MAT 531: Topology\&Geometry, II Spring 2006

Midterm Solutions

Problem 1 (15 pts)

Suppose M is a smooth manifold and X and Y are smooth vector fields on M. Show directly from definitions that

$$
[X, Y]=-[Y, X]
$$

(You can assume that $[X, Y]$ is whatever object it is supposed to be, but do state what you are taking it to be).

By definition, the Lie bracket $[X, Y]$ of two vector fields X and Y is another vector field on M, i.e. an element of $\Gamma(M ; T M)$. In particular,

$$
[X, Y],[Y, X]: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

are linear maps. They are given by

$$
\begin{gathered}
{[X, Y] f=X(Y f)-Y(X f) \quad \forall f \in C^{\infty}(M) \quad \Longrightarrow} \\
{[Y, X] f=Y(X f)-X(Y f)=-(X(Y f)-Y(X f))=-([X, Y] f) \equiv\{-[X, Y]\} f \quad \forall f \in C^{\infty}(M)} \\
\end{gathered}
$$

Problem $2(20 \mathrm{pts})$
Show that the topological subspace

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{3}+x y+y^{3}=1\right\}
$$

of \mathbb{R}^{2} is a smooth curve (i.e. admits a natural structure of smooth 1-manifold with respect to which it is a submanifold of \mathbb{R}^{2}).

Define

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R} \quad \text { by } \quad f(x, y)=x^{3}+x y+y^{3}
$$

Then, f is a smooth map and

$$
P \equiv\left\{(x, y) \in \mathbb{R}^{2}: x^{3}+x y+y^{3}=1\right\}=f^{-1}(1)
$$

We show below that 1 is regular value for f. By the Implicit Function Theorem, P is then a smooth submanifold of \mathbb{R}^{2} and

$$
\operatorname{dim} P=\operatorname{dim} \mathbb{R}^{2}-\operatorname{dim} \mathbb{R}=1
$$

as needed.

We need to show that $\left.d f\right|_{(x, y)}$ is surjective for all $(x, y) \in f^{-1}(1)$. Since the target space for f is \mathbb{R}, we can view $\left.d f\right|_{(x, y)}$ as a linear map into $\mathbb{R}\left(\right.$ instead of $\left.T_{f(x, y)} \mathbb{R}\right)$. It is given by

$$
\left.d f\right|_{(x, y)}=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=\left(3 x^{2}+y\right) d x+\left(x+3 y^{2}\right) d y
$$

Since $d x$ and $d y$ are linearly independent in $T_{(x, y)}^{*} \mathbb{R}^{2}$,

$$
\begin{aligned}
& \left.d f\right|_{(x, y)}=0 \quad \Longrightarrow \quad \begin{array}{l}
3 x^{2}+y=0 \\
x+3 y^{2}=0
\end{array} \quad \Longrightarrow \quad\left\{\begin{array}{l}
y=-3 x^{2} \\
x+27 x^{4}=0
\end{array} \quad \Longrightarrow\right. \\
& (x, y)=(0,0) \text { or } \quad(x, y)=(-1 / 3,-1 / 3) \quad \Longrightarrow \quad f(x, y) \in\{0,1 / 27\} \quad \Longrightarrow \quad(x, y) \notin f^{-1}(1) \text {. }
\end{aligned}
$$

We conclude that 1 is a regular value for f.

Problem 3 ($5+15 \mathrm{pts}$)

Let X be a non-vanishing vector field on \mathbb{R}^{3}, written in coordinates as

$$
X(x, y, z)=f \frac{\partial}{\partial x}+g \frac{\partial}{\partial y}+h \frac{\partial}{\partial z} \quad \text { for some } \quad f, g, h \in C^{\infty}\left(\mathbb{R}^{3}\right)
$$

(a) Find a one-form α on \mathbb{R}^{3} so that at each point of \mathbb{R}^{3} the kernel of α is orthogonal to X, with respect to the standard inner-product on \mathbb{R}^{3}.
(b) Find a necessary and sufficient condition on X so that for every point $p \in \mathbb{R}^{3}$ there exists a surface $S \subset \mathbb{R}^{3}$ passing through p which is everywhere orthogonal to X (i.e. S is a smooth twodimensional submanifold of \mathbb{R}^{3} and $T_{m} S \subset T_{m} \mathbb{R}^{3}$ is orthogonal to $X(m)$ for all $\left.m \in S\right)$.
(a) Every element of $T_{(x, y, z)} \mathbb{R}^{3}$ can be written as

$$
v=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z} \quad \text { for some } \quad a, b, c \in \mathbb{R}
$$

and

$$
\begin{aligned}
\langle X(x, y, z), v\rangle & =f(x, y, z) a+g(x, y, z) b+h(x, y, z) c \\
& =\{f(x, y, z) d x+g(x, y, z) d y+h(x, y, z) d z\} v=\left.\alpha\right|_{(x, y, z)} v
\end{aligned}
$$

where α is the one-form on \mathbb{R}^{3} defined by

$$
\left.\alpha\right|_{(x, y, z)}=f(x, y, z) d x+g(x, y, z) d y+h(x, y, z) d z
$$

For each $(x, y, z) \in \mathbb{R}^{3}$, the kernel of α is the subspace of $T_{(x, y, z)} \mathbb{R}^{3} \approx \mathbb{R}^{3}$ orthogonal to $X(x, y, z)$.
(b) Let

$$
\mathcal{J}(\mathbb{R} \alpha)=\mathcal{J}(\alpha)=\left\{\alpha \wedge \beta: \beta \in E^{*}\left(\mathbb{R}^{3}\right)\right\} \subset E^{*}\left(\mathbb{R}^{3}\right)
$$

be the ideal generated by α. By part (a), we need to find a necessary and sufficient condition on α so that for every point $p \in \mathbb{R}^{3}$ there exists a surface $S \subset \mathbb{R}^{3}$ passing through p such that

$$
T_{(x, y, z)} S=\left.\operatorname{ker} \alpha\right|_{(x, y, z)} \subset T_{(x, y, z)} \mathbb{R}^{3}
$$

Since X is a nowhere-vanishing vector field on \mathbb{R}^{3}, α is a nowhere-vanishing one-form on \mathbb{R}^{3} and $\mathbb{R} \alpha$ is a vector subbundle of $T^{*} \mathbb{R}^{3}$ of rank one. Thus, by the second version of Frobenius Theorem the necessary and sufficient condition is that the ideal $J(\alpha)$ be differential, i.e. closed under d so that

$$
d \gamma \in \mathcal{J}(\alpha) \quad \forall \gamma \in \mathcal{J}(\alpha)
$$

Since \mathbb{R}^{3} is a three-dimensional manifold, by Problem 5 on PS5 this is the case if and only if

$$
\alpha \wedge d \alpha=0
$$

Since $\alpha=f d x+g d y+h d z$,

$$
\begin{aligned}
& d \alpha=d f \wedge d x+d g \wedge d y+d h \wedge d z \\
& =\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \wedge d x+\left(\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y+\frac{\partial g}{\partial z} d z\right) \wedge d y+\left(\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y+\frac{\partial h}{\partial z} d z\right) \wedge d z \\
& =f_{y} d y \wedge d x+f_{z} d z \wedge d x+g_{x} d x \wedge d y+g_{z} d z \wedge d y+h_{x} d x \wedge d z+h_{y} d y \wedge d z \\
& =\left(g_{x}-f_{y}\right) d x \wedge d y+\left(h_{x}-f_{z}\right) d x \wedge d z+\left(h_{y}-g_{z}\right) d y \wedge d z \\
& \Longrightarrow \quad \alpha \wedge d \alpha=h\left(g_{x}-f_{y}\right) d z \wedge d x \wedge d y+g\left(h_{x}-f_{z}\right) d y \wedge d x \wedge d z+f\left(h_{y}-g_{z}\right) d x \wedge d y \wedge d z \\
& =\left(f\left(h_{y}-g_{z}\right)-g\left(h_{x}-f_{z}\right)+h\left(g_{x}-f_{y}\right)\right) d x \wedge d y \wedge d z .
\end{aligned}
$$

Thus, the necessary and sufficient condition on X is

$$
\langle X, \vec{\nabla} \times X\rangle \equiv \operatorname{det}\left(\begin{array}{ccc}
f & g & h \\
\partial_{x} & \partial_{y} & \partial_{z} \\
f & g & h
\end{array}\right) \equiv f\left(h_{y}-g_{z}\right)-g\left(h_{x}-f_{z}\right)+h\left(g_{x}-f_{y}\right)=0
$$

Problem 4 (20 pts)

Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere with its standard smooth structure and orientation. Find

$$
\int_{S^{2}}\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}\right)
$$

With its standard orientation, S^{2} is the oriented boundary of the unit ball

$$
B^{3} \equiv\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{3} \leq 1\right\}
$$

about the origin, with its standard smooth structure and orientation. Thus, by the second version of Stokes' Theorem,

$$
\begin{aligned}
& \int_{S^{2}}\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}\right)=\int_{\partial B^{3}}\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}\right) \\
&=\int_{B^{3}} d\left(x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}\right) \\
&=\int_{B^{3}}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{2} \wedge d x_{1} \wedge d x_{3}+d x_{3} \wedge d x_{1} \wedge d x_{2}\right) \\
&=\int_{B^{3}}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}-d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=\int_{B^{3}} 1 d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

Since B^{3} with its standard orientation is a regular subspace of \mathbb{R}^{3},

$$
\int_{B^{3}} 1 d x_{1} \wedge d x_{2} \wedge d x_{3}=\int_{B^{3}} 1 d x_{1} d x_{2} d x_{3}=\frac{4 \pi}{3}
$$

Problem 5 (25 pts)

Suppose M and N are smooth manifolds. Show that
(a) if M and N are orientable, then $M \times N$ is orientable;
(b) if M is orientable and nonempty and N is not orientable, then $M \times N$ is not orientable;
(c) if M and N are not orientable, then $M \times N$ is not orientable.
(a) Since M and N are orientable, the line bundles

$$
\Lambda^{\mathrm{top}} T M \longrightarrow M \quad \text { and } \quad \Lambda^{\mathrm{top}} T N \longrightarrow N
$$

are trivial. On the other hand, let

$$
\pi_{1}, \pi_{2}: M \times N \longrightarrow M, N
$$

be the two projection maps. Then,

$$
\begin{aligned}
T(M \times N)=\pi_{1}^{*} T M \oplus \pi_{2}^{*} T N & \longrightarrow M \times N \\
\Longrightarrow \quad \Lambda^{\mathrm{top}}(T(M \times N))=\Lambda^{\mathrm{top}}\left(\pi_{1}^{*} T M \oplus \pi_{2}^{*} T N\right) & =\Lambda^{\mathrm{top}}\left(\pi_{1}^{*} T M\right) \otimes \Lambda^{\mathrm{top}}\left(\pi_{2}^{*} T N\right) \\
& =\pi_{1}^{*}\left(\Lambda^{\mathrm{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right)
\end{aligned}
$$

Since the line bundles $\Lambda^{\text {top }} T M$ and $\Lambda^{\text {top }} T N$ over M and N, respectively, are trivial, so are their pullbacks to $M \times N$ and their tensor product. Since the line bundle

$$
\Lambda^{\mathrm{top}}(T(M \times N))=\pi_{1}^{*}\left(\Lambda^{\mathrm{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right) \longrightarrow M \times N
$$

is trivial, the manifold $M \times N$ is orientable.
Alternatively, since M and N are orientable, there exist nowhere-vanishing top forms on M and N :

$$
\alpha \in E^{\mathrm{top}}(M) \quad \text { and } \quad \beta \in E^{\mathrm{top}}(N)
$$

Then, $\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta$ is a nowhere-vanishing top form on $M \times N$. Since $M \times N$ admits such a form, $M \times N$ is orientable. To see that $\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta$ does not vanish on $M \times N$, suppose $x \in M, y \in N$, and

$$
\left\{v_{1}, \ldots, v_{k}\right\} \subset T_{x} M \quad \text { and } \quad\left\{w_{1}, \ldots, w_{n}\right\} \subset T_{y} N
$$

are bases for $T_{x} M$ and $T_{y} N$. Since

$$
\left.\alpha\right|_{x} \in \Lambda^{\mathrm{top}} T_{x}^{*} M \quad \text { and }\left.\quad \beta\right|_{y} \in \Lambda^{\mathrm{top}} T_{y}^{*} N
$$

are not zero,

$$
\left.\alpha\right|_{x}\left(v_{1}, \ldots, v_{k}\right) \neq 0 \quad \text { and }\left.\quad \beta\right|_{y}\left(w_{1}, \ldots, w_{n}\right) \neq 0
$$

On the other hand,

$$
T_{(x, y)}(M \times N)=T_{x} M \oplus T_{y} N \quad \Longrightarrow \quad v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n} \in T_{(x, y)}(M \times N)
$$

Furthermore,

$$
\begin{aligned}
\left.\left\{\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right\}\right|_{(x, y)}\left(v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n}\right) & =\left.\left.\left\{\pi_{1}^{*} \alpha\right\}\right|_{(x, y)}\left(v_{1}, \ldots, v_{k}\right) \cdot\left\{\pi_{2}^{*} \beta\right\}\right|_{(x, y)}\left(w_{1}, \ldots, w_{n}\right) \\
& =\left.\left.\alpha\right|_{x}\left(d \pi_{1}\left(v_{1}\right), \ldots, d \pi_{1}\left(v_{k}\right)\right) \cdot \beta\right|_{y}\left(d \pi_{2}\left(w_{1}\right), \ldots, d \pi_{2}\left(w_{n}\right)\right) \\
& =\left.\left.\alpha\right|_{x}\left(v_{1}, \ldots, v_{k}\right) \cdot \beta\right|_{y}\left(w_{1}, \ldots, w_{n}\right) \neq 0,
\end{aligned}
$$

as claimed. Note that a priori the expression on RHS of the first line above should be a sum over all possible permutations of $\left\{v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n}\right\}$. However, since $d \pi_{1}\left(w_{j}\right)=0$, the only such permutations that yield nonzero terms are the permutations that preserve the subsets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$.
(b) By part (a),

$$
\Lambda^{\operatorname{top}}(T(M \times N))=\pi_{1}^{*}\left(\Lambda^{\operatorname{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\operatorname{top}} T N\right) \longrightarrow M \times N
$$

Since M is orientable, the line bundle $\pi_{1}^{*}\left(\Lambda^{\operatorname{top}} M\right)$ is again trivial and

$$
\Lambda^{\mathrm{top}}(T(M \times N))=\pi_{1}^{*}\left(\Lambda^{\mathrm{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right) \approx \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right)
$$

Since N is not orientable, the line bundle $\Lambda^{\text {top }} T N \longrightarrow N$ is not trivial. This does not mean that its pullback by every map is not trivial, but we will show that its pullback by π_{2} is indeed not trivial. In turn, since

$$
\Lambda^{\mathrm{top}}(T(M \times N)) \approx \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right)
$$

and $\pi_{2}^{*}\left(\Lambda^{\text {top }} T N\right)$ is not trivial, it follows that $M \times N$ is not orientable. To see that $\pi_{2}^{*}\left(\Lambda^{\operatorname{top}} T N\right)$ is not trivial, pick any $x \in M$ and define

$$
\iota_{x}: N \longrightarrow M \times N \quad \text { by } \quad \iota_{x}(y)=(x, y) .
$$

Since $\pi_{2} \circ \iota_{x}=\mathrm{id}_{N}$,

$$
\iota_{x}^{*}\left(\pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right)\right)=\iota_{x}^{*} \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right)=\left\{\pi_{2} \circ \iota_{x}\right\}^{*} \Lambda^{\mathrm{top}} T N=\mathrm{id}_{N}^{*} \Lambda^{\mathrm{top}} T N=\Lambda^{\mathrm{top}} T N
$$

Thus, $\iota_{x}^{*}\left(\pi_{2}^{*}\left(\Lambda^{\text {top }} T N\right)\right)$ is not trivial, which implies that $\pi_{2}^{*}\left(\Lambda^{\text {top }} T N\right)$ is not trivial either.
Here is another approach. Suppose $M \times N$ is orientable, i.e. there exists a nowhere-vanishing $\gamma \in E^{\operatorname{top}}(M \times N)$. We will construct a nowhere-vanishing $\beta \in E^{\operatorname{top}}(M \times N)$ by restricting γ to the vertical slice $x \times N$ and contracting the M-part of γ. Denote by k and n be the dimensions of M and N. Let

$$
v_{1}, \ldots, v_{k} \subset T_{x} M
$$

be a basis. For each $i=1, \ldots, k$, let

$$
X_{i} \in \Gamma\left(x \times N ;\left.T(M \times N)\right|_{x \times N}\right)
$$

be the (horizontal) vector field along $x \times N$ defined by

$$
X_{i}(x, y)=v_{i} \in T_{(x, y)}(X \times Y)=T_{x} X \oplus T_{y} Y
$$

These are smooth vector fields and thus

$$
\beta_{x} \equiv \iota_{X_{k}} \cdots \iota_{X_{1}} \gamma=\gamma\left(X_{1}, \ldots, X_{k}, \cdot, \ldots, \cdot\right) \in \Gamma\left(x \times N ;\left.\Lambda^{n} T(M \times N)\right|_{x \times N}\right)
$$

is a smooth n-form. If $y \in N$ and

$$
w_{1}, \ldots, w_{n} \subset T_{y} N
$$

is a basis for $T_{y} N$, then

$$
v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n} \subset T_{(x, y)}(X \times Y)=T_{x} X \oplus T_{y} Y
$$

is a basis. Since γ does not vanish at (x, y),

$$
\left.\beta_{x}\right|_{y}\left(w_{1}, \ldots, w_{n}\right)=\gamma\left(v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n}\right) \neq 0
$$

Thus, β_{x} does not vanish along $x \times N$. Furthermore, $\left.\iota_{v_{i}} \beta_{x}\right|_{y}=0$ for all i, i.e.

$$
\left.\beta_{x}\right|_{y} \in \Lambda^{n} T_{y}^{*} N \subset \Lambda_{(x, y)}^{n} T^{*}(M \times N)=\bigoplus_{p+q=n} \Lambda^{p} T_{x}^{*} M \otimes \Lambda^{q} T_{y}^{*} N .
$$

This means that

$$
\beta \equiv \iota_{x}^{*} \beta_{x} \in \Gamma\left(N ; \Lambda^{n} T^{*} N\right)=E^{n}(N)
$$

is a nowhere-zero top form on N, i.e N is orientable. Note that this argument also implies part (c), since the only fact we used about M is that it is nonempty.

Here is a third approach. We can assume that N is connected. Let

$$
p: \tilde{N} \longrightarrow N
$$

be the orientable (connected) double cover of N. It can be obtained by choosing a metric on $\Lambda^{\text {top }} T N$ and taking

$$
\tilde{N}=S\left(\Lambda^{\mathrm{top}} T N\right) ;
$$

see more below. Let g be the nontrivial deck transformation for p, so that

$$
N=\tilde{N} /\{\operatorname{id}, g\}
$$

Since \tilde{N} is orientable and N is not orientable, the diffeomorphism $g: \tilde{N} \longrightarrow \tilde{N}$ must be orientationreversing. By part (a), $M \times \tilde{N}$ is an orientable manifold. Furthermore,

$$
M \times N=M \times \tilde{N} /\left\{\operatorname{id}_{M} \times \operatorname{id}, \operatorname{id}_{M} \times g\right\} .
$$

Since id_{M} is orientation-preserving and g is orientation-reversing,

$$
\operatorname{id}_{M} \times g: M \times \tilde{N} \longrightarrow M \times \tilde{N}
$$

is orientation-reversing. Thus, $M \times N$ is not orientable.
We now show that the total space \tilde{N} of the double cover

$$
p: \tilde{N} \equiv S\left(\Lambda^{\mathrm{top}} T N\right) \longrightarrow N
$$

is orientable. Since p is a local diffeomorphism,

$$
d p: T \tilde{N} \longrightarrow p^{*} T N
$$

is an isomorphism of vector bundles. Thus,

$$
\Lambda^{\mathrm{top}} T \tilde{N} \approx \Lambda^{\mathrm{top}}\left(p^{*} T N\right) \approx p^{*}\left(\Lambda^{\mathrm{top}} T N\right)
$$

To show that the line bundle $p^{*}\left(\Lambda^{\text {top }} T N\right)$ is trivial (and thus \tilde{N} is orientable), we construct a nowhere-vanishing section of

$$
p^{*}\left(\Lambda^{\mathrm{top}} T N\right) \equiv\left\{(e, v) \in \tilde{N} \times \Lambda^{\mathrm{top}} T N: p(e)=\pi(v)\right\} \longrightarrow \tilde{N},
$$

where $\pi: \Lambda^{\operatorname{top}} T N \longrightarrow N$ is the bundle projection map. By definition,

$$
\begin{gathered}
\tilde{N}=\left\{e \in \Lambda^{\mathrm{top}} T N:|e|=1\right\} \quad \Longrightarrow \\
p^{*}\left(\Lambda^{\mathrm{top}} T N\right) \equiv\left\{(e, v) \in \Lambda^{\mathrm{top}} T N \times \Lambda^{\mathrm{top}} T N: \pi(v)=\pi(e)\right\} \longrightarrow \tilde{N}=\left\{e \in \Lambda^{\mathrm{top}} T N:|e|=1\right\} .
\end{gathered}
$$

We define a section of $p^{*}\left(\Lambda^{\text {top }} T N\right)$ over \tilde{N} by

$$
s(e)=(e, e) .
$$

This section does not vanish.
(c) We will show that the line bundle

$$
\Lambda^{\operatorname{top}}(T(M \times N))=\pi_{1}^{*}\left(\Lambda^{\operatorname{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\mathrm{top}} T N\right) \longrightarrow M \times N
$$

is not trivial by showing that its pullback by ι_{x} is again not trivial. This implies that $M \times N$ is not orientable. Given $x \in M$, let

$$
f_{x}: N \longrightarrow M, \quad f_{x}(y)=x,
$$

be the constant map sending N to x. Since $\pi_{1} \circ \iota_{x}=f_{x}$,

$$
\iota_{x}^{*} \pi_{1}^{*}\left(\Lambda^{\mathrm{top}} T M\right)=\left\{\pi_{1} \circ \iota_{x}\right\}^{*}\left(\Lambda^{\mathrm{top}} T M\right)=f_{x}^{*}\left(\Lambda^{\mathrm{top}} T M\right)=N \times\left(\Lambda^{\mathrm{top}} T M\right)_{x}
$$

is the trivial line bundle. Thus,

$$
\begin{aligned}
\iota_{x}^{*}\left(\pi_{1}^{*}\left(\Lambda^{\operatorname{top}} T M\right) \otimes \pi_{2}^{*}\left(\Lambda^{\operatorname{top}} T N\right)\right) & =\iota_{x}^{*}\left(\pi_{1}^{*}\left(\Lambda^{\operatorname{top}} T M\right)\right) \otimes \iota_{x}^{*}\left(\pi_{2}^{*}\left(\Lambda^{\operatorname{top}} T N\right)\right) \\
& =(N \times \mathbb{R}) \otimes \Lambda^{\operatorname{top}} T N \approx \Lambda^{\operatorname{top}} T N .
\end{aligned}
$$

Since N is not orientable, the line bundle $\Lambda^{\text {top }} T N$ is not trivial as needed.
Alternatively, we can assume that M is connected. Let

$$
p: \tilde{M} \longrightarrow M
$$

be the orientable (connected) double cover of M similarly to part (b). Then,

$$
p \times \mathrm{id}: \tilde{M} \times N \longrightarrow M \times N
$$

is a covering projection. Since $\tilde{M} \times N$ is not orientable by part (b), $M \times N$ is not orientable either (a nowhere-vanishing top form on the base induces a nowhere-vanishing top form on the total space of a covering map (but not conversely)).

