MAT 531: Topology&Geometry, II Spring 2011

Midterm Solutions

Problem 1 (15pts)

Suppose M is a smooth manifold, $X, Y \in \Gamma(M; TM)$ are smooth vector fields on M, and $g \in C^{\infty}(M)$ is a smooth function on M. Show directly from the definition that

$$[gX,Y] = g[X,Y] - Y(g)X.$$

(You can assume that $[\cdot, \cdot]$ is whatever object it is supposed to be, but do state what you are taking it to be.)

By definition, the Lie bracket [X, Y] of two smooth vector fields X and Y is another smooth vector field on M, i.e. an element of $\Gamma(M; TM)$. In particular,

$$[gX,Y],g[X,Y] - Y(g)X: C^{\infty}(M) \longrightarrow C^{\infty}(M)$$

are linear maps. They are given by

$$\begin{split} [gX,Y]f &\equiv \{gX\}(Yf) - Y(gXf) = \{gX\}(Yf) - \left((Yg)(Xf) + gY(Xf)\right) \\ &= g \cdot \left(X(Yf) - Y(Xf)\right) - (Yg)(Xf) \\ \left\{g[X,Y] - Y(g)X\}(f) &\equiv g[X,Y](f) - Y(g)X(f) = g \cdot \left(X(Yf) - Y(Xf)\right) - (Yg)(Xf). \end{split}$$

The second equality on the first line holds because Y is a derivation on $C^{\infty}(M)$. Since the two vector fields act in the same way on all functions, they are equal.

Problem 2 (20pts)

Let $f: M \longrightarrow N$ be a smooth surjective map.

- (a) Suppose f is a submersion $(d_p f \text{ is onto for all } p \in M)$. Show that a map $h: N \longrightarrow \mathbb{R}$ is smooth if and only if the map $h \circ f: M \longrightarrow \mathbb{R}$ is smooth.
- (b) Which of the two implications can fail if f is not assumed to be a submersion? Give an example.

(a) If $h: N \longrightarrow \mathbb{R}$ is a smooth map, then so is $h \circ f: M \longrightarrow \mathbb{R}$, because a composition of smooth maps is smooth. Suppose $h \circ f: M \longrightarrow \mathbb{R}$ is a smooth map and $q \in N$. Choose any point $p \in f^{-1}(q)$; such a point exists because f is surjective. By the local structure of submersions, there exist smooth charts $\varphi: U \longrightarrow \mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^k$ around p and $\psi: V \longrightarrow \mathbb{R}^n$ around q so that $\pi_1 \circ \varphi = \psi \circ f$, where $\pi_1: \mathbb{R}^n \times \mathbb{R}^k \longrightarrow \mathbb{R}^n$ is the projection map. Thus,

$$h \circ \psi^{-1} = h \circ \psi^{-1} \circ \pi_1 \big|_{\mathbb{R}^n \times 0} = h \circ f \circ \varphi^{-1} \big|_{\mathbb{R}^n \times 0} \colon \mathbb{R}^n \times 0 \longrightarrow \mathbb{R} \,.$$

Since $h \circ f \circ \varphi^{-1} : \mathbb{R}^n \times \mathbb{R}^k \longrightarrow \mathbb{R}$ is a smooth map (because $h \circ f : M \longrightarrow \mathbb{R}$ is smooth and $\varphi : U \longrightarrow \mathbb{R}^m$ is a smooth chart), its restriction to the smooth submanifold $\mathbb{R}^n \times 0$ is smooth. Thus, h is a smooth map on N (since for every point $q \in N$, there exists a smooth chart $\psi : V \longrightarrow \mathbb{R}^n$ so that $h \circ \psi^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}$ is smooth).

(b) If $h: N \longrightarrow \mathbb{R}$ is a smooth map, then so is $h \circ f: M \longrightarrow \mathbb{R}$, whether or not f is a submersion (because a composition of smooth maps is smooth). However, the converse need not hold if h is not a submersion. For example, let $M = N = \mathbb{R}$ (with the standard smooth structure),

$$f: M \longrightarrow N, \quad t \longrightarrow t^3, \qquad h: N \longrightarrow \mathbb{R}, \quad t \longrightarrow t^{1/3}$$

The maps $f: M \longrightarrow N$ and $h \circ f = id_{\mathbb{R}}: M \longrightarrow \mathbb{R}$ are then smooth, f is surjective, but $h: N \longrightarrow \mathbb{R}$ is not smooth.

Problem 3 (20pts)

Let $\alpha = dx_1 + f dx_2$ be a smooth 1-form on \mathbb{R}^3 (so $f \in C^{\infty}(\mathbb{R}^3)$). Show that for every $p \in \mathbb{R}^3$ there exists a diffeomorphism

$$\varphi = (y_1, y_2, y_3) \colon U \longrightarrow V$$

from a neighborhood U of p to an open subset V of \mathbb{R}^3 such that $\alpha|_U = dy_1$ if and only if f does not depend on x_1 or x_3 (depends on x_2 only).

If $\varphi = (y_1, y_2, y_3) : U \longrightarrow V$ is a chart on \mathbb{R}^3 such that $\alpha|_U = dy_1$, then

$$(\mathrm{d}\alpha)|_U = \mathrm{d}(\alpha|_U) = \mathrm{d}(\mathrm{d}y_1) = \mathrm{d}^2 y_1 = 0.$$

Thus, if for every $p \in \mathbb{R}^3$ there exists a diffeomorphism $\varphi = (y_1, y_2, y_3) : U \longrightarrow V$ from a neighborhood U of p to an open subset V of \mathbb{R}^3 such that $\alpha|_U = dy_1$, then

$$0 = \mathrm{d}\alpha = \mathrm{d}f \wedge \mathrm{d}x_2 = \frac{\partial f}{\partial x_1} \mathrm{d}x_1 \wedge \mathrm{d}x_2 + \frac{\partial f}{\partial x_3} \mathrm{d}x_3 \wedge \mathrm{d}x_2.$$

Thus, the partials of f with respect to x_1 and x_3 vanish identically and so f depends only on x_2 .

Conversely, suppose $f = f(x_2)$ depends only on x_2 . Let $F(x) = \int_0^x f(t) dt$, so that $\alpha = d(x_1 + F(x_2))$. Define

$$\varphi = (y_1, y_2, y_3) \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 by $y_1 = x_1 + F(x_2), \quad y_2 = x_2, \quad y_3 = x_3$

This is a smooth bijective map. Its Jacobian,

$$\left(\begin{array}{rrrr} 1 & f(x_2) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)$$

is everywhere invertible. Thus, φ is a required diffeomorphism that works for all $p \in \mathbb{R}^3$.

The Frobenius Theorem can also be used to obtain the latter implication. Since α is nowhere zero, it determines a line subbundle $W \subset T^* \mathbb{R}^3$; any section of this subbundle has the form $h\alpha$ for some $h \in C^{\infty}(M)$. Since $d\alpha = 0$ (under the assumption that g depends only on x_2),

$$d(h\alpha) = dh \wedge \alpha + hd\alpha = dh \wedge \alpha \qquad \Longrightarrow \qquad d \colon \Gamma(\mathbb{R}^3; W) \longrightarrow \Gamma(\mathbb{R}^3; W \wedge T^* \mathbb{R}^3) \subset E^2(\mathbb{R}^3).$$

So, the assumption in the second, differential-form, version of Frobenius Theorem is satisfied. Thus, for every $p \in \mathbb{R}^3$ there exists a smooth chart $\varphi = (y_1, y_2, y_3) : U \longrightarrow \mathbb{R}^3$ from a neighborhood U of pto an open subset V of \mathbb{R}^3 such that the tangent spaces to the vertical slices $\varphi^{-1}(y_1 \times \mathbb{R}^2)$ are the kernels of α . Thus, $\alpha|_U = g dy_1$ for some $g \in C^{\infty}(U)$, as the tangent spaces to the slices are spanned by the coordinate vectors $\partial/\partial y_2$ and $\partial/\partial y_3$. Since $d\alpha = 0$,

$$0 = d(\alpha|_U) = d(gdy_1) = \frac{\partial g}{\partial y_2}dy_2 \wedge dy_1 + \frac{\partial g}{\partial y_3}dy_3 \wedge dy_1$$

Thus, the partials of $g \circ \varphi^{-1}$ with respect to y_2 and y_3 vanish identically and so

$$g = h \circ y_1 : \mathbb{R}^3 \longrightarrow \mathbb{R}$$

for some $h \in C^{\infty}(\mathbb{R})$. Define $H : \mathbb{R} \longrightarrow \mathbb{R}$ by $H(y) = \int_{0}^{y} h(t) dt$ so that $\alpha|_{U} = y_{1}^{*} dH$. Since α is nowhere 0, h is nowhere 0 and thus $H : \mathbb{R} \longrightarrow \mathbb{R}$ is a diffeomorphism onto an open subset of \mathbb{R} . It follows that

$$\psi = (z_1, z_2, z_3) \equiv (H \circ y_1, y_2, y_3) \colon U \longrightarrow \mathbb{R}^3$$

is a smooth chart p such that $\alpha|_U = dz_1$.

Problem 4 (20pts)

Let M and N be smooth nonempty manifolds and $\pi_1: M \times N \longrightarrow M$ and $\pi_2: M \times N \longrightarrow N$ the projection maps. Show directly from the definitions that the homomorphism

$$\Phi \colon H^1_{deR}(M) \oplus H^1_{deR}(N) \longrightarrow H^1_{deR}(M \times N), \qquad \left([\alpha], [\beta] \right) \longrightarrow \left[\pi_1^* \alpha + \pi_2^* \beta \right],$$

is well-defined and injective.

If $\alpha \in E^1(M)$, $\beta \in E^1(N)$, $d\alpha = 0$, and $d\beta = 0$, then

$$d(\pi_1^*\alpha + \pi_2^*\beta) = d\pi_1^*\alpha + d\pi_2^*\beta = \pi_1^*d\alpha + \pi_2^*d\beta = \pi_1^*0 + \pi_2^*0 = 0;$$

thus, the one-form $\pi_1^* \alpha + \pi_2^* \beta$ on $M \times N$ is closed and so determines a class in $H^1_{deR}(M \times N)$. If in addition

$$\alpha' \in E^1(M), \quad \beta' \in E^1(N), \quad \mathrm{d}\alpha' = 0, \quad \mathrm{d}\beta' = 0, \quad [\alpha] = [\alpha'] \in H^1_{deR}(M), \quad [\beta] = [\beta'] \in H^1_{deR}(N),$$

then $\alpha' = \alpha + df$ for some $f \in C^{\infty}(M)$ and $\beta' = \beta + dg$ for some $g \in C^{\infty}(N)$. Thus,

$$\pi_1^* \alpha' + \pi_2^* \beta' = \pi_1^* \alpha + \pi_1^* \mathrm{d}f + \pi_2^* \beta + \pi_2^* \mathrm{d}g = \pi_1^* \alpha + \pi_2^* \beta + \mathrm{d}(\pi_1^* f + \pi_2^* g)$$

So $[\pi_1^*\alpha' + \pi_2^*\beta'] = [\pi_1^*\alpha + \pi_2^*\beta] \in H^1_{deR}(M \times N)$, i.e. the map Φ is well-defined. It is a homomorphism because the map

$$\Phi \colon E^1(M) \oplus E^1(N) \longrightarrow E^1(M \times N), \qquad (\alpha, \beta) \longrightarrow \pi_1^* \alpha + \pi_2^* \beta,$$

is.

It remains to show that this homomorphism is injective. Let $p \in M$ and $q \in N$ be any points and

$$\iota_p\colon N \longrightarrow M \times N, \ y \longrightarrow (p,y), \qquad \iota_q\colon M \longrightarrow M \times N, \ x \longrightarrow (x,q),$$

inclusions of N and M as vertical and horizontal slices, respectively. In particular,

$$\pi_1 \circ \iota_q = \mathrm{id}_M, \qquad \pi_2 \circ \iota_p = \mathrm{id}_N,$$

while $\pi_1 \circ \iota_p \colon N \longrightarrow M$ and $\pi_2 \circ \iota_q \colon M \longrightarrow N$ are constant maps. Suppose $\alpha \in E^1(M)$, $\beta \in E^1(N)$, $d\alpha = 0$, $d\beta = 0$, and

$$\left[\pi_1^*\alpha + \pi_2^*\beta\right] = 0 \in H^1_{deR}(M \times N)$$

Then, there exists $h \in C^{\infty}(M \times N)$ such that

$$\pi_1^* \alpha + \pi_2^* \beta = \mathrm{d}h \implies \mathrm{d}(h \circ \iota_q) = \iota_q^* \mathrm{d}h = \iota_q^* \pi_1^* \alpha + \iota_q^* \pi_2^* \beta = (\pi_1 \circ \iota_q)^* \alpha + (\pi_2 \circ \iota_q)^* \beta = \mathrm{id}_M^* \alpha + 0 = \alpha,$$
$$\implies \mathrm{d}(h \circ \iota_p) = \iota_p^* \mathrm{d}h = \iota_p^* \pi_1^* \alpha + \iota_p^* \pi_2^* \beta = (\pi_1 \circ \iota_p)^* \alpha + (\pi_2 \circ \iota_p)^* \beta = 0 + \mathrm{id}_N^* \beta = \beta.$$

Thus, $[\alpha] = 0 \in H^1_{deR}(M)$, $[\beta] = 0 \in H^1_{deR}(N)$, and so Φ is injective.

Note 1: If M and N are connected, the homomorphism Φ is also surjective and thus an isomorphism. Let $p \in M$ and $q \in M$ be any points. For all $x \in M$ and $y \in N$, choose smooth paths

$$\gamma_x \colon [a_x, b_x] \longrightarrow M, \quad \gamma_y \colon [c_y, d_y] \longrightarrow N \quad \text{s.t.} \quad \gamma_x(a_x) = p, \quad \gamma_x(b_x) = x, \quad \gamma_y(c_y) = q, \quad \gamma_y(d_y) = y.$$

Suppose $\omega \in E^1(M \times N)$, $d\omega = 0$. By Stokes Theorem I (for singular simplicies applied twice),

$$0 = \int_{\gamma_x \times \gamma_y} d(\omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega) = \int_{\partial(\gamma_x \times \gamma_y)} (\omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega)$$
$$= \int_{\iota_q \circ \gamma_x + \iota_x \circ \gamma_y - \iota_y \circ \gamma_x - \iota_p \circ \gamma_y} (\omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega).$$

We define a function $h: M \times N \longrightarrow \mathbb{R}$ by

$$h(x,y) \equiv \int_{\gamma_y} \left(\iota_x^* \omega - \iota_x^* \pi_2^* \iota_p^* \omega \right) = \int_{\gamma_x} \left(\iota_y^* \omega - \iota_y^* \pi_1^* \iota_q^* \omega \right).$$

The equality above follows from the preceding displayed expression. By the first expression for h(x, y), it does not depend on the choice of γ_x ; by the second, it does not depend on the choice of γ_x . Thus, h(x, y) is independent of the choices of γ_x and γ_y and thus defines a smooth function on $M \times N$ (because ω is a smooth form and γ_x and γ_y can be varied smoothly with x and y locally). By the independence of h of γ_y and the first expression for h above,

$$\iota_x^* \mathrm{d}h = \mathrm{d}(\iota_x^* h) = \iota_x^* \omega - \iota_x^* \pi_2^* \iota_p^* \omega = \iota_x^* \left(\omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega \right) \qquad \forall x \in M.$$

By the independence of h of γ_x and the second expression for h above,

$$\iota_y^* \mathrm{d}h = \mathrm{d}(\iota_y^* h) = \iota_y^* \omega - \iota_y^* \pi_1^* \iota_q^* \omega = \iota_y^* \left(\omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega \right) \qquad \forall y \in N.$$

Since the homomorphism

$$\iota_y^* \oplus \iota_x^* \colon T^*_{(x,y)}(M \times N) \longrightarrow T^*_x M \oplus T^*_y N$$

is an isomorphism for all $(x, y) \in M \times N$, it follows that

$$dh = \omega - \pi_1^* \iota_q^* \omega - \pi_2^* \iota_p^* \omega \implies [\omega] = \Phi\left([\iota_q^* \omega, \iota_p^* \omega]\right) \in H^1_{deR}(M \times N)$$

Thus, the homomorphism Φ is indeed surjective.

Note 2: The solution to the original question readily extends to show that the homomorphism

$$\Phi_k \colon H^k_{deR}(M) \oplus H^k_{deR}(N) \longrightarrow H^k_{deR}(M \times N), \qquad \left([\alpha], [\beta] \right) \longrightarrow \left[\pi_1^* \alpha + \pi_2^* \beta \right],$$

is well-defined and injective for all $k \ge 1$. However, Φ_k need not be surjective for k > 1 even if M and N are connected. In fact, by the Kunneth formula, the homomorphism

$$\bigoplus_{\substack{i+j=k\\i,j>0}} H^i_{deR}(M) \times H^j_{deR}(N) \longrightarrow H^k_{deR}(M \times N), \qquad [\alpha] \otimes [\beta] \longrightarrow \left[\pi_1^* \alpha \wedge \pi_2^* \beta\right],$$

is an isomorphism if M and N are compact; this will be proved in Chapter 6 using Hodge Theory.

Problem 5 (25pts)

Let $V, W \longrightarrow M$ be smooth vector bundles over a smooth manifold M.

- (a) Suppose V is orientable. Show that W is orientable if and only if $V \oplus W$ is.
- (b) Give an example of $V, W \longrightarrow M$ non-orientable so that $V \oplus W$ is orientable.
- (c) Give an example of $V, W \longrightarrow M$ non-orientable so that $V \oplus W$ is non-orientable.

For (b) and (c), specify M, V, and W and justify your answer; M need not be the same.

(a) A vector bundle is orientable if and only if its top exterior power is a trivial line bundle. Since V is orientable,

$$\Lambda^{\operatorname{top}}(V \oplus W) \approx \Lambda^{\operatorname{top}} V \otimes \Lambda^{\operatorname{top}} W \approx \tau_1 \otimes \Lambda^{\operatorname{top}} W \approx \Lambda^{\operatorname{top}} W.$$

Thus, the line bundle $\Lambda^{\text{top}}(V \oplus W)$ is trivial (and the vector bundle $V \oplus W$ is orientable) if and only if the line bundle $\Lambda^{\text{top}}W$ is trivial (and the vector bundle W is orientable).

For (b) and (c), recall that the tautological line bundle $\gamma_1 \longrightarrow \mathbb{R}P^1$ is not orientable; this is also the Mobius Band line bundle.

(b) If $V \longrightarrow M$ is any vector bundle, the vector bundle $V \oplus V \longrightarrow M$ is orientable because

$$\Lambda^{\mathrm{top}}(V \oplus V) \approx \Lambda^{\mathrm{top}} V \otimes \Lambda^{\mathrm{top}} V = (\Lambda^{\mathrm{top}} V)^{\otimes 2} \approx \tau_1 \, ,$$

since the tensor product of any real line bundle with itself is trivial. Since $\Lambda^{\text{top}}(V \oplus V)$ is trivial, $V \oplus V$ is orientable. Another way to see this is to note that the vector bundle $V \oplus V \longrightarrow M$ admits a complex structure:

$$i: V \oplus V \longrightarrow V \oplus V, \qquad (v, w) \longrightarrow (-w, v).$$

Since $(V \oplus V, i)$ is a complex vector bundle, $V \oplus V$ is orientable as a vector bundle.

Thus, as an example, we can take $V = W = \gamma_1 \longrightarrow \mathbb{R}P^1$.

(c) If $V \longrightarrow M$ and $W \longrightarrow N$ are non-orientable vector bundles, then neither are the vector bundles

$$\pi_1^*V, \pi_2^*W, V \times W = \pi_1^*V \oplus \pi_2^*W \longrightarrow M \times N,$$

where $\pi_1, \pi_2: M \times N \longrightarrow M, N$ are the two projection maps. Here is why. Pick $p \in M$ and $q \in N$ and let

$$\iota_1 \colon M \longrightarrow M \times N, \quad x \longrightarrow (x,q), \qquad \iota_2 \colon N \longrightarrow M \times N, \quad y \longrightarrow (p,y),$$

be inclusions as horizontal and vertical slices. Since $\pi_1 \circ \iota_1 = \mathrm{id}_M$,

$$\iota_1^* \pi_1^* V = \{ \pi_1 \circ \iota_1 \}^* V = \mathrm{id}_M^* V = V \longrightarrow M$$

is a non-orientable vector bundle; thus, $\pi_1^* V \longrightarrow M \times N$ is also a non-orientable vector bundle. Similarly, $\iota_2^* \pi_2^* W = W \longrightarrow N$, and $\pi_2^* W \longrightarrow M \times N$ is a non-orientable vector bundle as well. On the other hand, $\pi_2 \circ \iota_1 \colon M \longrightarrow N$ is the constant map sending M to $q \in N$ and so

$$\iota_1^* \pi_2^* W = \{\pi_2 \circ \iota_1\}^* W \approx M \times W_q \longrightarrow M$$

is a trivial vector bundle and thus orientable. By part (a), the vector bundle

$$\iota_1^*(\pi_1^*V \oplus \pi_2^*W) = \iota_1^*\pi_1^*V \oplus \iota_1^*\pi_2^*W \longrightarrow M$$

is not orientable (because $\iota_1^* \pi_1^* V$ is not orientable, while $\iota_1^* \pi_2^* W$ is orientable). Therefore,

$$\pi_1^* V \oplus \pi_2^* W \longrightarrow M \times N$$

is a non-orientable vector bundle.

Thus, as an example, we can take

$$V = \pi_1^* \gamma_1, W = \pi_2^* \gamma_1 \longrightarrow \mathbb{R}P^1 \times \mathbb{R}P^1,$$

where $\pi_1, \pi_2: \mathbb{R}P^1 \times \mathbb{R}P^1 \longrightarrow \mathbb{R}P^1$ are the projection maps.