MAT 531: Topology&Geometry, II Spring 2006

Problem Set 5 Due on Thursday, 3/2, in class

Note: This problem set has two pages.

1. Suppose M is a smooth *n*-manifold. (a) Let α be a nowhere-zero *n*-form on M. Show that for every $m \in M$ there exists a chart $(x_1, \ldots, x_n) : \mathcal{U} \longrightarrow \mathbb{R}^n$ near m such that

$$\alpha|_{\mathcal{U}} = dx_1 \wedge \ldots \wedge dx_n.$$

(b) Let α be a nowhere-zero closed (n-1)-form on M. Show that for every $m \in M$ there exists a chart $(x_1, \ldots, x_n) : \mathcal{U} \longrightarrow \mathbb{R}^n$ near m such that

$$\alpha|_{\mathcal{U}} = dx_2 \wedge dx_3 \wedge \ldots \wedge dx_n.$$

- 2. Chapter 2, #5 (p78)
- 3. A two-form ω on a smooth manifold M is called symplectic if ω is closed (i.e. dω = 0) and everywhere nondegenerate¹. Suppose ω is a symplectic form on M.
 (a) Show that the dimension of M is even and the map

 $TM \longrightarrow T^*M, \qquad X \longrightarrow i_X\omega,$

is a vector bundle isomorphism $(i_X \omega \text{ is the contraction w.r.t. } X$, i.e. the dual of $X \wedge$). (b) If $H: M \longrightarrow \mathbb{R}$ is a smooth map, let $X_H \in \Gamma(M; TM)$ be the preimage of dH under this isomorphism. Assume that X_H is a complete vector field, so that the flow

$$\varphi \colon \mathbb{R} \times M \longrightarrow M, \qquad (t,m) \longrightarrow \varphi_t(m),$$

is globally defined. Show that for every $t \in \mathbb{R}$, the time-t flow $\varphi_t \colon M \longrightarrow M$ is a symplectomorphism, i.e. $\varphi_t^* \omega = \omega$.

Note: In such a situation, H is called a Hamiltonian and φ_t a Hamiltonian symplectomorphism.

4. Suppose X and Y are smooth vector fields on a manifold M. Show that for every $m \in M$ and $f \in C^{\infty}(M)$,

$$\lim_{s,t \to 0} \frac{f(Y_{-s}(X_{-t}(Y_s(X_t(m))))) - f(m))}{s t} = [X, Y]_m f \in \mathbb{R}.$$

Do not forget to explain why the limit exists.

Note: This means that the extent to which the flows of X and Y do not commute (i.e. the rate of change in the "difference" between $Y_s \circ X_t$ and $X_t \circ Y_s$) is measured by [X, Y].

¹This means that $\omega_m \in \Lambda^2 T_m^* M$ is nondegenerate for every $m \in M$, i.e. for every $v \in T_m M$ such that $v \neq 0$ there exists $w \in T_m M$ such that $\omega(v, w) \neq 0$.

- 5. Suppose M is a 3-manifold, α is a nowhere-zero one-form on M, and $m \in M$. Show that
 - (a) if there exists an embedded 2-dimensional submanifold $P \subset M$ such that $m \in P$ and $\alpha|_{TP} = 0$, then $(\alpha \wedge d\alpha)|_m = 0$.
 - (b) if there exists a neighborhood \mathcal{U} of m in M such that $(\alpha \wedge d\alpha)|_{\mathcal{U}} = 0$, then there exists an embedded 2-dimensional submanifold $P \subset M$ such that $m \in P$ and $\alpha|_{TP} = 0$.

Note: If the top form $\alpha \wedge d\alpha$ on M is nowhere-zero, α is called a contact form. In this case, it has no integrable submanifolds at all.