MAT 531 Geometry/Topology Midterm

1. (20%) Is the parameterized curve

$$
x=t^{2}, \quad y=t^{3}
$$

a smooth submanifold of \mathbb{R}^{2} ? As a topological space, does it have a smooth structure? Explain your answer, but you may skip details.
2. (20 \%) Compute the integral

$$
\int_{x^{2}+y^{2}+z^{2}=1} x d y \wedge d z
$$

3. (20%) Give an example of two different (non-compatible) smooth atlases on \mathbb{R}.
4. (20%) Prove that the vector field $3 z^{2} \partial_{x}+2 x \partial_{z}$ is tangent to the surface $x^{2}+y^{2}-z^{3}=0$ at all points where this surface is smooth.
5. (20%) Consider vector fields $v=\partial_{x}$ and $w=\partial_{y}$ on the plane $z=1$ in \mathbb{R}^{3}. Let f be the radial projection of this plane to the sphere $x^{2}+y^{2}+z^{2}=1$. Compute the commutator of $f_{*}(v)$ and $f_{*}(w)$.
6. (20%) Compute the curl of the vector field $x \partial_{y}+y \partial_{z}+z \partial_{x}$ on \mathbb{R}^{3}.

7*. (25 \%) Let v and w be vector fields on a manifold X tangent to a submanifold $Y \subset X$. Prove that $[v, w]$ is also tangent to Y.

