MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 8

Problem 1 (15pts)

Suppose X is a topological space and $\mathcal{P} = \{S_U; \rho_{U,V}\}$ is a presheaf on X. Let

$$\begin{split} \bar{S}_{U} &= \left\{ (U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \colon U_{\alpha} \subset U \text{ open, } U = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}; f_{\alpha} \in S_{U_{\alpha}}; \\ &\quad \forall \alpha, \beta \in \mathcal{A}, \ p \in U_{\alpha} \cap U_{\beta} \ \exists W \subset U_{\alpha} \cap U_{\beta} \text{ open s.t. } p \in W, \ \rho_{W,U_{\alpha}} f_{\alpha} = \rho_{W,U_{\beta}} f_{\beta} \right\} / \sim, \\ where &\quad (U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \sim (U_{\alpha'}', f_{\alpha'}')_{\alpha' \in \mathcal{A}'} \quad if \quad \forall \ \alpha \in \mathcal{A}, \ \alpha' \in \mathcal{A}', \ p \in U_{\alpha} \cap U_{\alpha'}' \\ &\quad \exists W \subset U_{\alpha} \cap U_{\alpha'}' \quad \text{s.t. } p \in W, \ \rho_{W,U_{\alpha}} f_{\alpha} = \rho_{W,U_{\alpha'}} f_{\alpha'}'$$

Whenever $U \subset V$ are open subsets of X, the homomorphisms ρ_{UV} induce homomorphisms

$$\bar{\rho}_{U,V} : \bar{S}_V \longrightarrow \bar{S}_U, \qquad \left[(V_\alpha, f_\alpha)_{\alpha \in \mathcal{A}} \right] \longrightarrow \left[(V_\alpha \cap U, \rho_{V_\alpha \cap U, V_\alpha} f_\alpha)_{\alpha \in \mathcal{A}} \right]$$

so that $\bar{\mathcal{P}} \equiv \{\bar{S}_X; \bar{\rho}_{U,V}\}$ is a presheaf on X. Show that

(a)
$$\bar{\mathcal{P}} = \alpha(\beta(\mathcal{P}));$$

(b) the presheaf homomorphism $\{\varphi_U\}: \mathcal{P} \longrightarrow \bar{\mathcal{P}}$

$$\varphi_U \colon S_U \longrightarrow \bar{S}_U, \qquad f \longrightarrow [(U, f)]_{\mathcal{F}}$$

is injective (resp. an isomorphism) if and only if \mathcal{P} satisfies 5.7(C₁) (resp. is complete);

(c) if \mathcal{R} is a subsheaf of \mathcal{S} , then $\alpha(\mathcal{S}/\mathcal{R}) \approx \overline{\alpha(\mathcal{S})/\alpha(\mathcal{R})}$.

(a) By definition, $\alpha(\beta(\mathcal{P}))$ is the presheaf of continuous sections of the sheaf $\pi: \beta(\mathcal{P}) \longrightarrow X$, i.e.

$$S_U = \Gamma(U; \beta(\mathcal{P})), \qquad S_V \longrightarrow S_U, \quad f \longrightarrow f|_U,$$

whenever $U \subset V$ are open subsets of X. If $f: U \longrightarrow \beta(\mathcal{P})$ is any section, $f(p) \in \beta(\mathcal{P})_p$ and so $f(p) = \rho_{p,U_p}(f_p)$ for some neighborhood U_p of p in U and $f_p \in S_{U_p}$. If in addition s is continuous,

$$f^{-1}(\mathcal{O}_{f_p}) \equiv \left\{ q \in U_p \colon f(q) = \rho_{q,U_p}(f_p) \right\}$$

is an open neighborhood of p in U. On the other hand, if $q \in U_p \cap U_{p'}$ and $\rho_{q,U_p}(f_p) = \rho_{q,U_{p'}}(f_{p'})$, then there exists a neighborhood W of q in $U_p \cap U_{p'}$ such that $\rho_{W,U_p}(f_p) = \rho_{W,U_{p'}}(f_{p'})$. Thus, for every $f \in \Gamma(U; \beta(\mathcal{P}))$, there exists a tuple $(U_\alpha, f_\alpha)_{\alpha \in \mathcal{A}}$ such that $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ is an open cover of U, $f_\alpha \in S_{U_\alpha}$, for all $\alpha, \beta \in \mathcal{A}$ and $p \in U_\alpha \cap U_\beta$ there exists a neighborhood W of p in $U_\alpha \cap U_\beta$ such that $\rho_{W,U_\alpha} f_\alpha = \rho_{W,U_\beta} f_\beta$, and

$$f(p) = \rho_{p,U_{\alpha}}(f_{\alpha}) \qquad \forall q \in U_{\alpha}, \ \alpha \in \mathcal{A}.$$

Conversely, any collection $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}$ with $f_{\alpha} \in S_{U_{\alpha}}$, covering U, and satisfying the overlap condition determines an element of $f \in \Gamma(U; \beta(\mathcal{P}))$ by the last displayed expression; the value of f(p) is independent of the choice of $\alpha \in \mathcal{A}$ such that $p \in U_{\alpha}$ because of the overlap condition. Collections $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}$

and $(U'_{\alpha'}, f'_{\alpha'})_{\alpha' \in \mathcal{A}'}$ with $f_{\alpha} \in S_{U_{\alpha}}, f'_{\alpha'} \in S_{U_{\alpha'}}$, covering U, and satisfying the overlap condition determine the same element $f \in \Gamma(U; \beta(\mathcal{P}))$ if and only if for all $\alpha \in \mathcal{A}, \alpha' \in \mathcal{A}'$, and $p \in U_{\alpha} \cap U'_{\alpha'}$ there exists a neighborhood W of p in $U_{\alpha'} \cap U'_{\alpha'}$ such that $\rho_{W,U_{\alpha}} f_{\alpha} = \rho_{W,U'_{\alpha'}} f'_{\alpha'}$, since

$$\rho_{p,U_{\alpha}}(f_{\alpha}) = \rho_{p,W}\rho_{W,U_{\alpha}}(f_{\alpha}), \qquad \rho_{p,W}\rho_{W,U_{\alpha'}}(f_{\alpha'}) = \rho_{p,U_{\alpha'}}(f_{\alpha'})$$

and so $\rho_{p,U_{\alpha}}(f_{\alpha}) = \rho_{p,U'_{\alpha'}}(f'_{\alpha'})$ is equivalent to the existence of W as above. Thus, we have constructed a bijective map

$$\bar{S}_U \longrightarrow \Gamma(U; \beta(\mathcal{P})).$$

This map is a homomorphism of K-modules, since the K-module operations on $\Gamma(U; \beta(\mathcal{P}))$ are determined by the K-operations on sections over open covers $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ of U, which in turn correspond to the K-module operations in $\{S_{U_{\alpha}}\}_{\alpha \in \mathcal{A}}$. Whenever $U \subset V$ are open subsets of X, the diagram

commutes, since both vertical arrows are restrictions on elements of open covers of U. Thus, the presheaves $\bar{\mathcal{P}}$ and $\alpha(\beta(\mathcal{P}))$ are isomorphic.

(b) If $[(U, f)] = 0 \in \overline{S}_U$, every $p \in U$ has a neighborhood $W_p \subset U$ such that $\rho_{W_p, U} f = 0$. So,

$$\ker \varphi_U = \left\{ f \in S_U \colon \exists \text{ open cover } \{U_\alpha\}_{\alpha \in \mathcal{A}} \text{ of } U \text{ s.t. } \rho_{U_\alpha, U} f = \rho_{U_\alpha, U} 0 \quad \forall \alpha \in \mathcal{A} \right\}.$$

Thus, ker $\varphi_U = 0$ for all if and only if \mathcal{P} satisfies 5.7(C_1).

Suppose φ_U is an isomorphism for all open subsets U of X. If $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}$ is a collection such that $f_{\alpha} \in U_{\alpha}, \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover of U, and

$$\rho_{U_{\alpha}\cap U_{\beta},U_{\alpha}}f_{\alpha} = \rho_{U_{\alpha}\cap U_{\beta},U_{\beta}}f_{\beta} \qquad \forall \ \alpha,\beta \in \mathcal{A},$$

then $[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}] \in \overline{S}_U$ ($W = U_{\alpha} \cap U_{\beta}$ can be used for the overlap condition). Thus, there exists $f \in S_U$ such that

$$\left[(U, f) \right] = \left[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \right] \in \bar{S}_U.$$

This means that for every $\alpha \in \mathcal{A}$ and $p \in U_{\alpha}$, there exists an open neighborhood $W_{\alpha;p}$ of p in U_{α} such that

$$\rho_{W_{\alpha;p},U_{\alpha}}f_{\alpha} = \rho_{W_{\alpha;p},U}f = \rho_{W_{\alpha;p},U_{\alpha}}\rho_{U_{\alpha},U}f \in S_{W_{\alpha;p}}$$

Since $\{W_{\alpha;p}\}_{p\in U_{\alpha}}$ is an open cover of U_{α} and \mathcal{P} satisfies 5.7(C₁), it follows that $f_{\alpha} = \rho_{U_{\alpha},U}f \in S_{U_{\alpha}}$ for every $\alpha \in \mathcal{A}$. Thus, \mathcal{P} satisfies (C₂).

Conversely, suppose \mathcal{P} is a complete presheaf and $[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}] \in \overline{S}_U$. For every pair $\alpha, \beta \in \mathcal{A}$ and every point $p \in U_{\alpha} \cap U_{\beta}$ there exists a neighborhood $W_{\alpha,\beta;p}$ of p in $U_{\alpha} \cap U_{\beta}$ such that

$$\rho_{W_{\alpha,\beta;p},U_{\alpha}}f_{\alpha} = \rho_{W_{\alpha,\beta;p},U_{\beta}}f_{\beta}.$$

Since $\{W_{\alpha,\beta;p}\}_{p\in U_{\alpha}\cap U_{\beta}}$ is an open cover of $U_{\alpha}\cap U_{\beta}$,

$$\rho_{W_{\alpha,\beta;p},U_{\alpha}\cap U_{\beta}}(\rho_{U_{\alpha}\cap U_{\beta},U_{\alpha}}f_{\alpha}) = \rho_{W_{\alpha,\beta;p},U_{\alpha}}f_{\alpha} = \rho_{W_{\alpha,\beta;p},U_{\beta}}f_{\beta} = \rho_{W_{\alpha,\beta;p},U_{\alpha}\cap U_{\beta}}(\rho_{U_{\alpha}\cap U_{\beta},U_{\beta}}f_{\beta}),$$

and P satisfies (C_1) of Definition 5.7, it follows that $\rho_{U_{\alpha}\cap U_{\beta},U_{\alpha}}f_{\alpha} = \rho_{U_{\alpha}\cap U_{\beta},U_{\beta}}f_{\beta}$ for all $\alpha, \beta \in \mathcal{A}$. Since P also satisfies (C_2) of Definition 5.7, there exists $f \in S_U$ such that

$$\rho_{U_{\alpha},U}f = f_{\alpha} \quad \forall \alpha \in \mathcal{A} \qquad \Longrightarrow \qquad [U,f] = [(U_{\alpha},f_{\alpha})_{\alpha \in \mathcal{A}}],$$

i.e. the homomorphism φ_U is surjective.

(c) Let $q: S \longrightarrow S/\mathcal{R}$ and $q_U: \Gamma(U; S) \longrightarrow \Gamma(U; S)/\Gamma(U; \mathcal{R})$ be the quotient projection maps. Denote by $\{\overline{\Gamma}(U; S/\mathcal{R})\}$ the completion of $\{\Gamma(U; S)/\Gamma(U; \mathcal{R})\}$, as in the statement of the problem. Define a homomorphism of presheaves

$$\begin{aligned} \{\varphi_U\} \colon \overline{\alpha(\mathcal{S})/\alpha(\mathcal{R})} &\longrightarrow \alpha(\mathcal{S}/\mathcal{R}) \quad \text{by} \quad \varphi_U \colon \overline{\Gamma}(U; \mathcal{S}/\mathcal{R}) \longrightarrow \Gamma(U; \mathcal{S}/\mathcal{R}), \\ \varphi_U(\left[(U_\alpha, q_{U_\alpha}(f_\alpha))_{\alpha \in \mathcal{A}}\right])\Big|_{U_\alpha} &= q \circ f_\alpha \in \Gamma(U_\alpha; \mathcal{S}/\mathcal{R}). \end{aligned}$$

If $q_{U_{\alpha}}(f_{\alpha}) = q_{U_{\alpha}}(f'_{\alpha})$, then $f_{\alpha} - f'_{\alpha} \in \Gamma(U_{\alpha}; \mathcal{R})$ and thus $q \circ f_{\alpha} = q \circ f'_{\alpha} \in \Gamma(U_{\alpha}; \mathcal{S}/\mathcal{R})$. Since

$$\left[(U_{\alpha}, q_{U_{\alpha}}(f_{\alpha}))_{\alpha \in \mathcal{A}} \right] \in \overline{\Gamma}(U; \mathcal{S}/\mathcal{R}),$$

for every pair $\alpha, \beta \in \mathcal{A}$ and every point $p \in U_{\alpha} \cap U_{\beta}$ there exists a neighborhood $W \subset U_{\alpha} \cap U_{\beta}$ of p such that $q_W(f_{\alpha}|_W) = q_W(f_{\beta}|_W)$ and thus $q \circ f_{\alpha}|_W = q \circ f_{\beta}|_W$. Since $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover of U, it follows that $\varphi_U([(U_{\alpha}, q_{U_{\alpha}}(f_{\alpha}))_{\alpha \in \mathcal{A}}])$ is a well-defined (continuous) section of \mathcal{S}/\mathcal{R} over U, i.e. an element of $\Gamma(U; \mathcal{S}/\mathcal{R})$, as required. If

$$(U_{\alpha}, q_{U_{\alpha}}(f_{\alpha}))_{\alpha \in \mathcal{A}} \sim (U'_{\alpha'}, q_{U'_{\alpha'}}(f'_{\alpha'}))_{\alpha' \in \mathcal{A}'},$$

for every $p \in U_{\alpha} \cap U'_{\alpha'}$ there exists a neighborhood W of p in $U_{\alpha} \cap U'_{\alpha'}$ such that $q_W(f_{\alpha}|_W) = q_W(f_{\alpha'}|_W)$ and thus $q \circ f_{\alpha}|_W = q \circ f_{\alpha'}|_W$. So $\varphi_U([(U_{\alpha}, q_{U_{\alpha}}(f_{\alpha}))_{\alpha \in \mathcal{A}}])$ depends only on $[(U_{\alpha}, q_{U_{\alpha}}(f_{\alpha}))_{\alpha \in \mathcal{A}}]$, and not $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}$, i.e. the map

$$\varphi_U \colon \Gamma(U; \mathcal{S}/\mathcal{R}) \longrightarrow \Gamma(U; \mathcal{S}/\mathcal{R})$$

is well-defined. Since q and $q_{U_{\alpha}}$ are homomorphisms of K-modules, so is φ_U . It is immediate that φ_U commutes with the restriction maps and therefore $\{\varphi_U\}$ is a homomorphism of presheaves.

If $q \circ f_{\alpha} = 0 \in \Gamma(U; S/\mathcal{R})$, then $f_{\alpha} \in \Gamma(U; \mathcal{R}) \subset \Gamma(U; S)$ and $q_{U_{\alpha}}(f_{\alpha}) = 0 \in \overline{\Gamma}(U; S/\mathcal{R})$. Thus, $\{\varphi_U\}$ is injective. On the other hand, suppose $g \in \Gamma(U; S/\mathcal{R})$. For each $p \in X$, choose $s(p) \in S_p$ such that q(s(p)) = g(p). Since $\pi : S \longrightarrow X$ and $\pi' : S/\mathcal{R} \longrightarrow X$ are local homeomorphisms, for each $p \in X$ there exist neighborhoods U_p of p in $U, U_{s(p)}$ of s(p) in S, and $U_{g(p)}$ of g(p) in S/\mathcal{R} such that

$$\pi: U_{s(p)} \longrightarrow U_p$$
 and $\pi': U_{q(p)} \longrightarrow U_p$

are homeomorphisms. Since $\pi = \pi' \circ q$, $q: U_{s(p)} \longrightarrow U_{g(p)}$ is also a homeomorphism. Let

$$f_p = \left\{ \pi |_{U_{s(p)}} \right\}^{-1} \colon U_p \longrightarrow U_{s(p)} \subset \mathcal{S}.$$

Since $\pi' \circ g = \mathrm{id}_X$, it follows that

$$q \circ f_p = q \circ \left\{ \pi|_{U_{s(p)}} \right\}^{-1} = q \circ \left\{ q|_{U_{s(p)}} \right\}^{-1} \circ \left\{ \pi'|_{U_{g(p)}} \right\}^{-1} \circ \left\{ \pi' \circ g \right\}|_{U_p} = g|_{U_p}.$$

We conclude that

$$\left[(U_p, q_{U_p}(f_p))_{p \in U} \right] \in \overline{\Gamma}(U; \mathcal{S}/\mathcal{R}) \quad \text{and} \quad \varphi_U \left(\left[(U_p, q_{U_p}(f_p))_{p \in U} \right] \right) = g,$$

i.e. $\{\varphi_U\}$ is surjective. Note that if $p_1, p_2 \in U$, then

$$q \circ f_{p_1} \big|_{U_{p_1} \cap U_{p_2}} = g \big|_{U_{p_1} \cap U_{p_2}} = q \circ f_{p_2} \big|_{U_{p_1} \cap U_{p_2}} \implies q_{U_{p_1} \cap U_{p_2}} \left(f_{p_1} \big|_{U_{p_1} \cap U_{p_2}} \right) = q_{U_{p_1} \cap U_{p_2}} \left(f_{p_2} \big|_{U_{p_1} \cap U_{p_2}} \right),$$

i.e. the overlap condition is indeed satisfied.

Note: It follows from (a) that $\overline{\mathcal{P}}$ is a complete pre-sheaf. We now check this directly.

If $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover of U and $f_{\alpha} \in S_{U_{\alpha}}$ are elements satisfying the overlap condition in the definition of \bar{S}_U above, denote by $[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}] \in \bar{S}_U$ the equivalence class of $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}$. If $r \in K$, let

$$r \cdot [(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}] = [(U_{\alpha}, r \cdot f_{\alpha})_{\alpha \in \mathcal{A}}].$$

The tuple $(U_{\alpha}, r \cdot f_{\alpha})_{\alpha \in \mathcal{A}}$ still satisfies the overlap condition (the same open sets W work, since $\rho_{W,U_{\alpha}}$ and $\rho_{W,U_{\beta}}$ are homomorphisms of K-modules) and therefore $[(U_{\alpha}, r \cdot f_{\alpha})_{\alpha \in \mathcal{A}}] \in \bar{S}_U$. If $(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \sim (U'_{\alpha'}, f'_{\alpha'})_{\alpha' \in \mathcal{A}'}$, then

$$(U_{\alpha}, r \cdot f_{\alpha})_{\alpha \in \mathcal{A}} \sim (U'_{\alpha'}, r \cdot f'_{\alpha'})_{\alpha' \in \mathcal{A}'}$$

(the same open sets W work) and therefore the multiplication map $K \times \bar{S}_U \longrightarrow \bar{S}_U$ is well-defined. If

$$\left[(U_{\alpha_1}, f_{\alpha_1})_{\alpha_1 \in \mathcal{A}_1} \right], \left[(U_{\alpha_2}, f_{\alpha_2})_{\alpha_2 \in \mathcal{A}_2} \right] \in \bar{S}_U,$$

define

$$\left[(U_{\alpha_1}, f_{\alpha_1})_{\alpha_1 \in \mathcal{A}_1} \right] + \left[(U_{\alpha_2}, f_{\alpha_2})_{\alpha_2 \in \mathcal{A}_2} \right] = \left[(U_{\alpha_1} \cap U_{\alpha_2}, \rho_{U_{\alpha_1} \cap U_{\alpha_2}, U_{\alpha_1}} f_{\alpha_1} + \rho_{U_{\alpha_1} \cap U_{\alpha_2}, U_{\alpha_2}} f_{\alpha_2})_{\alpha_1 \in \mathcal{A}_1, \alpha_2 \in \mathcal{A}_2} \right].$$

The tuple

$$(U_{\alpha_1} \cap U_{\alpha_2}, \rho_{U_{\alpha_1}} \cap U_{\alpha_2}, U_{\alpha_1} f_{\alpha_1} + \rho_{U_{\alpha_1}} \cap U_{\alpha_2}, U_{\alpha_2} f_{\alpha_2})_{\alpha_1 \in \mathcal{A}_1, \alpha_2 \in \mathcal{A}_2}$$

satisfies the overlap condition for the following reason. If $\alpha_1, \beta_1 \in \mathcal{A}_1$ and $\alpha_2, \beta_2 \in \mathcal{A}_2$ and $p \in U_{\alpha_1} \cap U_{\alpha_2} \cap U_{\beta_1} \cap U_{\beta_2}$, there exists an open neighborhood W of p in this 4-fold intersection such that

$$\rho_{W,U_{\alpha_1}} f_{\alpha_1} = \rho_{W,U_{\beta_1}} f_{\beta_1}, \qquad \rho_{W,U_{\alpha_2}} f_{\alpha_2} = \rho_{W,U_{\beta_2}} f_{\beta_2};$$

this open set W is obtained by intersecting the two W's in the overlap condition for the two tuples being summed. This open set W also works for the sum tuple:

$$\rho_{W,U_{\alpha_{1}}\cap U_{\alpha_{2}}}(\rho_{U_{\alpha_{1}}\cap U_{\alpha_{2}},U_{\alpha_{1}}}f_{\alpha_{1}}+\rho_{U_{\alpha_{1}}\cap U_{\alpha_{2}},U_{\alpha_{2}}}f_{\alpha_{2}}) = \rho_{W,U_{\alpha_{1}}}f_{\alpha_{1}}+\rho_{W,U_{\alpha_{2}}}f_{\alpha_{2}}
= \rho_{W,U_{\beta_{1}}}f_{\beta_{1}}+\rho_{W,U_{\beta_{2}}}f_{\beta_{2}}
= \rho_{W,U_{\beta_{1}}\cap U_{\beta_{2}}}(\rho_{U_{\beta_{1}}\cap U_{\beta_{2}},U_{\beta_{1}}}f_{\beta_{1}}+\rho_{U_{\beta_{1}}\cap U_{\beta_{2}},U_{\beta_{2}}}f_{\beta_{2}}).$$
(1)

Thus,

$$\left[(U_{\alpha_1} \cap U_{\alpha_2}, \rho_{U_{\alpha_1}} \cap U_{\alpha_2}, U_{\alpha_1} f_{\alpha_1} + \rho_{U_{\alpha_1}} \cap U_{\alpha_2}, U_{\alpha_2} f_{\alpha_2})_{\alpha_1 \in \mathcal{A}_1, \alpha_2 \in \mathcal{A}_2} \right] \in \bar{S}_U.$$

 \mathbf{If}

$$(U_{\alpha_1}, f_{\alpha_1})_{\alpha_1 \in \mathcal{A}_1} \sim (U'_{\alpha'_1}, f'_{\alpha'_1})_{\alpha'_1 \in \mathcal{A}'_1}$$
 and $(U_{\alpha_2}, f_{\alpha_2})_{\alpha_2 \in \mathcal{A}_2} \sim (U'_{\alpha'_2}, f'_{\alpha'_2})_{\alpha'_2 \in \mathcal{A}'_2}$

then

$$(U_{\alpha_{1}} \cap U_{\alpha_{2}}, \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{1}}} f_{\alpha_{1}} + \rho_{U_{\alpha_{1}} \cap U_{\alpha_{2}}, U_{\alpha_{2}}} f_{\alpha_{2}})_{\alpha_{1} \in \mathcal{A}_{1}, \alpha_{2} \in \mathcal{A}_{2}} \\ \sim (U'_{\alpha'_{1}} \cap U'_{\alpha'_{2}}, \rho_{U'_{\alpha'_{1}} \cap U'_{\alpha'_{2}}, U'_{\alpha'_{1}}} f'_{\alpha'_{1}} + \rho_{U'_{\alpha'_{1}} \cap U'_{\alpha'_{2}}, U'_{\alpha'_{2}}} f'_{\alpha'_{2}})_{\alpha'_{1} \in \mathcal{A}_{1}', \alpha'_{2} \in \mathcal{A}_{2}'}$$

as we can use the intersection of the open sets W corresponding to (α_1, α'_1) and (α'_2, α'_2) by a computation similar to (1) above. Thus, \bar{S}_U is a K-module.

If $U \subset V$ and $[(V_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}}] \in \bar{S}_V$, then

$$\left[(V_{\alpha} \cap U, \rho_{V_{\alpha} \cap U, V_{\alpha}} f_{\alpha})_{\alpha \in \mathcal{A}} \right] \in \bar{S}_{U_{\alpha}}$$

the overlap condition still holds, with W used for the first tuple replaced by $W \cap U$. Furthermore,

$$\begin{bmatrix} (V_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \end{bmatrix} = \begin{bmatrix} (V'_{\alpha'}, f'_{\alpha'})_{\alpha' \in \mathcal{A}'} \end{bmatrix} \in \bar{S}_{V} \\ \implies \begin{bmatrix} (V_{\alpha} \cap U, \rho_{V_{\alpha} \cap U, V_{\alpha}} f_{\alpha})_{\alpha \in \mathcal{A}} \end{bmatrix} = \begin{bmatrix} (V'_{\alpha} \cap U, \rho_{V'_{\alpha'} \cap U, V'_{\alpha'}} f'_{\alpha'})_{\alpha' \in \mathcal{A}'} \end{bmatrix} \in \bar{S}_{U},$$

as each W used in the first equivalence condition can be replaced with $W \cap U$. Thus, the map $\bar{\rho}_{U,V}$ is well-defined. It must be a homomorphism of K-modules, because $\rho_{U,V}$ is. Furthermore, if $U \subset V \subset W$,

$$\bar{\rho}_{U,W} = \bar{\rho}_{U,V} \circ \bar{\rho}_{V,W}$$

since $\rho_{U',W'} = \rho_{U',V'} \circ \rho_{V',W'}$ whenever $U' \subset V' \subset W'$ are open subsets of X. Thus, $\overline{\mathcal{P}} = \{\overline{S}, \overline{\rho}_{U,V}\}$ is indeed a presheaf on X.

Suppose U is an open subset of X and $\{V_{\gamma}\}_{\gamma\in\Gamma}$ is an open cover of U. Suppose in addition that

$$\left[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \right] \in \bar{S}_{U}, \quad \left[(U_{\alpha'}', f_{\alpha'}')_{\alpha' \in \mathcal{A}'} \right] \in \bar{S}_{U}, \quad \bar{\rho}_{V_{\gamma}, U} \left[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \right] = \bar{\rho}_{V_{\gamma}, U} \left[(U_{\alpha'}', f_{\alpha'}')_{\alpha' \in \mathcal{A}'} \right] \quad \forall \ \gamma \in \Gamma.$$

By definition,

$$\bar{\rho}_{V_{\gamma},U}\big[(U_{\alpha},f_{\alpha})_{\alpha\in\mathcal{A}}\big] = \big[(U_{\alpha}\cap V_{\gamma},\rho_{U_{\alpha}\cap V_{\gamma},U_{\alpha}}f_{\alpha})_{\alpha\in\mathcal{A}}\big] \in \bar{S}_{V_{\gamma}},\\ \bar{\rho}_{V_{\gamma},U}\big[(U_{\alpha'}',f_{\alpha'}')_{\alpha'\in\mathcal{A}'}\big] = \big[(U_{\alpha'}'\cap V_{\gamma},\rho_{U_{\alpha'}'\cap V_{\gamma},U_{\alpha'}'}f_{\alpha'}')_{\alpha'\in\mathcal{A}'}\big] \in \bar{S}_{V_{\gamma}}.$$

By definition of the equality of the two, for every $p \in U_{\alpha} \cap U'_{\alpha'} \cap V_{\gamma}$ there exists a neighborhood $W \subset U_{\alpha} \cap U'_{\alpha'} \cap V_{\gamma}$ of p such that

$$\rho_{W,U_{\alpha}}f_{\alpha} = \rho_{W,U_{\alpha}\cap V_{\gamma}}(\rho_{U_{\alpha}\cap V_{\gamma},U_{\alpha}}f_{\alpha})$$
$$= \rho_{W,U'_{\alpha'}\cap V_{\gamma}}(\rho_{U'_{\alpha'}\cap V_{\gamma},U'_{\alpha'}}f_{\alpha'}) = \rho_{W,U_{\alpha'}}f'_{\alpha'}.$$

By definition of equivalence, this means that

$$(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \sim (U_{\alpha}, f'_{\alpha'})_{\alpha' \in \mathcal{A}'} \quad \text{i.e.} \quad \left[(U_{\alpha}, f_{\alpha})_{\alpha \in \mathcal{A}} \right] = \left[(U'_{\alpha'}, f'_{\alpha'})_{\alpha' \in \mathcal{A}'} \right] \in \bar{S}_U.$$

Thus, $\overline{\mathcal{P}}$ satisfies (C_1) of Definition 5.7.

Suppose U is an open subset of X, $\{V_{\gamma}\}_{\gamma\in\Gamma}$ is an open cover of U, $[(U_{\gamma,\alpha}, f_{\gamma,\alpha})_{\alpha\in\mathcal{A}_{\gamma}}]\in \bar{S}_{V_{\gamma}}$, and

$$\bar{\rho}_{V_{\gamma_1}\cap V_{\gamma_2},V_{\gamma_1}}\left[(U_{\gamma_1,\alpha},f_{\gamma_1,\alpha})_{\alpha\in\mathcal{A}_{\gamma_1}}\right] = \bar{\rho}_{V_{\gamma_1}\cap V_{\gamma_2},V_{\gamma_2}}\left[(U_{\gamma_2,\alpha},f_{\gamma_2,\alpha})_{\alpha\in\mathcal{A}_{\gamma_2}}\right] \quad \forall \ \gamma_1,\gamma_2\in\Gamma.$$

By definition, this equality implies that for all $\gamma_1, \gamma_2 \in \Gamma$, $\alpha_1 \in \mathcal{A}_{\gamma_1}$, $\alpha_2 \in \mathcal{A}_{\gamma_2}$, and $p \in U_{\gamma_1,\alpha_1} \cap U_{\gamma_2,\alpha_2}$, there exists a neighborhood W of p in $U_{\gamma_1,\alpha_1} \cap U_{\gamma_2,\alpha_2}$ such that

$$\rho_{W,U_{\gamma_{1},\alpha_{1}}} f_{\gamma_{1},\alpha_{1}} = \rho_{W,U_{\gamma_{1},\alpha_{1}}\cap V_{\gamma_{2}}} (\rho_{U_{\gamma_{1},\alpha_{1}}\cap V_{\gamma_{2}},U_{\gamma_{1},\alpha_{1}}} f_{\gamma_{1},\alpha_{1}}) \\
= \rho_{W,U_{\gamma_{2},\alpha_{2}}\cap V_{\gamma_{1}}} (\rho_{U_{\gamma_{2},\alpha_{2}}\cap V_{\gamma_{1}},U_{\gamma_{2},\alpha_{2}}} f_{\gamma_{2},\alpha_{2}}) = \rho_{W,U_{\gamma_{2},\alpha_{2}}} f_{\gamma_{2},\alpha_{2}}.$$

Thus, the collection $(U_{\gamma,\alpha}, f_{\gamma,\alpha})_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma}$ satisfies the overlap condition in the definition of \bar{S}_U and

 $\left[(U_{\gamma,\alpha}, f_{\gamma,\alpha})_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma} \right] \in \bar{S}_{U} \quad \text{s.t.} \quad \bar{\rho}_{V_{\gamma}, U} \left(\left[(U_{\gamma,\alpha}, f_{\gamma,\alpha})_{\alpha \in \mathcal{A}_{\gamma}, \gamma \in \Gamma} \right] \right) = \left[(U_{\gamma,\alpha}, f_{\gamma,\alpha})_{\alpha \in \mathcal{A}_{\gamma}} \right] \quad \forall \gamma \in \Gamma.$

Thus, $\overline{\mathcal{P}}$ satisfies (C_2) of Definition 5.7 and therefore is a complete presheaf.

Problem 2: Chapter 5, #17 (5pts)

Give an example of a fine sheaf which contains a subsheaf which is not fine.

The sheaf S of germs of continuous functions over a topological space X is a fine sheaf by 5.10 (the argument in the continuous case is the same as in the smooth case). It contains the sheaf $\underline{\mathbb{R}} \equiv X \times \mathbb{R}_{\text{discreet}}$ of germs of locally constant functions. By 5.31, $\check{H}^p(X;\underline{\mathbb{R}}) \approx H_{\text{sing}}^p(X;\mathbb{R})$; thus, by 5.33 $\underline{\mathbb{R}}$ is not a fine sheaf as long as $H_{\text{sing}}^p(X;\mathbb{R}) \neq 0$ for some $p \neq 0$ (e.g. $X = S^1$ by deRham or Hurewicz's theorem). A similar example is obtained by considering $\underline{\mathbb{R}}$ as the subsheaf of germs of locally constant smooth functions contained in the sheaf of germs of smooth 0-forms \mathcal{E}^0 . In addition, if \mathcal{S} is any sheaf, the sheaf \mathcal{S}_0 of germs of discontinuous sections of \mathcal{S} is a fine sheaf (see 5.22) and contains \mathcal{S} as the subsheaf of germs of a fine sheaf.

In fact, the sheaf $\underline{K} \equiv X \times K_{\text{discreet}}$, where K is a ring with unity 1, is not fine as long as X contains two nonempty connected subsets V_1 and V_2 such that $V_1 \cap V_2 \neq \emptyset$, $V_1 \not\subset V_2$, and $V_2 \not\subset V_1$. If so, let U_1 be the complement of a point x_2 in $V_2 - V_1$ and U_2 be the complement of a point x_1 in $V_1 - V_2$. Then, $\{U_1, U_2\}$ is a locally finite open cover of X (as long as X is T1). If $L: \underline{K} \longrightarrow \underline{K}$ is any sheaf homomorphism, the sets

$$A \equiv \left\{ x \in X \colon L_x = 0 \right\} = \pi_1 \left(L^{-1}(X \times 0) \cap X \times 1 \right),$$

$$B \equiv \left\{ x \in X \colon L_x \neq 0 \right\} = \pi_1 \left(L^{-1}(X \times (K-0)) \cap X \times 1 \right)$$

are open and disjoint in X, since $X \times 0$, $X \times 1$ and $X \times (K-0)$ are open in \underline{K} , L a continuous map, and $\pi_1: \underline{K} \longrightarrow X$ is a local homeomorphism which is injective on $X \times 1$. Thus, $(V_1 \cup V_2) \cap A$ and $(V_1 \cup V_2) \cap B$ form an open partition of $V_1 \cup V_2$. Since $V_1 \cup V_2$ is connected, every sheaf homomorphism $L: \underline{K} \longrightarrow \underline{K}$ is either identically 0 on $V_1 \cup V_2$ or nowhere 0 on $V_1 \cup V_2$. It follows that there exists no partition of identity $\{L_1, L_2\}$ on \underline{K} subordinate to $\{U_1, U_2\}$: L_1 would have to vanish at $p_2 \in V_2 - U_1$, because the support of L_1 must be contained in U_1 , and would have to equal the identity at $p_1 \in V_1 - U_2$, because the support of L_2 must be contained in U_2 and $L_1 + L_2 = id$.

Problem 3 (10pts)

Let K be any ring containing 1. For each $i \in \mathbb{Z}^+$, let $V_i = K$; this is a K-module. Whenever $i \leq j$, define

$$\rho_{ji}: V_i \longrightarrow V_j \qquad by \qquad \rho_{ji}(v) = 2^{j-i}v;$$

this is a homomorphism of K-modules. Since $\rho_{ki} = \rho_{kj}\rho_{ji}$ whenever $i \leq j \leq k$, we have a directed system and get a direct-limit K-module

$$V_{\infty} = \overrightarrow{\lim_{\mathbb{Z}^+}} V_i = \lim_{i \to \infty} V_i.$$

- (a) Suppose $2=0 \in K$ (e.g. $K=\mathbb{Z}_2$). Show that $V_{\infty}=\{0\}$.
- (b) Suppose 2 is a unit in K (e.g. $K = \mathbb{R}$). Show that $V_{\infty} \approx K$ as K-modules.
- (c) Suppose 2 is not a unit in K, but $2 \neq 0 \in K$, and K is an integral domain (e.g. $K = \mathbb{Z}$). Show that the K-module V_{∞} is not finitely generated.

An element of V_{∞} is an equivalence class [i, v], where $i \in \mathbb{Z}^+$, $v \in V_i$, and [i, v] = [j, w] if there exists $k \ge i, j$ such that $2^{k-i}v = 2^{k-j}w \in K$; in particular, $[i, v] = [j, 2^{j-i}v]$ whenever $i \le j$.

- (a) Since 2=0, [i, v] = [i+1, 2v] = [i+1, 0] for all $[i, v] \in V_{\infty}$; so $V_{\infty} = \{0\}$.
- (b) Define a homomorphism

$$h: K \longrightarrow V_{\infty}$$
 by $v \longrightarrow [1, v].$

If h(v) = 0 for some $v \in K$, then $2^{j+1-1}v = 0 \in V_{j+1}$ for some $j \ge 1$. Since 2 is a unit in K (has an inverse), it follows that $v = 0 \in V_{j+1} = K$; thus, h is injective. On the other hand, for every $j \in \mathbb{Z}^+$ and $w \in V_j = K$,

$$w = 2^{j-1} \cdot (2^{-1})^{j-1} w \qquad \Longrightarrow \qquad [j,w] = \left[1, (2^{-1})^{j-1} w\right] = h\left((2^{-1})^{j-1} w\right);$$

thus, h is also surjective.

(c) Suppose V_{∞} is spanned by $[i_1, v_1], \ldots, [i_k, v_k]$ for some $i_1, \ldots, i_k \in \mathbb{Z}^+$ and $v_1, \ldots, v_k \in K$. Let $i = \max\{i_1, \ldots, i_k\}$. Since $[i_l, v_l] = [i, 2^{i-i_l}v_k \cdot 1]$, V_{∞} is spanned by the single element [i, 1]. In particular, [i+1, 1] = k[i, 1] for some $k \in K$ and so

$$2^{(j+1)-(i+1)} \cdot 1 = 2^{(j+1)-i} \cdot k \in V_{j+1} = K$$

for some $j \ge i$. Thus, $2^{j-i}(2k-1) = 0 \in K$. Since K is an integral domain, it follows that 2k = 1, contrary to the assumption that 2 is not a unit in K.