MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 8

Problem 1 (15pts)
Suppose X is a topological space and $\mathcal{P}=\left\{S_{U} ; \rho_{U, V}\right\}$ is a presheaf on X. Let

$$
\begin{aligned}
& \bar{S}_{U}=\left\{\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}: U_{\alpha} \subset U \text { open, } U=\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} ; f_{\alpha} \in S_{U_{\alpha}} ;\right. \\
& \left.\forall \alpha, \beta \in \mathcal{A}, p \in U_{\alpha} \cap U_{\beta} \exists W \subset U_{\alpha} \cap U_{\beta} \text { open s.t. } p \in W, \rho_{W, U_{\alpha}} f_{\alpha}=\rho_{W, U_{\beta}} f_{\beta}\right\} / \sim \\
& \text { where } \quad \begin{aligned}
&\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}} \sim\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}} \quad \text { if } \forall \alpha \in \mathcal{A}, \alpha^{\prime} \in \mathcal{A}^{\prime}, p \in U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime} \\
& \exists W \subset U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime} \quad \text { s.t. } p \in W, \rho_{W, U_{\alpha}} f_{\alpha}=\rho_{W, U_{\alpha^{\prime}}^{\prime}} f_{\alpha^{\prime}}^{\prime} .
\end{aligned}
\end{aligned}
$$

Whenever $U \subset V$ are open subsets of X, the homomorphisms $\rho_{U, V}$ induce homomorphisms

$$
\bar{\rho}_{U, V}: \bar{S}_{V} \longrightarrow \bar{S}_{U}, \quad\left[\left(V_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \longrightarrow\left[\left(V_{\alpha} \cap U, \rho_{V_{\alpha} \cap U, V_{\alpha}} f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]
$$

so that $\overline{\mathcal{P}} \equiv\left\{\bar{S}_{X} ; \bar{\rho}_{U, V}\right\}$ is a presheaf on X. Show that
(a) $\overline{\mathcal{P}}=\alpha(\beta(\mathcal{P}))$;
(b) the presheaf homomorphism $\left\{\varphi_{U}\right\}: \mathcal{P} \longrightarrow \overline{\mathcal{P}}$

$$
\varphi_{U}: S_{U} \longrightarrow \bar{S}_{U}, \quad f \longrightarrow[(U, f)]
$$

is injective (resp. an isomorphism) if and only if \mathcal{P} satisfies 5.7(C_{1}) (resp. is complete);
(c) if \mathcal{R} is a subsheaf of \mathcal{S}, then $\alpha(\mathcal{S} / \mathcal{R}) \approx \overline{\alpha(\mathcal{S}) / \alpha(\mathcal{R})}$.
(a) By definition, $\alpha(\beta(\mathcal{P}))$ is the presheaf of continuous sections of the sheaf $\pi: \beta(\mathcal{P}) \longrightarrow X$, i.e.

$$
S_{U}=\Gamma(U ; \beta(\mathcal{P})), \quad S_{V} \longrightarrow S_{U},\left.\quad f \longrightarrow f\right|_{U},
$$

whenever $U \subset V$ are open subsets of X. If $f: U \longrightarrow \beta(\mathcal{P})$ is any section, $f(p) \in \beta(\mathcal{P})_{p}$ and so $f(p)=\rho_{p, U_{p}}\left(f_{p}\right)$ for some neighborhood U_{p} of p in U and $f_{p} \in S_{U_{p}}$. If in addition s is continuous,

$$
f^{-1}\left(\mathcal{O}_{f_{p}}\right) \equiv\left\{q \in U_{p}: f(q)=\rho_{q, U_{p}}\left(f_{p}\right)\right\}
$$

is an open neighborhood of p in U. On the other hand, if $q \in U_{p} \cap U_{p^{\prime}}$ and $\rho_{q, U_{p}}\left(f_{p}\right)=\rho_{q, U_{p^{\prime}}}\left(f_{p^{\prime}}\right)$, then there exists a neighborhood W of q in $U_{p} \cap U_{p^{\prime}}$ such that $\rho_{W, U_{p}}\left(f_{p}\right)=\rho_{W, U_{p^{\prime}}}\left(f_{p^{\prime}}\right)$. Thus, for every $f \in \Gamma(U ; \beta(\mathcal{P}))$, there exists a tuple $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an open cover of $U, f_{\alpha} \in S_{U_{\alpha}}$, for all $\alpha, \beta \in \mathcal{A}$ and $p \in U_{\alpha} \cap U_{\beta}$ there exists a neighborhood W of p in $U_{\alpha} \cap U_{\beta}$ such that $\rho_{W, U_{\alpha}} f_{\alpha}=\rho_{W, U_{\beta}} f_{\beta}$, and

$$
f(p)=\rho_{p, U_{\alpha}}\left(f_{\alpha}\right) \quad \forall q \in U_{\alpha}, \alpha \in \mathcal{A} .
$$

Conversely, any collection $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$ with $f_{\alpha} \in S_{U_{\alpha}}$, covering U, and satisfying the overlap condition determines an element of $f \in \Gamma(U ; \beta(\mathcal{P}))$ by the last displayed expression; the value of $f(p)$ is independent of the choice of $\alpha \in \mathcal{A}$ such that $p \in U_{\alpha}$ because of the overlap condition. Collections $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$
and $\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}$ with $f_{\alpha} \in S_{U_{\alpha}}, f_{\alpha^{\prime}}^{\prime} \in S_{U_{\alpha^{\prime}}}$, covering U, and satisfying the overlap condition determine the same element $f \in \Gamma(U ; \beta(\mathcal{P}))$ if and only if for all $\alpha \in \mathcal{A}, \alpha^{\prime} \in \mathcal{A}^{\prime}$, and $p \in U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime}$ there exists a neighborhood W of p in $U_{\alpha^{\prime}} \cap U_{\alpha^{\prime}}^{\prime}$ such that $\rho_{W, U_{\alpha}} f_{\alpha}=\rho_{W, U_{\alpha^{\prime}}^{\prime}} f_{\alpha^{\prime}}^{\prime}$, since

$$
\rho_{p, U_{\alpha}}\left(f_{\alpha}\right)=\rho_{p, W} \rho_{W, U_{\alpha}}\left(f_{\alpha}\right), \quad \rho_{p, W} \rho_{W, U_{\alpha^{\prime}}^{\prime}}\left(f_{\alpha^{\prime}}^{\prime}\right)=\rho_{p, U_{\alpha^{\prime}}^{\prime}}^{\prime}\left(f_{\alpha^{\prime}}^{\prime}\right)
$$

and so $\rho_{p, U_{\alpha}}\left(f_{\alpha}\right)=\rho_{p, U_{\alpha^{\prime}}^{\prime}}\left(f_{\alpha^{\prime}}^{\prime}\right)$ is equivalent to the existence of W as above. Thus, we have constructed a bijective map

$$
\bar{S}_{U} \longrightarrow \Gamma(U ; \beta(\mathcal{P})) .
$$

This map is a homomorphism of K-modules, since the K-module operations on $\Gamma(U ; \beta(\mathcal{P}))$ are determined by the K-operations on sections over open covers $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ of U, which in turn correspond to the K-module operations in $\left\{S_{U_{\alpha}}\right\}_{\alpha \in \mathcal{A}}$. Whenever $U \subset V$ are open subsets of X, the diagram

commutes, since both vertical arrows are restrictions on elements of open covers of U. Thus, the presheaves $\overline{\mathcal{P}}$ and $\alpha(\beta(\mathcal{P}))$ are isomorphic.
(b) If $[(U, f)]=0 \in \bar{S}_{U}$, every $p \in U$ has a neighborhood $W_{p} \subset U$ such that $\rho_{W_{p}, U} f=0$. So,

$$
\operatorname{ker} \varphi_{U}=\left\{f \in S_{U}: \exists \text { open cover }\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}} \text { of } U \text { s.t. } \rho_{U_{\alpha}, U} f=\rho_{U_{\alpha}, U} 0 \quad \forall \alpha \in \mathcal{A}\right\} .
$$

Thus, $\operatorname{ker} \varphi_{U}=0$ for all if and only if \mathcal{P} satisfies $5.7\left(C_{1}\right)$.
Suppose φ_{U} is an isomorphism for all open subsets U of X. If $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is a collection such that $f_{\alpha} \in U_{\alpha},\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an open cover of U, and

$$
\rho_{U_{\alpha} \cap U_{\beta}, U_{\alpha}} f_{\alpha}=\rho_{U_{\alpha} \cap U_{\beta}, U_{\beta}} f_{\beta} \quad \forall \alpha, \beta \in \mathcal{A},
$$

then $\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}$ ($W=U_{\alpha} \cap U_{\beta}$ can be used for the overlap condition). Thus, there exists $f \in S_{U}$ such that

$$
[(U, f)]=\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}
$$

This means that for every $\alpha \in \mathcal{A}$ and $p \in U_{\alpha}$, there exists an open neighborhood $W_{\alpha ; p}$ of p in U_{α} such that

$$
\rho_{W_{\alpha ; p}, U_{\alpha}} f_{\alpha}=\rho_{W_{\alpha ; p}, U} f=\rho_{W_{\alpha ; p}, U_{\alpha}} \rho_{U_{\alpha}, U} f \in S_{W_{\alpha ; p}} .
$$

Since $\left\{W_{\alpha ; p}\right\}_{p \in U_{\alpha}}$ is an open cover of U_{α} and \mathcal{P} satisfies 5.7 $\left(C_{1}\right)$, it follows that $f_{\alpha}=\rho_{U_{\alpha}, U} f \in S_{U_{\alpha}}$ for every $\alpha \in \mathcal{A}$. Thus, \mathcal{P} satisfies $\left(C_{2}\right)$.

Conversely, suppose \mathcal{P} is a complete presheaf and $\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}$. For every pair $\alpha, \beta \in \mathcal{A}$ and every point $p \in U_{\alpha} \cap U_{\beta}$ there exists a neighborhood $W_{\alpha, \beta ; p}$ of p in $U_{\alpha} \cap U_{\beta}$ such that

$$
\rho_{W_{\alpha, \beta ; p}, U_{\alpha}} f_{\alpha}=\rho_{W_{\alpha, \beta ; p}, U_{\beta}} f_{\beta} .
$$

Since $\left\{W_{\alpha, \beta ; p}\right\}_{p \in U_{\alpha} \cap U_{\beta}}$ is an open cover of $U_{\alpha} \cap U_{\beta}$,

$$
\rho_{W_{\alpha, \beta ; p}, U_{\alpha} \cap U_{\beta}}\left(\rho_{U_{\alpha} \cap U_{\beta}, U_{\alpha}} f_{\alpha}\right)=\rho_{W_{\alpha, \beta ; p}, U_{\alpha}} f_{\alpha}=\rho_{W_{\alpha, \beta ; p}, U_{\beta}} f_{\beta}=\rho_{W_{\alpha, \beta ; p}, U_{\alpha} \cap U_{\beta}}\left(\rho_{U_{\alpha} \cap U_{\beta}, U_{\beta}} f_{\beta}\right),
$$

and P satisfies $\left(C_{1}\right)$ of Definition 5.7, it follows that $\rho_{U_{\alpha} \cap U_{\beta}, U_{\alpha}} f_{\alpha}=\rho_{U_{\alpha} \cap U_{\beta}, U_{\beta}} f_{\beta}$ for all $\alpha, \beta \in \mathcal{A}$. Since P also satisfies $\left(C_{2}\right)$ of Definition 5.7, there exists $f \in S_{U}$ such that

$$
\rho_{U_{\alpha}, U} f=f_{\alpha} \quad \forall \alpha \in \mathcal{A} \quad \Longrightarrow \quad[U, f]=\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]
$$

i.e. the homomorphism φ_{U} is surjective.
(c) Let $q: \mathcal{S} \longrightarrow \mathcal{S} / \mathcal{R}$ and $q_{U}: \Gamma(U ; \mathcal{S}) \longrightarrow \Gamma(U ; \mathcal{S}) / \Gamma(U ; \mathcal{R})$ be the quotient projection maps. Denote by $\{\bar{\Gamma}(U ; \mathcal{S} / \mathcal{R})\}$ the completion of $\{\Gamma(U ; \mathcal{S}) / \Gamma(U ; \mathcal{R})\}$, as in the statement of the problem. Define a homomorphism of presheaves

$$
\begin{gathered}
\left\{\varphi_{U}\right\}: \overline{\alpha(\mathcal{S}) / \alpha(\mathcal{R})} \longrightarrow \alpha(\mathcal{S} / \mathcal{R}) \quad \text { by } \quad \varphi_{U}: \bar{\Gamma}(U ; \mathcal{S} / \mathcal{R}) \longrightarrow \Gamma(U ; \mathcal{S} / \mathcal{R}), \\
\left.\varphi_{U}\left(\left[\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}\right]\right)\right|_{U_{\alpha}}= \\
=q \circ f_{\alpha} \in \Gamma\left(U_{\alpha} ; \mathcal{S} / \mathcal{R}\right) .
\end{gathered}
$$

If $q_{U_{\alpha}}\left(f_{\alpha}\right)=q_{U_{\alpha}}\left(f_{\alpha}^{\prime}\right)$, then $f_{\alpha}-f_{\alpha}^{\prime} \in \Gamma\left(U_{\alpha} ; \mathcal{R}\right)$ and thus $q \circ f_{\alpha}=q \circ f_{\alpha}^{\prime} \in \Gamma\left(U_{\alpha} ; \mathcal{S} / \mathcal{R}\right)$. Since

$$
\left[\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}\right] \in \bar{\Gamma}(U ; \mathcal{S} / \mathcal{R})
$$

for every pair $\alpha, \beta \in \mathcal{A}$ and every point $p \in U_{\alpha} \cap U_{\beta}$ there exists a neighborhood $W \subset U_{\alpha} \cap U_{\beta}$ of p such that $q_{W}\left(\left.f_{\alpha}\right|_{W}\right)=q_{W}\left(\left.f_{\beta}\right|_{W}\right)$ and thus $\left.q \circ f_{\alpha}\right|_{W}=\left.q \circ f_{\beta}\right|_{W}$. Since $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an open cover of U, it follows that $\varphi_{U}\left(\left[\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}\right]\right)$ is a well-defined (continuous) section of $\mathcal{S} / \mathcal{R}$ over U, i.e. an element of $\Gamma(U ; \mathcal{S} / \mathcal{R})$, as required. If

$$
\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}} \sim\left(U_{\alpha^{\prime}}^{\prime}, q_{U_{\alpha^{\prime}}^{\prime}}^{\prime}\left(f_{\alpha^{\prime}}^{\prime}\right)\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}
$$

for every $p \in U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime}$ there exists a neighborhood W of p in $U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime}$ such that $q_{W}\left(\left.f_{\alpha}\right|_{W}\right)=q_{W}\left(\left.f_{\alpha^{\prime}}\right|_{W}\right)$ and thus $\left.q \circ f_{\alpha}\right|_{W}=\left.q \circ f_{\alpha^{\prime}}\right|_{W}$. So $\varphi_{U}\left(\left[\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}\right]\right)$ depends only on $\left[\left(U_{\alpha}, q_{U_{\alpha}}\left(f_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}\right]$, and not $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$, i.e. the map

$$
\varphi_{U}: \bar{\Gamma}(U ; \mathcal{S} / \mathcal{R}) \longrightarrow \Gamma(U ; \mathcal{S} / \mathcal{R})
$$

is well-defined. Since q and $q_{U_{\alpha}}$ are homomorphisms of K-modules, so is φ_{U}. It is immediate that φ_{U} commutes with the restriction maps and therefore $\left\{\varphi_{U}\right\}$ is a homomorphism of presheaves.

If $q \circ f_{\alpha}=0 \in \Gamma(U ; \mathcal{S} / \mathcal{R})$, then $f_{\alpha} \in \Gamma(U ; \mathcal{R}) \subset \Gamma(U ; \mathcal{S})$ and $q_{U_{\alpha}}\left(f_{\alpha}\right)=0 \in \bar{\Gamma}(U ; \mathcal{S} / \mathcal{R})$. Thus, $\left\{\varphi_{U}\right\}$ is injective. On the other hand, suppose $g \in \Gamma(U ; \mathcal{S} / \mathcal{R})$. For each $p \in X$, choose $s(p) \in \mathcal{S}_{p}$ such that $q(s(p))=g(p)$. Since $\pi: \mathcal{S} \longrightarrow X$ and $\pi^{\prime}: \mathcal{S} / \mathcal{R} \longrightarrow X$ are local homeomorphisms, for each $p \in X$ there exist neighborhoods U_{p} of p in $U, U_{s(p)}$ of $s(p)$ in \mathcal{S}, and $U_{g(p)}$ of $g(p)$ in $\mathcal{S} / \mathcal{R}$ such that

$$
\pi: U_{s(p)} \longrightarrow U_{p} \quad \text { and } \quad \pi^{\prime}: U_{g(p)} \longrightarrow U_{p}
$$

are homeomorphisms. Since $\pi=\pi^{\prime} \circ q, q: U_{s(p)} \longrightarrow U_{g(p)}$ is also a homeomorphism. Let

$$
f_{p}=\left\{\left.\pi\right|_{U_{s(p)}}\right\}^{-1}: U_{p} \longrightarrow U_{s(p)} \subset \mathcal{S} .
$$

Since $\pi^{\prime} \circ g=\mathrm{id}_{X}$, it follows that

$$
q \circ f_{p}=q \circ\left\{\left.\pi\right|_{U_{s(p)}}\right\}^{-1}=\left.q \circ\left\{\left.q\right|_{U_{s(p)}}\right\}^{-1} \circ\left\{\left.\pi^{\prime}\right|_{U_{g(p)}}\right\}^{-1} \circ\left\{\pi^{\prime} \circ g\right\}\right|_{U_{p}}=\left.g\right|_{U_{p}}
$$

We conclude that

$$
\left[\left(U_{p}, q_{U_{p}}\left(f_{p}\right)\right)_{p \in U}\right] \in \bar{\Gamma}(U ; \mathcal{S} / \mathcal{R}) \quad \text { and } \quad \varphi_{U}\left(\left[\left(U_{p}, q_{U_{p}}\left(f_{p}\right)\right)_{p \in U}\right]\right)=g
$$

i.e. $\left\{\varphi_{U}\right\}$ is surjective. Note that if $p_{1}, p_{2} \in U$, then

$$
\left.q \circ f_{p_{1}}\right|_{U_{p_{1}} \cap U_{p_{2}}}=\left.g\right|_{U_{p_{1}} \cap U_{p_{2}}}=\left.q \circ f_{p_{2}}\right|_{U_{p_{1}} \cap U_{p_{2}}} \Longrightarrow q_{U_{p_{1}} \cap U_{p_{2}}}\left(\left.f_{p_{1}}\right|_{U_{p_{1}} \cap U_{p_{2}}}\right)=q_{U_{p_{1} \cap U_{p_{2}}}}\left(\left.f_{p_{2}}\right|_{U_{p_{1} \cap} \cap U_{p_{2}}}\right),
$$

i.e. the overlap condition is indeed satisfied.

Note: It follows from (a) that $\overline{\mathcal{P}}$ is a complete pre-sheaf. We now check this directly.
If $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an open cover of U and $f_{\alpha} \in S_{U_{\alpha}}$ are elements satisfying the overlap condition in the definition of \bar{S}_{U} above, denote by $\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}$ the equivalence class of $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}$. If $r \in K$, let

$$
r \cdot\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\left[\left(U_{\alpha}, r \cdot f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] .
$$

The tuple $\left(U_{\alpha}, r \cdot f_{\alpha}\right)_{\alpha \in \mathcal{A}}$ still satisfies the overlap condition (the same open sets W work, since $\rho_{W, U_{\alpha}}$ and $\rho_{W, U_{\beta}}$ are homomorphisms of K-modules) and therefore $\left[\left(U_{\alpha}, r \cdot f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}$. If $\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}} \sim$ $\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}$, then

$$
\left(U_{\alpha}, r \cdot f_{\alpha}\right)_{\alpha \in \mathcal{A}} \sim\left(U_{\alpha^{\prime}}^{\prime}, r \cdot f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}
$$

(the same open sets W work) and therefore the multiplication map $K \times \bar{S}_{U} \longrightarrow \bar{S}_{U}$ is well-defined. If

$$
\left[\left(U_{\alpha_{1}}, f_{\alpha_{1}}\right)_{\alpha_{1} \in \mathcal{A}_{1}}\right],\left[\left(U_{\alpha_{2}}, f_{\alpha_{2}}\right)_{\alpha_{2} \in \mathcal{A}_{2}}\right] \in \bar{S}_{U}
$$

define

$$
\left[\left(U_{\alpha_{1}}, f_{\alpha_{1}}\right)_{\alpha_{1} \in \mathcal{A}_{1}}\right]+\left[\left(U_{\alpha_{2}}, f_{\alpha_{2}}\right)_{\alpha_{2} \in \mathcal{A}_{2}}\right]=\left[\left(U_{\alpha_{1}} \cap U_{\alpha_{2}}, \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}}\right)_{\alpha_{1} \in \mathcal{A}_{1}, \alpha_{2} \in \mathcal{A}_{2}}\right] .
$$

The tuple

$$
\left(U_{\alpha_{1}} \cap U_{\alpha_{2}}, \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}}\right)_{\alpha_{1} \in \mathcal{A}_{1}, \alpha_{2} \in \mathcal{A}_{2}}
$$

satisfies the overlap condition for the following reason. If $\alpha_{1}, \beta_{1} \in \mathcal{A}_{1}$ and $\alpha_{2}, \beta_{2} \in \mathcal{A}_{2}$ and $p \in$ $U_{\alpha_{1}} \cap U_{\alpha_{2}} \cap U_{\beta_{1}} \cap U_{\beta_{2}}$, there exists an open neighborhood W of p in this 4 -fold intersection such that

$$
\rho_{W, U_{\alpha_{1}}} f_{\alpha_{1}}=\rho_{W, U_{\beta_{1}}} f_{\beta_{1}}, \quad \rho_{W, U_{\alpha_{2}}} f_{\alpha_{2}}=\rho_{W, U_{\beta_{2}}} f_{\beta_{2}} ;
$$

this open set W is obtained by intersecting the two W 's in the overlap condition for the two tuples being summed. This open set W also works for the sum tuple:

$$
\begin{align*}
\rho_{W, U_{\alpha_{1}} \cap U_{\alpha_{2}}}\left(\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}}\right) & =\rho_{W, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{W, U_{\alpha_{2}}} f_{\alpha_{2}} \\
& =\rho_{W, U_{\beta_{1}}} f_{\beta_{1}}+\rho_{W, U_{\beta_{2}}} f_{\beta_{2}} \tag{1}\\
& =\rho_{W, U_{\beta_{1}} \cap U_{\beta_{2}}}\left(\rho_{U_{\beta_{1}} \cap U_{\beta_{2}}, U_{\beta_{1}}} f_{\beta_{1}}+\rho_{U_{\beta_{1}} \cap U_{\beta_{2}}, U_{\beta_{2}}} f_{\beta_{2}}\right) .
\end{align*}
$$

Thus,

$$
\left[\left(U_{\alpha_{1}} \cap U_{\alpha_{2}}, \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}}\right)_{\alpha_{1} \in \mathcal{A}_{1}, \alpha_{2} \in \mathcal{A}_{2}}\right] \in \bar{S}_{U} .
$$

If

$$
\left(U_{\alpha_{1}}, f_{\alpha_{1}}\right)_{\alpha_{1} \in \mathcal{A}_{1}} \sim\left(U_{\alpha_{1}^{\prime}}^{\prime}, f_{\alpha_{1}^{\prime}}^{\prime}\right)_{\alpha_{1}^{\prime} \in \mathcal{A}_{1}^{\prime}} \quad \text { and } \quad\left(U_{\alpha_{2}}, f_{\alpha_{2}}\right)_{\alpha_{2} \in \mathcal{A}_{2}} \sim\left(U_{\alpha_{2}^{\prime}}^{\prime}, f_{\alpha_{2}^{\prime}}^{\prime}\right)_{\alpha_{2}^{\prime} \in \mathcal{A}_{2}^{\prime}}
$$

then

$$
\begin{aligned}
& \left(U_{\alpha_{1}} \cap U_{\alpha_{2}}, \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}}+\rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}}\right)_{\alpha_{1} \in \mathcal{A}_{1}, \alpha_{2} \in \mathcal{A}_{2}} \\
& \quad \sim\left(U_{\alpha_{1}^{\prime}}^{\prime} \cap U_{\alpha_{2}^{\prime}}^{\prime}, \rho_{U_{\alpha_{1}^{\prime}}^{\prime} \cap U_{\alpha_{2}^{\prime}}^{\prime}, U_{\alpha_{1}^{\prime}}^{\prime}}^{\prime} f_{\alpha_{1}^{\prime}}^{\prime}+\rho_{U_{\alpha_{1}^{\prime}}^{\prime} \cap U_{\alpha_{2}^{\prime}}^{\prime}, U_{\alpha_{2}^{\prime}}^{\prime}} f_{\alpha_{2}^{\prime}}^{\prime}\right)_{\alpha_{1}^{\prime} \in \mathcal{A}_{1}^{\prime}, \alpha_{2}^{\prime} \in \mathcal{A}_{2}^{\prime}}
\end{aligned}
$$

as we can use the intersection of the open sets W corresponding to ($\alpha_{1}, \alpha_{1}^{\prime}$) and ($\alpha_{2}^{\prime}, \alpha_{2}^{\prime}$) by a computation similar to (1) above. Thus, \bar{S}_{U} is a K-module.

If $U \subset V$ and $\left[\left(V_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{V}$, then

$$
\left[\left(V_{\alpha} \cap U, \rho_{V_{\alpha} \cap U, V_{\alpha}} f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U} ;
$$

the overlap condition still holds, with W used for the first tuple replaced by $W \cap U$. Furthermore,

$$
\begin{aligned}
{\left[\left(V_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\left[\left(V_{\alpha^{\prime}}^{\prime},\right.\right.} & \left.\left.f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \in \bar{S}_{V} \\
& \Longrightarrow\left[\left(V_{\alpha} \cap U, \rho_{V_{\alpha} \cap U, V_{\alpha}} f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\left[\left(V_{\alpha}^{\prime} \cap U, \rho_{V_{\alpha^{\prime}}^{\prime} \cap U, V_{\alpha^{\prime}}^{\prime}} f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \in \bar{S}_{U},
\end{aligned}
$$

as each W used in the first equivalence condition can be replaced with $W \cap U$. Thus, the map $\bar{\rho}_{U, V}$ is well-defined. It must be a homomorphism of K-modules, because $\rho_{U, V}$ is. Furthermore, if $U \subset V \subset W$,

$$
\bar{\rho}_{U, W}=\bar{\rho}_{U, V} \circ \bar{\rho}_{V, W}
$$

since $\rho_{U^{\prime}, W^{\prime}}=\rho_{U^{\prime}, V^{\prime}} \circ \rho_{V^{\prime}, W^{\prime}}$ whenever $U^{\prime} \subset V^{\prime} \subset W^{\prime}$ are open subsets of X. Thus, $\overline{\mathcal{P}}=\left\{\bar{S}, \bar{\rho}_{U, V}\right\}$ is indeed a presheaf on X.

Suppose U is an open subset of X and $\left\{V_{\gamma}\right\}_{\gamma \in \Gamma}$ is an open cover of U. Suppose in addition that

$$
\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{U}, \quad\left[\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \in \bar{S}_{U}, \quad \bar{\rho}_{V_{\gamma}, U}\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\bar{\rho}_{V_{\gamma}, U}\left[\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \quad \forall \gamma \in \Gamma .
$$

By definition,

$$
\begin{gathered}
\bar{\rho}_{V_{\gamma}, U}\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\left[\left(U_{\alpha} \cap V_{\gamma}, \rho_{U_{\alpha} \cap V_{\gamma}, U_{\alpha}} f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right] \in \bar{S}_{V_{\gamma}}, \\
\bar{\rho}_{V_{\gamma}, U}\left[\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right]=\left[\left(U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}, \rho_{U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}, U_{\alpha^{\prime}}^{\prime}}^{\prime} f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \in \bar{S}_{V_{\gamma}} .
\end{gathered}
$$

By definition of the equality of the two, for every $p \in U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}$ there exists a neighborhood $W \subset U_{\alpha} \cap U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}$ of p such that

$$
\begin{aligned}
\rho_{W, U_{\alpha}} f_{\alpha} & =\rho_{W, U_{\alpha} \cap V_{\gamma}}\left(\rho_{U_{\alpha} \cap V_{\gamma}, U_{\alpha}} f_{\alpha}\right) \\
& =\rho_{W, U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}}\left(\rho_{U_{\alpha^{\prime}}^{\prime} \cap V_{\gamma}, U_{\alpha^{\prime}}^{\prime}} f_{\alpha^{\prime}}\right)=\rho_{W, U_{\alpha^{\prime}}} f_{\alpha^{\prime}}^{\prime} .
\end{aligned}
$$

By definition of equivalence, this means that

$$
\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}} \sim\left(U_{\alpha}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}} \quad \text { i.e. } \quad\left[\left(U_{\alpha}, f_{\alpha}\right)_{\alpha \in \mathcal{A}}\right]=\left[\left(U_{\alpha^{\prime}}^{\prime}, f_{\alpha^{\prime}}^{\prime}\right)_{\alpha^{\prime} \in \mathcal{A}^{\prime}}\right] \in \bar{S}_{U}
$$

Thus, $\overline{\mathcal{P}}$ satisfies $\left(C_{1}\right)$ of Definition 5.7.
Suppose U is an open subset of $X,\left\{V_{\gamma}\right\}_{\gamma \in \Gamma}$ is an open cover of $U,\left[\left(U_{\gamma, \alpha}, f_{\gamma, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma}}\right] \in \bar{S}_{V_{\gamma}}$, and

$$
\bar{\rho}_{V_{\gamma_{1}} \cap V_{\gamma_{2}}, V_{\gamma_{1}}}\left[\left(U_{\gamma_{1}, \alpha}, f_{\gamma_{1}, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma_{1}}}\right]=\bar{\rho}_{V_{\gamma_{1}} \cap V_{\gamma_{2}}, V_{\gamma_{2}}}\left[\left(U_{\gamma_{2}, \alpha}, f_{\gamma_{2}, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma_{2}}}\right] \quad \forall \gamma_{1}, \gamma_{2} \in \Gamma .
$$

By definition, this equality implies that for all $\gamma_{1}, \gamma_{2} \in \Gamma, \alpha_{1} \in \mathcal{A}_{\gamma_{1}}, \alpha_{2} \in \mathcal{A}_{\gamma_{2}}$, and $p \in U_{\gamma_{1}, \alpha_{1}} \cap U_{\gamma_{2}, \alpha_{2}}$, there exists a neighborhood W of p in $U_{\gamma_{1}, \alpha_{1}} \cap U_{\gamma_{2}, \alpha_{2}}$ such that

$$
\begin{aligned}
\rho_{W, U_{\gamma_{1}, \alpha_{1}}} f_{\gamma_{1}, \alpha_{1}} & =\rho_{W, U_{\gamma_{1}, \alpha_{1}} \cap V_{\gamma_{2}}}\left(\rho_{U_{\gamma_{1}, \alpha_{1}} \cap V_{\gamma_{2}}, U_{\gamma_{1}, \alpha_{1}}} f_{\gamma_{1}, \alpha_{1}}\right) \\
& =\rho_{W, U_{\gamma_{2}, \alpha_{2}} \cap V_{\gamma_{1}}}\left(\rho_{U_{\gamma_{2}, \alpha_{2}} \cap V_{\gamma_{1}}, U_{\gamma_{2}, \alpha_{2}}} f_{\gamma_{2}, \alpha_{2}}\right)=\rho_{W, U_{\gamma_{2}, \alpha_{2}}} f_{\gamma_{2}, \alpha_{2}} .
\end{aligned}
$$

Thus, the collection $\left(U_{\gamma, \alpha}, f_{\gamma, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma}$ satisfies the overlap condition in the definition of \bar{S}_{U} and

$$
\left[\left(U_{\gamma, \alpha}, f_{\gamma, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma}\right] \in \bar{S}_{U} \quad \text { s.t. } \quad \bar{\rho}_{V_{\gamma}, U}\left(\left[\left(U_{\gamma, \alpha}, f_{\gamma, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma}\right]\right)=\left[\left(U_{\gamma, \alpha}, f_{\gamma, \alpha}\right)_{\alpha \in \mathcal{A}_{\gamma}}\right] \quad \forall \gamma \in \Gamma .
$$

Thus, $\overline{\mathcal{P}}$ satisfies $\left(C_{2}\right)$ of Definition 5.7 and therefore is a complete presheaf.

Problem 2: Chapter 5, \#17 (5pts)

Give an example of a fine sheaf which contains a subsheaf which is not fine.
The sheaf \mathcal{S} of germs of continuous functions over a topological space X is a fine sheaf by 5.10 (the argument in the continuous case is the same as in the smooth case). It contains the sheaf $\underline{\mathbb{R}} \equiv X \times \mathbb{R}_{\text {discreet }}$ of germs of locally constant functions. By $5.31, \check{H}^{p}(X ; \mathbb{R}) \approx H_{\text {sing }}^{p}(X ; \mathbb{R})$; thus, by $5.33 \mathbb{R}$ is not a fine sheaf as long as $H_{\mathrm{sing}}^{p}(X ; \mathbb{R}) \neq 0$ for some $p \neq 0$ (e.g. $X=S^{1}$ by deRham or Hurewicz's theorem). A similar example is obtained by considering \mathbb{R} as the subsheaf of germs of locally constant smooth functions contained in the sheaf of germs of smooth 0 -forms \mathcal{E}^{0}. In addition, if \mathcal{S} is any sheaf, the sheaf \mathcal{S}_{0} of germs of discontinuous sections of \mathcal{S} is a fine sheaf (see 5.22) and contains \mathcal{S} as the subsheaf of germs of continuous sections of \mathcal{S}; this provides an example whenever \mathcal{S} is not a fine sheaf.

In fact, the sheaf $\underline{K} \equiv X \times K_{\text {discreet }}$, where K is a ring with unity 1 , is not fine as long as X contains two nonempty connected subsets V_{1} and V_{2} such that $V_{1} \cap V_{2} \neq \emptyset, V_{1} \not \subset V_{2}$, and $V_{2} \not \subset V_{1}$. If so, let U_{1} be the complement of a point x_{2} in $V_{2}-V_{1}$ and U_{2} be the complement of a point x_{1} in $V_{1}-V_{2}$. Then, $\left\{U_{1}, U_{2}\right\}$ is a locally finite open cover of X (as long as X is T1). If $L: \underline{K} \longrightarrow \underline{K}$ is any sheaf homomorphism, the sets

$$
\begin{aligned}
& A \equiv\left\{x \in X: L_{x}=0\right\}=\pi_{1}\left(L^{-1}(X \times 0) \cap X \times 1\right) \\
& B \equiv\left\{x \in X: L_{x} \neq 0\right\}=\pi_{1}\left(L^{-1}(X \times(K-0)) \cap X \times 1\right)
\end{aligned}
$$

are open and disjoint in X, since $X \times 0, X \times 1$ and $X \times(K-0)$ are open in \underline{K}, L a continuous map, and $\pi_{1}: \underline{K} \longrightarrow X$ is a local homeomorphism which is injective on $X \times 1$. Thus, $\left(V_{1} \cup V_{2}\right) \cap A$ and $\left(V_{1} \cup V_{2}\right) \cap B$ form an open partition of $V_{1} \cup V_{2}$. Since $V_{1} \cup V_{2}$ is connected, every sheaf homomorphism $L: \underline{K} \longrightarrow \underline{K}$ is either identically 0 on $V_{1} \cup V_{2}$ or nowhere 0 on $V_{1} \cup V_{2}$. It follows that there exists no partition of identity $\left\{L_{1}, L_{2}\right\}$ on \underline{K} subordinate to $\left\{U_{1}, U_{2}\right\}: L_{1}$ would have to vanish at $p_{2} \in V_{2}-U_{1}$, because the support of L_{1} must be contained in U_{1}, and would have to equal the identity at $p_{1} \in V_{1}-U_{2}$, because the support of L_{2} must be contained in U_{2} and $L_{1}+L_{2}=\mathrm{id}$.

Problem 3 (10pts)

Let K be any ring containing 1. For each $i \in \mathbb{Z}^{+}$, let $V_{i}=K$; this is a K-module. Whenever $i \leq j$, define

$$
\rho_{j i}: V_{i} \longrightarrow V_{j} \quad \text { by } \quad \rho_{j i}(v)=2^{j-i} v
$$

this is a homomorphism of K-modules. Since $\rho_{k i}=\rho_{k j} \rho_{j i}$ whenever $i \leq j \leq k$, we have a directed system and get a direct-limit K-module

$$
V_{\infty}=\overrightarrow{\lim }_{\mathbb{Z}^{+}} V_{i}=\lim _{i \longrightarrow \infty} V_{i}
$$

(a) Suppose $2=0 \in K$ (e.g. $K=\mathbb{Z}_{2}$). Show that $V_{\infty}=\{0\}$.
(b) Suppose 2 is a unit in K (e.g. $K=\mathbb{R}$). Show that $V_{\infty} \approx K$ as K-modules.
(c) Suppose 2 is not a unit in K, but $2 \neq 0 \in K$, and K is an integral domain (e.g. $K=\mathbb{Z}$). Show that the K-module V_{∞} is not finitely generated.

An element of V_{∞} is an equivalence class $[i, v]$, where $i \in \mathbb{Z}^{+}, v \in V_{i}$, and $[i, v]=[j, w]$ if there exists $k \geq i, j$ such that $2^{k-i} v=2^{k-j} w \in K$; in particular, $[i, v]=\left[j, 2^{j-i} v\right]$ whenever $i \leq j$.
(a) Since $2=0,[i, v]=[i+1,2 v]=[i+1,0]$ for all $[i, v] \in V_{\infty}$; so $V_{\infty}=\{0\}$.
(b) Define a homomorphism

$$
h: K \longrightarrow V_{\infty} \quad \text { by } \quad v \longrightarrow[1, v] .
$$

If $h(v)=0$ for some $v \in K$, then $2^{j+1-1} v=0 \in V_{j+1}$ for some $j \geq 1$. Since 2 is a unit in K (has an inverse), it follows that $v=0 \in V_{j+1}=K$; thus, h is injective. On the other hand, for every $j \in \mathbb{Z}^{+}$and $w \in V_{j}=K$,

$$
w=2^{j-1} \cdot\left(2^{-1}\right)^{j-1} w \quad \Longrightarrow \quad[j, w]=\left[1,\left(2^{-1}\right)^{j-1} w\right]=h\left(\left(2^{-1}\right)^{j-1} w\right)
$$

thus, h is also surjective.
(c) Suppose V_{∞} is spanned by $\left[i_{1}, v_{1}\right], \ldots,\left[i_{k}, v_{k}\right]$ for some $i_{1}, \ldots, i_{k} \in \mathbb{Z}^{+}$and $v_{1}, \ldots, v_{k} \in K$. Let $i=\max \left\{i_{1}, \ldots, i_{k}\right\}$. Since $\left[i_{l}, v_{l}\right]=\left[i, 2^{i-i_{l}} v_{k} \cdot 1\right], V_{\infty}$ is spanned by the single element [i,1]. In particular, $[i+1,1]=k[i, 1]$ for some $k \in K$ and so

$$
2^{(j+1)-(i+1)} \cdot 1=2^{(j+1)-i} \cdot k \in V_{j+1}=K
$$

for some $j \geq i$. Thus, $2^{j-i}(2 k-1)=0 \in K$. Since K is an integral domain, it follows that $2 k=1$, contrary to the assumption that 2 is not a unit in K.

