MAT 531: Topology\&Geometry, II Spring 2011

Midterm Solutions

Problem 1 (15pts)
Suppose M is a smooth manifold, $X, Y \in \Gamma(M ; T M)$ are smooth vector fields on M, and $g \in C^{\infty}(M)$ is a smooth function on M. Show directly from the definition that

$$
[g X, Y]=g[X, Y]-Y(g) X .
$$

(You can assume that $[\cdot, \cdot]$ is whatever object it is supposed to be, but do state what you are taking it to be.)

By definition, the Lie bracket $[X, Y]$ of two smooth vector fields X and Y is another smooth vector field on M, i.e. an element of $\Gamma(M ; T M)$. In particular,

$$
[g X, Y], g[X, Y]-Y(g) X: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

are linear maps. They are given by

$$
\begin{aligned}
& {[g X, Y] f \equiv\{g X\}(Y f)-Y(g X f) }=\{g X\}(Y f)-((Y g)(X f)+g Y(X f)) \\
&=g \cdot(X(Y f)-Y(X f))-(Y g)(X f) \\
&\{g[X, Y]-Y(g) X\}(f) \equiv g[X, Y](f)-Y(g) X(f)=g \cdot(X(Y f)-Y(X f))-(Y g)(X f)
\end{aligned}
$$

The second equality on the first line holds because Y is a derivation on $C^{\infty}(M)$. Since the two vector fields act in the same way on all functions, they are equal.

Problem 2 (20pts)

Let $f: M \longrightarrow N$ be a smooth surjective map.
(a) Suppose f is a submersion ($\mathrm{d}_{p} f$ is onto for all $p \in M$). Show that a map $h: N \longrightarrow \mathbb{R}$ is smooth if and only if the map $h \circ f: M \longrightarrow \mathbb{R}$ is smooth.
(b) Which of the two implications can fail if f is not assumed to be a submersion? Give an example.
(a) If $h: N \longrightarrow \mathbb{R}$ is a smooth map, then so is $h \circ f: M \longrightarrow \mathbb{R}$, because a composition of smooth maps is smooth. Suppose $h \circ f: M \longrightarrow \mathbb{R}$ is a smooth map and $q \in N$. Choose any point $p \in f^{-1}(q)$; such a point exists because f is surjective. By the local structure of submersions, there exist smooth charts $\varphi: U \longrightarrow \mathbb{R}^{m}=\mathbb{R}^{n} \times \mathbb{R}^{k}$ around p and $\psi: V \longrightarrow \mathbb{R}^{n}$ around q so that $\pi_{1} \circ \varphi=\psi \circ f$, where $\pi_{1}: \mathbb{R}^{n} \times \mathbb{R}^{k} \longrightarrow \mathbb{R}^{n}$ is the projection map. Thus,

$$
h \circ \psi^{-1}=\left.h \circ \psi^{-1} \circ \pi_{1}\right|_{\mathbb{R}^{n} \times 0}=\left.h \circ f \circ \varphi^{-1}\right|_{\mathbb{R}^{n} \times 0}: \mathbb{R}^{n} \times 0 \longrightarrow \mathbb{R} .
$$

Since $h \circ f \circ \varphi^{-1}: \mathbb{R}^{n} \times \mathbb{R}^{k} \longrightarrow \mathbb{R}$ is a smooth map (because $h \circ f: M \longrightarrow \mathbb{R}$ is smooth and $\varphi: U \longrightarrow \mathbb{R}^{m}$ is a smooth chart), its restriction to the smooth submanifold $\mathbb{R}^{n} \times 0$ is smooth. Thus, h is a smooth map on N (since for every point $q \in N$, there exists a smooth chart $\psi: V \longrightarrow \mathbb{R}^{n}$ so that $h \circ \psi^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is smooth).
(b) If $h: N \longrightarrow \mathbb{R}$ is a smooth map, then so is $h \circ f: M \longrightarrow \mathbb{R}$, whether or not f is a submersion (because a composition of smooth maps is smooth). However, the converse need not hold if h is not a submersion. For example, let $M=N=\mathbb{R}$ (with the standard smooth structure),

$$
f: M \longrightarrow N, \quad t \longrightarrow t^{3}, \quad h: N \longrightarrow \mathbb{R}, \quad t \longrightarrow t^{1 / 3} .
$$

The maps $f: M \longrightarrow N$ and $h \circ f=\operatorname{id}_{\mathbb{R}}: M \longrightarrow \mathbb{R}$ are then smooth, f is surjective, but $h: N \longrightarrow \mathbb{R}$ is not smooth.

Problem 3 (20pts)

Let $\alpha=\mathrm{d} x_{1}+f \mathrm{~d} x_{2}$ be a smooth 1-form on $\mathbb{R}^{3}\left(\right.$ so $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$). Show that for every $p \in \mathbb{R}^{3}$ there exists a diffeomorphism

$$
\varphi=\left(y_{1}, y_{2}, y_{3}\right): U \longrightarrow V
$$

from a neighborhood U of p to an open subset V of \mathbb{R}^{3} such that $\left.\alpha\right|_{U}=\mathrm{d} y_{1}$ if and only if f does not depend on x_{1} or x_{3} (depends on x_{2} only).

If $\varphi=\left(y_{1}, y_{2}, y_{3}\right): U \longrightarrow V$ is a chart on \mathbb{R}^{3} such that $\left.\alpha\right|_{U}=\mathrm{d} y_{1}$, then

$$
\left.(\mathrm{d} \alpha)\right|_{U}=\mathrm{d}\left(\left.\alpha\right|_{U}\right)=\mathrm{d}\left(\mathrm{~d} y_{1}\right)=\mathrm{d}^{2} y_{1}=0 .
$$

Thus, if for every $p \in \mathbb{R}^{3}$ there exists a diffeomorphism $\varphi=\left(y_{1}, y_{2}, y_{3}\right): U \longrightarrow V$ from a neighborhood U of p to an open subset V of \mathbb{R}^{3} such that $\left.\alpha\right|_{U}=\mathrm{d} y_{1}$, then

$$
0=\mathrm{d} \alpha=\mathrm{d} f \wedge \mathrm{~d} x_{2}=\frac{\partial f}{\partial x_{1}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}+\frac{\partial f}{\partial x_{3}} \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{2}
$$

Thus, the partials of f with respect to x_{1} and x_{3} vanish identically and so f depends only on x_{2}.
Conversely, suppose $f=f\left(x_{2}\right)$ depends only on x_{2}. Let $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$, so that $\alpha=\mathrm{d}\left(x_{1}+F\left(x_{2}\right)\right)$. Define

$$
\varphi=\left(y_{1}, y_{2}, y_{3}\right): \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \quad \text { by } \quad y_{1}=x_{1}+F\left(x_{2}\right), \quad y_{2}=x_{2}, \quad y_{3}=x_{3} .
$$

This is a smooth bijective map. Its Jacobian,

$$
\left(\begin{array}{ccc}
1 & f\left(x_{2}\right) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is everywhere invertible. Thus, φ is a required diffeomorphism that works for all $p \in \mathbb{R}^{3}$.

The Frobenius Theorem can also be used to obtain the latter implication. Since α is nowhere zero, it determines a line subbundle $W \subset T^{*} \mathbb{R}^{3}$; any section of this subbundle has the form $h \alpha$ for some $h \in C^{\infty}(M)$. Since d $\alpha=0$ (under the assumption that g depends only on x_{2}),

$$
\mathrm{d}(h \alpha)=\mathrm{d} h \wedge \alpha+h \mathrm{~d} \alpha=\mathrm{d} h \wedge \alpha \quad \Longrightarrow \quad \mathrm{~d}: \Gamma\left(\mathbb{R}^{3} ; W\right) \longrightarrow \Gamma\left(\mathbb{R}^{3} ; W \wedge T^{*} \mathbb{R}^{3}\right) \subset E^{2}\left(\mathbb{R}^{3}\right)
$$

So, the assumption in the second, differential-form, version of Frobenius Theorem is satisfied. Thus, for every $p \in \mathbb{R}^{3}$ there exists a smooth chart $\varphi=\left(y_{1}, y_{2}, y_{3}\right): U \longrightarrow \mathbb{R}^{3}$ from a neighborhood U of p to an open subset V of \mathbb{R}^{3} such that the tangent spaces to the vertical slices $\varphi^{-1}\left(y_{1} \times \mathbb{R}^{2}\right)$ are the kernels of α. Thus, $\left.\alpha\right|_{U}=g \mathrm{~d} y_{1}$ for some $g \in C^{\infty}(U)$, as the tangent spaces to the slices are spanned by the coordinate vectors $\partial / \partial y_{2}$ and $\partial / \partial y_{3}$. Since $\mathrm{d} \alpha=0$,

$$
0=\mathrm{d}\left(\left.\alpha\right|_{U}\right)=\mathrm{d}\left(g \mathrm{~d} y_{1}\right)=\frac{\partial g}{\partial y_{2}} \mathrm{~d} y_{2} \wedge \mathrm{~d} y_{1}+\frac{\partial g}{\partial y_{3}} \mathrm{~d} y_{3} \wedge \mathrm{~d} y_{1}
$$

Thus, the partials of $g \circ \varphi^{-1}$ with respect to y_{2} and y_{3} vanish identically and so

$$
g=h \circ y_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}
$$

for some $h \in C^{\infty}(\mathbb{R})$. Define $H: \mathbb{R} \longrightarrow \mathbb{R}$ by $H(y)=\int_{0}^{y} h(t) \mathrm{d} t$ so that $\left.\alpha\right|_{U}=y_{1}^{*} \mathrm{~d} H$. Since α is nowhere $0, h$ is nowhere 0 and thus $H: \mathbb{R} \longrightarrow \mathbb{R}$ is a diffeomorphism onto an open subset of \mathbb{R}. It follows that

$$
\psi=\left(z_{1}, z_{2}, z_{3}\right) \equiv\left(H \circ y_{1}, y_{2}, y_{3}\right): U \longrightarrow \mathbb{R}^{3}
$$

is a smooth chart p such that $\left.\alpha\right|_{U}=\mathrm{d} z_{1}$.

Problem 4 (20pts)
Let M and N be smooth nonempty manifolds and $\pi_{1}: M \times N \longrightarrow M$ and $\pi_{2}: M \times N \longrightarrow N$ the projection maps. Show directly from the definitions that the homomorphism

$$
\Phi: H_{d e R}^{1}(M) \oplus H_{d e R}^{1}(N) \longrightarrow H_{d e R}^{1}(M \times N), \quad([\alpha],[\beta]) \longrightarrow\left[\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right]
$$

is well-defined and injective.
If $\alpha \in E^{1}(M), \beta \in E^{1}(N), \mathrm{d} \alpha=0$, and $\mathrm{d} \beta=0$, then

$$
\mathrm{d}\left(\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right)=\mathrm{d} \pi_{1}^{*} \alpha+\mathrm{d} \pi_{2}^{*} \beta=\pi_{1}^{*} \mathrm{~d} \alpha+\pi_{2}^{*} \mathrm{~d} \beta=\pi_{1}^{*} 0+\pi_{2}^{*} 0=0
$$

thus, the one-form $\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta$ on $M \times N$ is closed and so determines a class in $H_{d e R}^{1}(M \times N)$. If in addition

$$
\alpha^{\prime} \in E^{1}(M), \quad \beta^{\prime} \in E^{1}(N), \quad \mathrm{d} \alpha^{\prime}=0, \quad \mathrm{~d} \beta^{\prime}=0, \quad[\alpha]=\left[\alpha^{\prime}\right] \in H_{d e R}^{1}(M), \quad[\beta]=\left[\beta^{\prime}\right] \in H_{d e R}^{1}(N),
$$

then $\alpha^{\prime}=\alpha+\mathrm{d} f$ for some $f \in C^{\infty}(M)$ and $\beta^{\prime}=\beta+\mathrm{d} g$ for some $g \in C^{\infty}(N)$. Thus,

$$
\pi_{1}^{*} \alpha^{\prime}+\pi_{2}^{*} \beta^{\prime}=\pi_{1}^{*} \alpha+\pi_{1}^{*} \mathrm{~d} f+\pi_{2}^{*} \beta+\pi_{2}^{*} \mathrm{~d} g=\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta+\mathrm{d}\left(\pi_{1}^{*} f+\pi_{2}^{*} g\right) .
$$

So $\left[\pi_{1}^{*} \alpha^{\prime}+\pi_{2}^{*} \beta^{\prime}\right]=\left[\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right] \in H_{d e R}^{1}(M \times N)$, i.e. the map Φ is well-defined. It is a homomorphism because the map

$$
\Phi: E^{1}(M) \oplus E^{1}(N) \longrightarrow E^{1}(M \times N), \quad(\alpha, \beta) \longrightarrow \pi_{1}^{*} \alpha+\pi_{2}^{*} \beta,
$$

is.
It remains to show that this homomorphism is injective. Let $p \in M$ and $q \in N$ be any points and

$$
\iota_{p}: N \longrightarrow M \times N, \quad y \longrightarrow(p, y), \quad \iota_{q}: M \longrightarrow M \times N, \quad x \longrightarrow(x, q),
$$

inclusions of N and M as vertical and horizontal slices, respectively. In particular,

$$
\pi_{1} \circ \iota_{q}=\operatorname{id}_{M}, \quad \pi_{2} \circ \iota_{p}=\operatorname{id}_{N},
$$

while $\pi_{1} \circ \iota_{p}: N \longrightarrow M$ and $\pi_{2} \circ \iota_{q}: M \longrightarrow N$ are constant maps. Suppose $\alpha \in E^{1}(M), \beta \in E^{1}(N)$, $\mathrm{d} \alpha=0, \mathrm{~d} \beta=0$, and

$$
\left[\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right]=0 \in H_{d e R}^{1}(M \times N) .
$$

Then, there exists $h \in C^{\infty}(M \times N)$ such that

$$
\begin{aligned}
\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta=\mathrm{d} h & \Longrightarrow \mathrm{~d}\left(h \circ \iota_{q}\right)=\iota_{q}^{*} \mathrm{~d} h=\iota_{q}^{*} \pi_{1}^{*} \alpha+\iota_{q}^{*} \pi_{2}^{*} \beta=\left(\pi_{1} \circ \iota_{q}\right)^{*} \alpha+\left(\pi_{2} \circ \iota_{q}\right)^{*} \beta=\mathrm{id}_{M}^{*} \alpha+0=\alpha, \\
& \Longrightarrow \mathrm{d}\left(h \circ \iota_{p}\right)=\iota_{p}^{*} \mathrm{~d} h=\iota_{p}^{*} \pi_{1}^{*} \alpha+\iota_{p}^{*} \pi_{2}^{*} \beta=\left(\pi_{1} \circ \iota_{p}\right)^{*} \alpha+\left(\pi_{2} \circ \iota_{p}\right)^{*} \beta=0+\mathrm{id}_{N}^{*} \beta=\beta .
\end{aligned}
$$

Thus, $[\alpha]=0 \in H_{d e R}^{1}(M),[\beta]=0 \in H_{d e R}^{1}(N)$, and so Φ is injective.
Note 1: If M and N are connected, the homomorphism Φ is also surjective and thus an isomorphism. Let $p \in M$ and $q \in M$ be any points. For all $x \in M$ and $y \in N$, choose smooth paths

$$
\gamma_{x}:\left[a_{x}, b_{x}\right] \longrightarrow M, \quad \gamma_{y}:\left[c_{y}, d_{y}\right] \longrightarrow N \quad \text { s.t. } \quad \gamma_{x}\left(a_{x}\right)=p, \quad \gamma_{x}\left(b_{x}\right)=x, \quad \gamma_{y}\left(c_{y}\right)=q, \quad \gamma_{y}\left(d_{y}\right)=y
$$

Suppose $\omega \in E^{1}(M \times N), \mathrm{d} \omega=0$. By Stokes Theorem I (for singular simplicies applied twice),

$$
\begin{aligned}
0=\int_{\gamma_{x} \times \gamma_{y}} \mathrm{~d}\left(\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \iota_{p}^{*} \omega\right) & =\int_{\partial\left(\gamma_{x} \times \gamma_{y}\right)}\left(\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \iota_{p}^{*} \omega\right) \\
& =\int_{\iota q \circ \gamma_{x}+\iota_{x} \circ \gamma_{y}-\iota_{y} \circ \gamma_{x}-\iota_{p} \circ \gamma_{y}}\left(\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \stackrel{ }{p}_{*} \omega\right) .
\end{aligned}
$$

We define a function $h: M \times N \longrightarrow \mathbb{R}$ by

$$
h(x, y) \equiv \int_{\gamma_{y}}\left(\iota_{x}^{*} \omega-\iota_{x}^{*} \pi_{2}^{*} \iota_{p}^{*} \omega\right)=\int_{\gamma_{x}}\left(\iota_{y}^{*} \omega-\iota_{y}^{*} \pi_{1}^{*} \iota_{q}^{*} \omega\right) .
$$

The equality above follows from the preceding displayed expression. By the first expression for $h(x, y)$, it does not depend on the choice of γ_{x}; by the second, it does not depend on the choice of γ_{x}. Thus, $h(x, y)$ is independent of the choices of γ_{x} and γ_{y} and thus defines a smooth function on $M \times N$ (because ω is a smooth form and γ_{x} and γ_{y} can be varied smoothly with x and y locally). By the independence of h of γ_{y} and the first expression for h above,

$$
\iota_{x}^{*} \mathrm{~d} h=\mathrm{d}\left(\iota_{x}^{*} h\right)=\iota_{x}^{*} \omega-\iota_{x}^{*} \pi_{2}^{*} \iota_{p}^{*} \omega=\iota_{x}^{*}\left(\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \iota_{p}^{*} \omega\right) \quad \forall x \in M
$$

By the independence of h of γ_{x} and the second expression for h above,

$$
\iota_{y}^{*} \mathrm{~d} h=\mathrm{d}\left(\iota_{y}^{*} h\right)=\iota_{y}^{*} \omega-\iota_{y}^{*} \pi_{1}^{*} \iota_{q}^{*} \omega=\iota_{y}^{*}\left(\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \iota_{p}^{*} \omega\right) \quad \forall y \in N .
$$

Since the homomorphism

$$
\iota_{y}^{*} \oplus \iota_{x}^{*}: T_{(x, y)}^{*}(M \times N) \longrightarrow T_{x}^{*} M \oplus T_{y}^{*} N
$$

is an isomorphism for all $(x, y) \in M \times N$, it follows that

$$
\mathrm{d} h=\omega-\pi_{1}^{*} \iota_{q}^{*} \omega-\pi_{2}^{*} \iota_{p}^{*} \omega \quad \Longrightarrow \quad[\omega]=\Phi\left(\left[\iota_{q}^{*} \omega, \iota_{p}^{*} \omega\right]\right) \in H_{d e R}^{1}(M \times N) .
$$

Thus, the homomorphism Φ is indeed surjective.
Note 2: The solution to the original question readily extends to show that the homomorphism

$$
\Phi_{k}: H_{d e R}^{k}(M) \oplus H_{d e R}^{k}(N) \longrightarrow H_{d e R}^{k}(M \times N), \quad([\alpha],[\beta]) \longrightarrow\left[\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right]
$$

is well-defined and injective for all $k \geq 1$. However, Φ_{k} need not be surjective for $k>1$ even if M and N are connected. In fact, by the Kunneth formula, the homomorphism

$$
\bigoplus_{\substack{i+j=k \\ i, j \geq 0}} H_{d e R}^{i}(M) \times H_{d e R}^{j}(N) \longrightarrow H_{d e R}^{k}(M \times N), \quad[\alpha] \otimes[\beta] \longrightarrow\left[\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right]
$$

is an isomorphism if M and N are compact; this will be proved in Chapter 6 using Hodge Theory.

Problem 5 (25pts)

Let $V, W \longrightarrow M$ be smooth vector bundles over a smooth manifold M.
(a) Suppose V is orientable. Show that W is orientable if and only if $V \oplus W$ is.
(b) Give an example of $V, W \longrightarrow M$ non-orientable so that $V \oplus W$ is orientable.
(c) Give an example of $V, W \longrightarrow M$ non-orientable so that $V \oplus W$ is non-orientable.

For (b) and (c), specify M, V, and W and justify your answer; M need not be the same.
(a) A vector bundle is orientable if and only if its top exterior power is a trivial line bundle. Since V is orientable,

$$
\Lambda^{\mathrm{top}}(V \oplus W) \approx \Lambda^{\mathrm{top}} V \otimes \Lambda^{\mathrm{top}} W \approx \tau_{1} \otimes \Lambda^{\mathrm{top}} W \approx \Lambda^{\mathrm{top}} W
$$

Thus, the line bundle $\Lambda^{\text {top }}(V \oplus W)$ is trivial (and the vector bundle $V \oplus W$ is orientable) if and only if the line bundle $\Lambda^{\text {top }} W$ is trivial (and the vector bundle W is orientable).

For (b) and (c), recall that the tautological line bundle $\gamma_{1} \longrightarrow \mathbb{R} P^{1}$ is not orientable; this is also the Mobius Band line bundle.
(b) If $V \longrightarrow M$ is any vector bundle, the vector bundle $V \oplus V \longrightarrow M$ is orientable because

$$
\Lambda^{\mathrm{top}}(V \oplus V) \approx \Lambda^{\mathrm{top}} V \otimes \Lambda^{\mathrm{top}} V=\left(\Lambda^{\mathrm{top}} V\right)^{\otimes 2} \approx \tau_{1}
$$

since the tensor product of any real line bundle with itself is trivial. Since $\Lambda^{\mathrm{top}}(V \oplus V)$ is trivial, $V \oplus V$ is orientable. Another way to see this is to note that the vector bundle $V \oplus V \longrightarrow M$ admits a complex structure:

$$
\mathfrak{i}: V \oplus V \longrightarrow V \oplus V, \quad(v, w) \longrightarrow(-w, v) .
$$

Since $(V \oplus V, \mathfrak{i})$ is a complex vector bundle, $V \oplus V$ is orientable as a vector bundle.
Thus, as an example, we can take $V=W=\gamma_{1} \longrightarrow \mathbb{R} P^{1}$.
(c) If $V \longrightarrow M$ and $W \longrightarrow N$ are non-orientable vector bundles, then neither are the vector bundles

$$
\pi_{1}^{*} V, \pi_{2}^{*} W, V \times W=\pi_{1}^{*} V \oplus \pi_{2}^{*} W \longrightarrow M \times N
$$

where $\pi_{1}, \pi_{2}: M \times N \longrightarrow M, N$ are the two projection maps. Here is why. Pick $p \in M$ and $q \in N$ and let

$$
\iota_{1}: M \longrightarrow M \times N, \quad x \longrightarrow(x, q), \quad \iota_{2}: N \longrightarrow M \times N, \quad y \longrightarrow(p, y),
$$

be inclusions as horizontal and vertical slices. Since $\pi_{1} \circ \iota_{1}=\mathrm{id}_{M}$,

$$
\iota_{1}^{*} \pi_{1}^{*} V=\left\{\pi_{1} \circ \iota_{1}\right\}^{*} V=\mathrm{id}_{M}^{*} V=V \longrightarrow M
$$

is a non-orientable vector bundle; thus, $\pi_{1}^{*} V \longrightarrow M \times N$ is also a non-orientable vector bundle. Similarly, $\iota_{2}^{*} \pi_{2}^{*} W=W \longrightarrow N$, and $\pi_{2}^{*} W \longrightarrow M \times N$ is a non-orientable vector bundle as well. On the other hand, $\pi_{2} \circ \iota_{1}: M \longrightarrow N$ is the constant map sending M to $q \in N$ and so

$$
\iota_{1}^{*} \pi_{2}^{*} W=\left\{\pi_{2} \circ \iota_{1}\right\}^{*} W \approx M \times W_{q} \longrightarrow M
$$

is a trivial vector bundle and thus orientable. By part (a), the vector bundle

$$
\iota_{1}^{*}\left(\pi_{1}^{*} V \oplus \pi_{2}^{*} W\right)=\iota_{1}^{*} \pi_{1}^{*} V \oplus \iota_{1}^{*} \pi_{2}^{*} W \longrightarrow M
$$

is not orientable (because $\iota_{1}^{*} \Lambda_{1}^{*} V$ is not orientable, while $\iota_{1}^{*} \pi_{2}^{*} W$ is orientable). Therefore,

$$
\pi_{1}^{*} V \oplus \pi_{2}^{*} W \longrightarrow M \times N
$$

is a non-orientable vector bundle.

Thus, as an example, we can take

$$
V=\pi_{1}^{*} \gamma_{1}, W=\pi_{2}^{*} \gamma_{1} \longrightarrow \mathbb{R} P^{1} \times \mathbb{R} P^{1}
$$

where $\pi_{1}, \pi_{2}: \mathbb{R} P^{1} \times \mathbb{R} P^{1} \longrightarrow \mathbb{R} P^{1}$ are the projection maps.

