MAT 531: Topology\&Geometry, II Spring 2006

Problem Set 4

Due on Thursday, 2/23, in class
Please read the updated version of Notes on Vector Bundles before starting on Problem 4.

1. Chapter 1, \#13ad (p51)
2. Let U and V be the vector fields on \mathbb{R}^{3} given by

$$
U(x, y, z)=\frac{\partial}{\partial x} \quad \text { and } \quad V(x, y, z)=F(x, y, z) \frac{\partial}{\partial y}+G(x, y, z) \frac{\partial}{\partial z}
$$

where F and G are smooth functions on \mathbb{R}^{3}. Show that there exists a smooth 2-dimensional foliation \mathcal{F} on \mathbb{R}^{3} such that the vector fields U and V are everywhere tangent to \mathcal{F}^{1} if and only if

$$
F(x, y, z)=f(y, z) e^{h(x, y, z)} \quad \text { and } \quad G(x, y, z)=g(y, z) e^{h(x, y, z)}
$$

for some $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that (f, g) does not vanish on \mathbb{R}^{2}.
3. Chapter 2, \#13 (p79)
4. Let $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n} \longrightarrow \mathbb{C} P^{n}$ be the top exterior power of the vector bundle $T \mathbb{C} P^{n}$ taken over \mathbb{C}. Show that $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n}$ is isomorphic to the line bundle

$$
\gamma_{n}^{* \otimes(n+1)} \equiv \underbrace{\gamma_{n}^{*} \otimes \ldots \otimes \gamma_{n}^{*}}_{n+1}
$$

where $\gamma_{n} \longrightarrow \mathbb{C} P^{n}$ is the tautological line bundle (isomorphic as complex line bundles).
Hint: There are a number of ways of doing this, including:
(i) construct an isomorphism between the two line bundles;
(ii) use Problems 4 and 5 from PS1 to determine transition data for $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n}$ and $\gamma_{k}^{* \otimes(n+1)}$. However, you will need to modify trivializations for one of the line bundles to arrive at the same transition data.
(iii) show that there exists a short exact sequence of vector bundles

$$
0 \longrightarrow \mathbb{C} P^{n} \times \mathbb{C} \longrightarrow(n+1) \gamma_{n}^{*} \longrightarrow T \mathbb{C} P^{n} \longrightarrow 0
$$

and this implies the claim (exact means that at each position the kernel of the outgoing map equals to the image of the incoming map over every point of M.)

[^0]
[^0]: ${ }^{1}$ This means that \mathcal{F} is a collection of embedded submanifolds of \mathbb{R}^{3} that partition \mathbb{R}^{3} such that the tangent bundles of the submanifolds are spanned by U and V.

