (4.13) and (4.14). Otherwise, we can continue and construct sequences $\left\{p_{i}\right\},\left\{q_{i}\right\},\left\{C_{K ; i}\right\}$ such that

$$
\begin{gather*}
p_{i}=\frac{2 q_{i}}{q_{i}+2}, \quad q_{i+1}=\frac{p p_{i}}{p-p_{i}} ; \tag{4.15}\\
\|\xi\|_{q_{i}} \leq C_{K ; i}(R)\left(\|\xi\|_{p, 1}+\|\mathrm{d} u\|_{p}\|\xi\|_{q_{i+1}}\right) . \tag{4.16}
\end{gather*}
$$

The recursion (4.15) implies that

$$
q_{i+1}=\frac{2 p}{2 p+(p-2) q_{i}} q_{i} \quad \Longrightarrow \quad \text { if } q_{i}>0, \text { then } 0<q_{i+1}<q_{i} .
$$

Thus, if $q_{i}>2$ for all i, then the sequence $\left\{q_{i}\right\}$ must have a limit $q \geq 2$ with

$$
q=\frac{2 p}{2 p+(p-2) q} q \quad \Longrightarrow \quad(p-2) q=0 \quad \Longrightarrow \quad q=0,
$$

since $p>2$ by assumption. Thus, $q_{N} \leq p$ for N sufficiently large and the first claim follows from (4.13) and the equations (4.16) with i running from 1 to N, where N is the smallest integer such that $q_{N+1} \leq p$. The second claim follows immediately from the first.

4.3 Elliptic estimates

If $A_{1}=B_{R_{1}, r_{1}}$ and $A_{2}=\bar{B}_{R_{2}, r_{2}}$ are two annuli in \mathbb{R}^{2}, we write $A_{2} \Subset_{\delta} A_{1}$ if $R_{1}-R_{2}>\delta$ and $r_{2}-r_{1} \geq \delta$.
Lemma 4.11. For any $\delta>0, p \geq 1$, and open annulus A_{1}, there exists $C_{\delta, p}\left(A_{1}\right)>0$ such that for any annulus $A_{2} \Subset_{\delta} A_{1}$ and $\xi \in C^{\infty}\left(A_{1} ; \mathbb{C}^{k}\right)$,

$$
\left\|\left.\xi\right|_{A_{2}}\right\|_{p, 1} \leq C_{\delta, p}\left(A_{1}\right)\left(\|\bar{\partial} \xi\|_{p}+\|\mathrm{d} \xi\|_{2}+\|\xi\|_{1}\right),
$$

where the norms are taken with respect to the standard metric on \mathbb{R}^{2}.

Proof. We can assume that A_{2} is the maximal annulus such that $A_{2} \Subset_{\delta} A_{1}$. Let $\eta: A_{1} \longrightarrow[0,1]$ be a compactly supported smooth function such that $\left.\eta\right|_{A_{2}}=1$. By the fundamental elliptic inequality for the $\bar{\partial}$-operator on S^{2} [4, Lemma C.2.1],

$$
\begin{align*}
\left\|\left.\xi\right|_{A_{2}}\right\|_{p, 1} & \leq\|\eta \xi\|_{p, 1} \leq C_{p}\left(A_{1}\right)\left(\|\bar{\partial}(\eta \xi)\|_{p}+\|\eta \xi\|_{p}\right) \tag{4.17}\\
& \leq C_{p}\left(A_{1}\right)\left(\|\bar{\partial} \xi\|_{p}+\|(\mathrm{d} \eta) \xi\|_{p}+\|\eta \xi\|_{p}\right) .
\end{align*}
$$

By Corollary 4.5 with $(p, q)=(2, p)$ and $(p, q)=(1,2)$ and Hölder's inequality,

$$
\begin{align*}
\|\eta \xi\|_{p} & \leq C_{p}\left(A_{1}\right)\|\mathrm{d}(\eta \xi)\|_{2} \leq C_{p}\left(A_{1}\right)\left(\|\mathrm{d} \xi\|_{2}+\|(\mathrm{d} \eta) \xi\|_{2}\right) \\
& \leq \widetilde{C}_{p}\left(A_{1}\right)\left(\|\mathrm{d} \xi\|_{2}+\|\mathrm{d}((\mathrm{~d} \eta) \xi)\|_{1}\right) \leq \widetilde{C}_{p, \delta}\left(A_{1}\right)\left(\|\mathrm{d} \xi\|_{2}+\|\mathrm{d} \xi\|_{1}+\|\xi\|_{1}\right) \tag{4.18}\\
& \leq C_{\delta, p}\left(A_{1}\right)\left(\|\mathrm{d} \xi\|_{2}+\|\xi\|_{1}\right) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\|(\mathrm{d} \eta) \xi\|_{p} \leq C_{\delta, p}\left(A_{1}\right)\left(\|\mathrm{d} \xi\|_{2}+\|\xi\|_{1}\right) . \tag{4.19}
\end{equation*}
$$

The claim follows by plugging (4.18) and (4.19) into (4.17).
Corollary 4.12. For any $\delta>0, p \geq 1$, and open annulus A_{1}, there exists $C_{\delta, p}\left(A_{1}\right)>0$ such that for any annulus $A_{2} \Subset_{\delta} A_{1}$, and $\xi \in C^{\infty}\left(A_{1} ; \mathbb{C}^{n}\right)$,

$$
\left\|\left.\mathrm{d} \xi\right|_{A_{2}}\right\|_{p} \leq C_{\delta, p}\left(A_{1}\right)\left(\|\bar{\partial} \xi\|_{p}+\|\mathrm{d} \xi\|_{2}\right) .
$$

Proof. With $\left|A_{1}\right|$ denoting the area of A_{1}, let

$$
\bar{\xi}=\frac{1}{\left|A_{1}\right|} \int_{A_{1}} \xi
$$

be the average value of ξ. By Lemma 4.11,

$$
\begin{align*}
\left\|\left.\mathrm{d} \xi\right|_{A_{2}}\right\|_{p}=\left\|\left.\mathrm{d}(\xi-\bar{\xi})\right|_{A_{2}}\right\|_{p} & \leq C_{\delta, p}\left(A_{1}\right)\left(\|\bar{\partial}(\xi-\bar{\xi})\|_{p}+\|\mathrm{d}(\xi-\bar{\xi})\|_{2}+\|\xi-\bar{\xi}\|_{1}\right) \tag{4.20}\\
& =C_{\delta, p}\left(A_{1}\right)\left(\|\bar{\partial} \xi\|_{p}+\|\mathrm{d} \xi\|_{2}+\|\xi-\bar{\xi}\|_{1}\right) .
\end{align*}
$$

The claim follows by applying Corollary 4.7 with $\zeta=\xi-\bar{\xi}$.
Remark 4.13. The case $r_{1}>0$ (which is the case needed for gluing pseudo-holomorphic maps in symplectic topology) follows from Corollary 3.7; Corollary 4.7 can be used to obtain a sharper statement in this case (that $C_{\delta, p}\left(A_{1}\right)$ does not depend on $\left.r_{1}\right)$. The $r_{1}=0$ case requires only the first two steps in the proof of Corollary 4.7.

A smooth generalized CR-operator in a smooth complex vector bundle (E, ∇) with connection over an almost complex manifold (M, J) is an operator of the form

$$
D=\bar{\partial}_{\nabla}+A: \Gamma(M ; E) \longrightarrow \Gamma\left(M ; T^{*} M^{0,1} \otimes_{\mathbb{C}} E\right)
$$

where

$$
\bar{\partial}_{\nabla} \xi=\frac{1}{2}\left(\nabla \xi+\mathfrak{i} \nabla_{J} \xi\right) \quad \forall \xi \in \Gamma(M ; T M), \quad A \in \Gamma\left(M ; \operatorname{Hom}\left(E ; T^{*} M^{0,1} \otimes_{\mathbb{C}} E\right)\right)
$$

If in addition $u: \Sigma \longrightarrow M$ is a smooth map from an almost complex manifold (Σ, \mathfrak{j}), the pull-back CR-operator is given by

$$
D_{u}=\bar{\partial}_{\nabla^{u}}+A \circ \partial u: \Gamma(u ; E) \longrightarrow \Gamma^{0,1}(u ; E) .
$$

Proposition 4.14. If (M, g) is a Riemannian manifold with an almost complex structure J, $(E,\langle\rangle,, \nabla)$ is a normed complex vector bundle with connection over M and a smooth generalized $C R$-operator D, and $p \geq 1$, then for every compact subset $K \subset M, \delta>0$, and open annulus $A_{1} \subset \mathbb{R}^{2}$, there exists $C_{K ; \delta, p}\left(A_{1}\right) \in \mathbb{R}^{+}$with the following property. If $u \in C^{\infty}\left(A_{1} ; M\right)$ is such that $\operatorname{Im} u \subset K$, $\xi \in \Gamma(u ; E)$, and $A_{2} \Subset_{\delta} A_{1}$ is an annulus, then

$$
\left\|\left.\nabla^{u} \xi\right|_{A_{2}}\right\|_{p} \leq C_{K ; \delta, p}\left(A_{1}\right)\left(\left\|D_{u} \xi\right\|_{p}+\left\|\nabla^{u} \xi\right\|_{2}+\|\xi \otimes \mathrm{d} u\|_{p}\right),
$$

where the norms are taken with respect to the standard metric on \mathbb{R}^{2}.
Proof. We continue with the setup in the proof of Lemma 4.8. By Corollary 4.12,

$$
\begin{align*}
\left\|\left.\mathrm{d} \widetilde{\xi}_{i}\right|_{A_{2}}\right\|_{p} & \leq C_{i ; \delta, p}\left(A_{1}\right)\left(\left\|\bar{\partial} \widetilde{\xi}_{i}\right\|_{p}+\left\|\mathrm{d} \widetilde{\xi}_{i}\right\|_{2}\right) \tag{4.21}\\
& \leq C_{i ; \delta, p}^{\prime}\left(A_{1}\right)\left(\left\|\left.\bar{\partial} \xi_{i}\right|_{u^{-1}\left(U_{i}\right)}\right\|_{p}+\left\|\left.\mathrm{d} \xi_{i}\right|_{u^{-1}\left(U_{i}\right)}\right\|_{2}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
\end{align*}
$$

Since ∇ commutes with the complex structure in E and $\widetilde{\xi}_{i}=\xi_{i}$ on $u^{-1}\left(W_{i}\right)$, it follows from (4.12) and (4.21) that

$$
\begin{align*}
\left\|\left.\nabla^{u} \xi\right|_{A_{2} \cap u^{-1}\left(W_{i}\right)}\right\|_{p} & \leq\left\|\left.\mathrm{d} \widetilde{\xi}_{i}\right|_{A_{2}}\right\|_{p}+C_{K}\|\xi \otimes \mathrm{~d} u\|_{p} \\
& \leq \widetilde{C}_{i ; \delta, p}\left(A_{1}\right)\left(\left\|\bar{\partial}_{\nabla^{u}} \xi\right\|_{p}+\left\|\nabla^{u} \xi\right\|_{2}+\|\xi \otimes \mathrm{d} u\|_{p}\right) \tag{4.22}\\
& \leq \widetilde{C}_{i ; \delta, p}^{\prime}\left(A_{1}\right)\left(\left\|D_{u} \xi\right\|_{p}+\left\|\nabla^{u} \xi\right\|_{2}+\|\xi \otimes \mathrm{d} u\|_{p}\right)
\end{align*}
$$

The claim is obtained by summing the last equation over all i.
Lemma 4.15. If (M, g) is a Riemannian manifold with an almost complex structure $J,(E,\langle\rangle,, \nabla)$ is a normed complex vector bundle with connection over M and a smooth generalized CR-operator D, and $p>2$, then for every compact subset $K \subset M$ and open ball $B \subset \mathbb{R}^{2}$, there exists $C_{K ; B, p} \in$ $C^{\infty}(\mathbb{R} ; \mathbb{R})$ with the following property. If $u \in C^{\infty}(B ; M)$ is such that $\operatorname{Im} u \subset K$ and $\xi \in \Gamma_{c}(u ; E)$, then

$$
\|\xi\|_{p, 1} \leq C_{K ; B, p}\left(\|\mathrm{~d} u\|_{p}\right)\left(\left\|D_{u} \xi\right\|_{p}+\|\xi\|_{p}\right)
$$

where the norms are taken with respect to the standard metric on \mathbb{R}^{2}.
Proof. By an argument nearly identical to the proof of Proposition 4.14,

$$
\|\xi\|_{p^{\prime}, 1} \leq C_{K ; p^{\prime}}(B)\left(\left\|D_{u} \xi\right\|_{p^{\prime}}+\|\xi\|_{p^{\prime}}+\|\xi \otimes \mathrm{d} u\|_{p^{\prime}}\right)
$$

for any $p^{\prime} \geq 1$. On the other hand, by Proposition 4.10,

$$
\|\xi\|_{C^{0}} \leq C_{K ; B, \tilde{p}}\left(\|\mathrm{~d} u\|_{\tilde{p}}\right)\|\xi\|_{\widetilde{p}, 1},
$$

where $\widetilde{p}=(p+2) / 2$. Proceeding as in the proof of Proposition 4.10, we then obtain

$$
\begin{aligned}
\|\xi\|_{p, 1} & \leq C_{K ; B, p}\left(\|\mathrm{~d} u\|_{\widetilde{p}}\right)\left(\left\|D_{u} \xi\right\|_{p}+\|\xi\|_{p}+\|\mathrm{d} u\|_{p}\|\xi\|_{\widetilde{p}, 1}\right) \\
\|\xi\|_{\widetilde{p}, 1} & \leq C_{K ; \mathfrak{p}}(B)\left(\left\|D_{u} \xi\right\|_{p}+\|\xi\|_{p}+\|\mathrm{d} u\|_{p}\|\xi\|_{q_{1}}\right) \\
\|\xi\|_{q_{i}} & \leq C_{K ; p_{i}, q_{i}}(B)\left(\|\xi\|_{p_{i}, 1}+\|\xi \otimes \mathrm{d} u\|_{p_{i}}\right) \\
& \leq C_{K ; B, i}\left(\|\mathrm{~d} u\|_{p}\right)\left(\left\|D_{u} \xi\right\|_{p}+\|\xi\|_{p}+\|\mathrm{d} u\|_{p}\|\xi\|_{q_{i+1}}\right)
\end{aligned}
$$

we stop the recursion at the same value of $i=N$ as in the proof of Proposition 4.10.

Proposition 4.16. If (M, g) is a Riemannian manifold with an almost complex structure J, $(E,\langle\rangle,, \nabla)$ is a normed complex vector bundle with connection over M and a smooth generalized $C R$-operator D, and $p>2$, then for every compact subset $K \subset M$ and compact Riemann surface $\left(\Sigma, g_{\Sigma}\right)$, there exists $C_{K ; \Sigma, p} \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ with the following property. If $u \in C^{\infty}(\Sigma ; M)$ is such that $\operatorname{Im} u \subset K$ and $\xi \in \Gamma(u ; E)$, then

$$
\|\xi\|_{p, 1} \leq C_{K ; \Sigma, p}\left(\|\mathrm{~d} u\|_{p}\right)\left(\left\|D_{u} \xi\right\|_{p}+\|\xi\|_{p}\right) .
$$

Proof. This statement is immediate from Lemma 4.15.

Department of Mathematics, SUNY Stony Brook, NY 11794-3651
azinger@math.sunysb.edu

References

[1] I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge University Press, 1996.
[2] A. Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math XLI (1988), 775-813.
[3] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics in Symplectic 4-Manifolds, Internat. Press, 1998.
[4] D. McDuff and D. Salamon, J-Holomorphic Curves and Symplectic Topology, AMS Colloquium Publ. 52, 2004.
[5] T. Mrowka, 18.966 Lecture Notes, Spring 1998.
[6] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer 1983.

[^0]: *Partially supported by DMS grant 0846978

[^1]: ${ }^{1}$ see Section 4.3

[^2]: ${ }^{2}$ Since LHS and RHS of these identities depend only ξ and $X=\zeta(x)$, and not on ζ, it is sufficient to verify them under the assumption that $\left.\nabla \zeta\right|_{x}=0$.

