MAT 542: Algebraic Topology, Fall 2016

Suggested Problems for Week 2

You may hand in solutions to at most 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 5.4-5.7

The H_{*} of 5.6 is also known as Borel-Moore homology or homology with closed supports (instead of compact supports). It is useful when working with non-compact manifolds, including in the context of Poincare Duality.

Problem C

Let R be a commutative ring with unity and M be an R-module. If $R=\mathbb{Z}$, then M is an abelian group. One such example is S^{1}. If X is a CW or simplicial complex, the R-modules $H_{p}(X ; M)$ are defined precisely as in the case $M=R$ in class. Use the CW decomposition of $\mathbb{R}^{(}{ }^{n}$ you obtained in Problem B to show that

$$
H_{p}\left(\mathbb{R} \mathbb{P}^{n} ; S^{1}\right)= \begin{cases}S^{1}, & \text { if } p=0 \\ S^{1}, & \text { if } p=n \notin 2 \mathbb{Z} \\ \mathbb{Z}_{2}, & \text { if } 2 \leq p \leq n, p \in 2 \mathbb{Z} \\ 0, & \text { otherwise }\end{cases}
$$

This could be a good question to discuss on Friday; many thanks to Tyler.

Problem D

For a finite simplicial complex K and each $p \in \mathbb{Z}$, define

$$
\alpha_{p}(K)=\# \text { of } p \text {-cells in } K, \quad \beta_{p}(K)=\text { rank of } H_{p}(K), \quad \chi(K)=\sum_{q=0}^{\infty}(-1)^{q} \alpha_{q}(K)
$$

The last sum is the Euler characteristic of K. Show that

$$
\chi(K)=\sum_{q=0}^{\infty}(-1)^{q} \beta_{q}(K)
$$

Assuming $H_{p}(K)$ depends only on the homeomorphism type of $|K|$, this implies that so does $\chi(K)$.

Problem E

Let K be a triangulation of a compact connected surface (without boundary). Show that

$$
3 \alpha_{2}(K)=2 \alpha_{1}(K), \quad \alpha_{1}(K)=3\left(\alpha_{0}(K)-\chi(K)\right), \quad \alpha_{0}(K) \geq \frac{1}{2}(7+\sqrt{49-24 \chi(K)})
$$

In particular, a triangulation of the torus has at least 7 vertices, 21 edges, and 14 triangles. Find such a triangulation.

Problems D and E are from a problem set in MIT's 18.905 in Fall 1996 taught by F. Peterson.

