MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 7

Problem 1 (15pts)

Let X be a path-connected topological space and $(S_*(X), \partial)$ the singular chain complex of continuous simplices into X with integer coefficients. Denote by $H_1(X; \mathbb{Z})$ the corresponding first homology group. (a) Show that there exists a well-defined surjective homomorphism

$$h: \pi_1(X, x_0) \longrightarrow H_1(X; \mathbb{Z}).$$

(b) Show that the kernel of this homomorphism is the commutator subgroup of $\pi_1(X, x_0)$ so that h induces an isomorphism

$$\Phi \colon \pi_1(X, x_0) / \left[\pi_1(X, x_0), \pi_1(X, x_0) \right] \longrightarrow H_1(X; \mathbb{Z}).$$

This is the first part of the Hurewicz Theorem.

The motivation for this result is that $\pi_1(X, x_0)$ is generated by loops based at $x_0 \in X$, i.e. continuous maps $\alpha: I \longrightarrow X$ such that $\alpha(0) = \alpha(1) = x_0$, while $H_1(X; \mathbb{Z})$ is generated by formal linear combinations of 1-simplicies, i.e. continuous maps

$$f: \Delta^1 = I \longrightarrow X.$$

In particular, a loop (as well as any path) in X is a 1-simplex. However, the equivalence relations on paths and 1-simplicies used to define $\pi_1(X, x_0)$ and $H_1(X; \mathbb{Z})$ and the groups structures are quite different. So we will need to show that equivalent paths are equivalent as 1-simplicies and a product of two paths corresponds to the sum of the two 1-simplicies.

We will denote the path-homotopy equivalence class of a path α (loop or not) by $[\alpha]$ and the image of a 1-simplex in $S_1(X)/\partial S_2(X)$ by $\{\alpha\}$. It will be essential to distinguish between a point $x_0 \in X$ and the k-simplex taking the entire standard k-simplex Δ^k to x_0 . Denote the latter by f_{k,x_0} .

Lemma 0: If $\alpha: I \longrightarrow X$ is a loop, $\partial \alpha = 0$. Lemma 1: If $x_0 \in X$, $f_{1,x_0} \in \partial S_2(X)$. Lemma 2: If $\alpha, \beta: I \longrightarrow X$ are path-homotopic, then $\alpha - \beta \in \partial S_2(X)$. Lemma 3: If $\alpha, \beta: I \longrightarrow X$ are paths such that $\alpha(1) = \beta(0)$, then $\alpha + \beta - \alpha * \beta \in \partial S_2(X)$. Lemma 4: If $\alpha: I \longrightarrow X$ and $\bar{\alpha}: I \longrightarrow X$ is its inverse, then $\alpha + \bar{\alpha} \in \partial S_2(X)$. Lemma 5: If $F: \Delta^2 \longrightarrow X$ is a 2-simplex, then

$$\left[(F \circ \iota_0^2) * (F \circ \iota_1^2) * (F \circ \iota_2^2) \right] = [\mathrm{id}] \in \pi_1 (X, F(1, 0))$$

First, recall the maps ι_i^1 and ι_i^2 used to define the boundaries of 1- and 2-simplicies:

$$\begin{split} \iota_j^1 \colon \Delta^0 &\longrightarrow \Delta^1, \qquad \iota_0^1(0) = 1, \quad \iota_1^1(0) = 0; \\ \iota_j^2 \colon \Delta^1 &\longrightarrow \Delta^2, \qquad \iota_0^2(s) = (1-s,s), \quad \iota_1^2(s) = (0,s), \quad \iota_2^2(s) = (s,0) \quad \forall \ s \in I; \end{split}$$

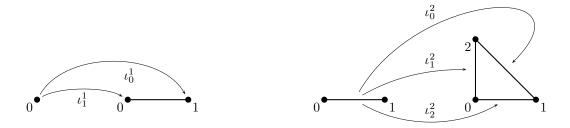


Figure 1: The boundary maps $\iota_j^1 \colon \Delta^0 \longrightarrow \Delta^1$ and $\iota_j^2 \colon \Delta^1 \longrightarrow \Delta^2$.

see Figure 1. These maps respect the orders of the vertices. By the above, if α is a loop based at x_0 ,

$$\partial \alpha = \alpha \circ \iota_0^1 - \alpha \circ \iota_1^1 = f_{0,\alpha(1)} - f_{0,\alpha(0)} = f_{0,x_0} - f_{0,x_0} = 0$$

For Lemma 1, note that

$$\partial f_{2,x_0} = f_{2,x_0} \circ \iota_0^2 - f_{2,x_0} \circ \iota_1^2 + f_{2,x_0} \circ \iota_2^2 = f_{1,x_0} - f_{1,x_0} + f_{1,x_0} = f_{1,x_0},$$

since $f_{2,x_0} \circ \iota_j^2$ maps all of I to x_0 . For Lemma 2, choose a path-homotopy from α to β , i.e. a continuous map

$$F: I \times I \longrightarrow X \qquad \text{s.t.} \qquad F(s,0) = \alpha(s), \quad F(s,1) = \beta(s), \quad F(0,t) = F(1,t) \quad \forall \ s,t \in [0,1].$$

There is a quotient map

$$q \colon I \times I \longrightarrow \Delta^2 \qquad \text{s.t.} \qquad q(s,0) = (s,0), \quad q(s,1) = q(0,s), \quad q(0,t) = (0,0), \quad q(1,t) = (1-t,t),$$

i.e. q contracts the left edge of $I \times I$ and maps the other three edges linearly onto the edges of Δ^2 . Since F is constant along the fibers of q, F induces a continuous map

$$\begin{split} \bar{F} \colon \Delta^2 \longrightarrow X \quad \text{s.t.} \quad F = \bar{F} \circ q \quad \Longrightarrow \quad \bar{F}(s,0) = \alpha(s), \quad \bar{F}(0,t) = \beta(t), \quad \bar{F}(s,1-s) = x_1 \quad \forall \ s,t \in I \\ \implies \quad \partial \bar{F} = \bar{F} \circ \iota_0^2 - \bar{F} \circ \iota_1^2 + \bar{F} \circ \iota_2^2 = f_{1,x_1} - \beta + \alpha; \end{split}$$

see Figure 2. Along with Lemma 1, this implies Lemma 2.

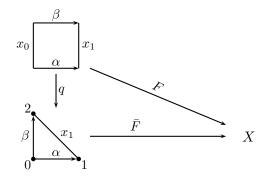


Figure 2: A path homotopy gives rise to a boundary between the corresponding 1-simplices.

For Lemma 3, define

$$F: \Delta^2 \longrightarrow X \qquad \text{by} \qquad F(x, y) = \begin{cases} \alpha(x+2y), & \text{if } x+2y \le 1; \\ \beta(x+2y-1), & \text{if } x+2y \ge 1. \end{cases}$$

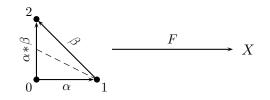


Figure 3: A boundary between the 1-simplex corresponding to a composition of paths and the sum of the 1-simplices corresponding to the paths.

see Figure 3. This map is well-defined and continuous, since it is continuous on the two closed sets and agrees on the overlap, where it equals $\alpha(1) = \beta(0)$. Furthermore,

$$\begin{split} F\left(\iota_0^2(s)\right) &= F(1-s,s) = \beta(s), \qquad F\left(\iota_2^2(s)\right) = F(s,0) = \alpha(s);\\ F\left(\iota_1^2(s)\right) &= F(0,s) = \begin{cases} \alpha(2s), & \text{if } 2s \leq 1;\\ \beta(2s-1), & \text{if } 2s \geq 1; \end{cases}\\ \implies \quad \partial F &= F \circ \iota_0^2 - F \circ \iota_1^2 + F \circ \iota_2^2 = \beta - \alpha * \beta + \alpha. \end{split}$$

For Lemma 4, note that

$$\alpha + \bar{\alpha} = \left(\alpha + \bar{\alpha} - \alpha * \bar{\alpha}\right) + \left(\alpha * \bar{\alpha} - f_{1,\alpha(0)}\right) + f_{1,\alpha(0)}$$

Since $\alpha * \bar{\alpha}$ is path-homotopic to the constant path $f_{1,\alpha(0)}$, each of the three expressions above belongs to $\partial S_2(X)$ by Lemmas 1-3. This implies Lemma 4.

For Lemma 5, choose a continuous map $q\colon I\!\times\!I\!\longrightarrow\!\Delta^2$ such that

$$q(s,0) = \begin{cases} (1-2s,2s), & \text{if } s \in [0,1/2];\\ (0,3-4s), & \text{if } s \in [1/2,3/4];\\ (4s-3,0), & \text{if } s \in [3/4,1]; \end{cases} \qquad q(s,1) = q(0,t) = q(1,t) = (1,0) \quad \forall \ s,t \in I.$$

Then, $F \circ q$ is a path-homotopy from $(F \circ \iota_0^2) * (\overline{(F \circ \iota_1^2)} * (F \circ \iota_2^2))$ to the constant loop $f_{1,F(1,0)}$; see Figure 4.

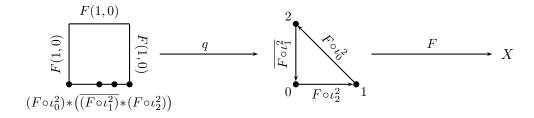


Figure 4: Boundary of a 2-simplex is loop homotopic to the constant loop.

(a) We now define the homomorphism

$$h: \pi_1(X, x_0) \longrightarrow H_1(X; \mathbb{Z})$$
 by $h([\alpha]) = \{\alpha\} \in H_1(X; \mathbb{Z}).$

By Lemma 0, $\partial \alpha = 0$ and thus $\{\alpha\} \in H_1(X; \mathbb{Z})$. By Lemma 2, the map h is well-defined, i.e.

$$[\alpha] = [\beta] \qquad \Longrightarrow \qquad \{\alpha\} = \{\beta\}.$$

By Lemma 3, h is indeed a homomorphism:

$$h([\alpha]*[\beta]) = h([\alpha*\beta]) = \{\alpha*\beta\} = \{\alpha\} + \{\beta\} = h([\alpha]) + h([\beta]).$$

To show that h is surjective, for each $x \in X$ choose a path $\gamma_x \colon (I, 0, 1) \longrightarrow (X, x_0, x)$ from x_0 to x. If

$$c = \sum_{i=1}^{N} a_i \sigma_i \in \mathcal{S}_1(X),$$

let
$$\alpha_c = \left(\gamma_{\sigma_1(0)} * \sigma_1 * \bar{\gamma}_{\sigma_1(1)}\right)^{a_1} * \dots * \left(\gamma_{\sigma_N(0)} * \sigma_N * \bar{\gamma}_{\sigma_N(1)}\right)^{a_N}.$$

This is a product of loops at x_0 . It is essential that $a_i \in \mathbb{Z}$, i.e. we are dealing with integer homology. The loop α_c is not uniquely determined by c, even if the paths γ_x are fixed, as it depends on the ordering of the σ_i 's. This is irrelevant, however, at this point. Since h is a homomorphism,

$$h([\alpha_c]) = \sum_{i=1}^{N} a_i h([\gamma_{\sigma_i(0)} * \sigma_i * \bar{\gamma}_{\sigma_i(1)}]) = \sum_{i=1}^{N} a_i \{\gamma_{\sigma_i(0)} * \sigma_i * \bar{\gamma}_{\sigma_i(1)}\}$$
$$= \sum_{i=1}^{N} a_i (\{\gamma_{\sigma_i(0)}\} + \{\sigma_i\} - \{\gamma_{\sigma_i(1)}\}) = \{c\} + \sum_{i=1}^{N} a_i (\{\gamma_{\sigma_i(0)}\} - \{\gamma_{\sigma_i(1)}\}).$$

The third equality above follows from Lemma 3 (not from h being a homomorphism). If $c \in \ker \partial$,

$$\sum_{i=1}^{N} a_i (f_{1,\sigma_i(1)} - f_{1,\sigma_i(0)}) = \partial c = 0 \implies \sum_{i=1}^{N} a_i (\{\gamma_{\sigma_i(0)}\} - \{\gamma_{\sigma_i(1)}\}) = 0$$
$$\implies h([\alpha_c]) = \{c\} \in H_1(X; \mathbb{Z}) \quad \forall \ c \in \ker \partial.$$

This shows that h is surjective.

(b) Since the group $H_1(X;\mathbb{Z})$ is abelian, h must vanish on the commutator subgroup of $\pi_1(X;x_0)$. Since this subgroup is normal, h induces a group homomorphism

$$\Phi: \operatorname{Abel}(\pi_1(X, x_0)) \equiv \pi_1(X, x_0) / [\pi_1(X, x_0), \pi_1(X, x_0)] \longrightarrow H_1(X; \mathbb{Z}).$$

We will show that this map is an isomorphism by constructing an inverse Ψ for Φ .

If α is a loop based at x_0 , denote its image (and the image of $[\alpha]$) in Abel $(\pi_1(X, x_0))$ by $\langle \alpha \rangle$. For each 1-simplex $\sigma \in \mathcal{S}_1(X)$, let

$$g(\sigma) = \langle \alpha_{\sigma} \rangle \in \operatorname{Abel}(\pi_1(X, x_0)).$$

Since $\mathcal{S}_1(X)$ is a free abelian group with a basis consisting of 1-simplicies σ and $Abel(\pi_1(X, x_0))$ is abelian, g extends to a homomorphism

$$g: \mathcal{S}_1(X) \longrightarrow \operatorname{Abel}(\pi_1(X, x_0)).$$

If $F: \Delta^2 \longrightarrow X$ is a 2-simplex,

$$\begin{split} g(\partial F) &= g(F \circ \iota_0^2) - g(F \circ \iota_1^2) + g(F \circ \iota_2^2) \\ &= \left\langle \gamma_{F(\iota_0^2(0))} * (F \circ \iota_0^2) * \bar{\gamma}_{F(\iota_0^2(1))} \right\rangle - \left\langle \gamma_{F(\iota_1^2(0))} * (F \circ \iota_1^2) * \bar{\gamma}_{F(\iota_1^2(1))} \right\rangle + \left\langle \gamma_{F(\iota_2^2(0))} * (F \circ \iota_2^2) * \bar{\gamma}_{F(\iota_2^2(1))} \right\rangle \\ &= \left\langle \left(\gamma_{F(1,0)} * (F \circ \iota_0^2) * \bar{\gamma}_{F(0,1)} \right) * \left(\gamma_{F(0,0)} * (F \circ \iota_1^2) * \bar{\gamma}_{F(0,1)} \right)^{-1} * \left(\gamma_{F(0,0)} * (F \circ \iota_2^2) * \bar{\gamma}_{F(1,0)} \right) \right\rangle \\ &= \left\langle \gamma_{F(1,0)} * \left((F \circ \iota_0^2) * \overline{(F \circ \iota_1^2)} * (F \circ \iota_2^2) \right) * \bar{\gamma}_{F(1,0)} \right\rangle. \end{split}$$

By Lemma 5, $(F \circ \iota_0^2) * \overline{(F \circ \iota_1^2)} * (F \circ \iota_2^2)$ is path-homotopic to the constant loop at F(1,0) and thus

$$[\gamma_{F(1,0)} * ((F \circ \iota_0^2) * \overline{(F \circ \iota_1^2)} * (F \circ \iota_2^2)) * \overline{\gamma}_{F(1,0)}] = [\mathrm{id}] \in \pi_1(X, x_0)$$

$$\Longrightarrow \qquad g(\partial F) = \left\langle \gamma_{F(1,0)} * ((F \circ \iota_0^2) * \overline{(F \circ \iota_1^2)} * (F \circ \iota_2^2)) * \overline{\gamma}_{F(1,0)} \right\rangle = 0 \in \mathrm{Abel}(\pi_1(X, x_0)).$$

It follows that g vanishes on the subgroup $\partial S_2(X)$ of $S_1(X)$ and therefore induces a homomorphism

$$\Psi: \mathcal{S}_1(X) / \partial \mathcal{S}_2(X) \longrightarrow \operatorname{Abel}(\pi_1(X, x_0)).$$

If α is a loop at x_0 , γ_{x_0} is a loop at x_0 , and thus

$$\Psi(\Phi(\langle \alpha \rangle)) = \Psi(\{\alpha\}) = \{\gamma_{\alpha(0)} * \alpha * \bar{\gamma}_{\alpha(1)}\} = \{\gamma_{x_0} * \alpha * \bar{\gamma}_{x_0}\} = \{\gamma_{x_0}\} + \{\alpha\} - \{\gamma_{x_0}\} = \{\alpha\}$$
$$\implies \qquad \Psi \circ \Phi = \mathrm{Id} : \mathrm{Abel}(\pi_1(X, x_0)) \longrightarrow \mathrm{Abel}(\pi_1(X, x_0)).$$

This implies that Φ is injective. On the other hand, it is surjective by part (a).

Problem 2 (10pts)

(a) Prove Mayer-Vietoris for Cohomology: If M is a smooth manifold, $U, V \subset M$ open subsets, and $M = U \cup V$, then there exists an exact sequence

$$\begin{split} 0 &\longrightarrow H^0_{\mathrm{de\,R}}(M) \xrightarrow{f_0} H^0_{\mathrm{de\,R}}(U) \oplus H^0_{\mathrm{de\,R}}(V) \xrightarrow{g_0} H^0_{\mathrm{de\,R}}(U \cap V) \xrightarrow{\delta_0} \\ &\xrightarrow{\delta_0} H^1_{\mathrm{de\,R}}(M) \xrightarrow{f_1} H^1_{\mathrm{de\,R}}(U) \oplus H^1_{\mathrm{de\,R}}(V) \xrightarrow{g_1} H^1_{\mathrm{de\,R}}(U \cap V) \xrightarrow{\delta_1} \\ &\xrightarrow{\delta_1} \dots \\ &\vdots \\ &f_i(\alpha) = (\alpha|_U, \alpha|_V) \quad \text{and} \quad g_i(\beta, \gamma) = \beta|_{U \cap V} - \gamma|_{U \cap V}. \end{split}$$

where

(b) Suppose M is a compact connected orientable n-dimensional submanifold of \mathbb{R}^{n+1} . Show that $\mathbb{R}^{n+1}-M$ has exactly two connected components. How is the compactness of M used?

(a) We construct an exact sequence of cochain complexes and then apply Proposition 5.17 (see of cochain complexes gives les in cohomology). Define

$$\underline{0} \longrightarrow \left(E^*(M), \mathrm{d}_M \right) \xrightarrow{J} \left(E^*(U) \oplus E^*(V), \mathrm{d}_U \oplus \mathrm{d}_V \right) \xrightarrow{g} \left(E^*(U \cap V), \mathrm{d}_{U \cap V} \right) \longrightarrow \underline{0}$$

by $f(\alpha) = \left(\alpha|_U, \alpha|_V \right)$ and $g(\beta, \gamma) = \beta|_{U \cap V} - \gamma|_{U \cap V}.$

The homomorphisms f and g preserve the grading of the complexes (take *p*-forms to *p*-forms) and commute with the differentials by Proposition 2.23b (restriction to a submanifold is the same as the pullback by the inclusion map). Thus, f and g are indeed homomorphisms of cochain complexes. The homomorphisms f is injective since $M = U \cup V$ and it is immediate that $g \circ f = 0$, i.e. $\text{Im} f \subset \ker g$. By the Pasting Lemma for smooth functions, $\text{Im} f \supset \ker g$. Thus, the sequence above is exact at the first two positions. To see that it is exact at the third position, i.e. g is surjective, let $\{\varphi_U, \varphi_V\}$ be a partition of unity subordinate to the open cover $\{U, V\}$ of M, i.e.

$$\varphi_U, \varphi_V \colon M \longrightarrow [0, 1], \quad \operatorname{supp} \varphi_U \subset U, \quad \operatorname{supp} \varphi_V \subset V, \quad \varphi_U + \varphi_V \equiv 1.$$

If $\omega \in E^*(U \cap V)$, define $\varphi_V \omega \in E^*(U)$ and $\varphi_U \omega \in E^*(V)$ by

$$\{\varphi_V\omega\}\big|_p = \begin{cases} \varphi_V(p)\{\omega|_p\}, & \text{if } p \in U \cap V; \\ 0, & \text{if } p \in U - \operatorname{supp} \varphi_V; \end{cases} \qquad \{\varphi_U\omega\}\big|_p = \begin{cases} \varphi_U(p)\{\omega|_p\}, & \text{if } p \in U \cap V; \\ 0, & \text{if } p \in V - \operatorname{supp} \varphi_U. \end{cases}$$

Since $\operatorname{supp} \varphi_V \subset V$ is a closed subset of M, U is the union of the open subsets $U \cap V$ and $U - \operatorname{supp} \varphi_V$. Since the definition of $\varphi_V \omega$ is smooth on $U \cap V$ and $U - \operatorname{supp} \varphi_V$ and agrees on the overlap, $\varphi_V \omega$ is a well-defined smooth form on U, i.e. an element of $E^*(U)$. Similarly, $\varphi_U \omega \in E^*(V)$. By definition,

$$g(\varphi_V\omega,-\varphi_U\omega)=\{\varphi_V\omega\}\big|_{U\cap V}-\big(-\{\varphi_U\omega\}\big|_{U\cap V}\big)=\varphi_V|_{U\cap V}\omega+\varphi_U|_{U\cap V}\omega=\omega.$$

Thus, g is surjective. The Mayer-Vietoris sequence in cohomology is the long exact sequence corresponding to the above short exact sequence of chain complexes via Proposition 5.17.

Note: According to the above and the proof of Proposition 5.17, the MV boundary homomorphism δ is obtained as follows. Choose $\varphi \in C^{\infty}(M)$ such that $\operatorname{supp} \varphi \subset V$ and $\operatorname{supp} \{1-\varphi\} \subset U$. Then,

$$d\varphi \in E^1(M)$$
 s.t. $\operatorname{supp} d\varphi \subset U \cap V.$

Thus, if $\omega \in E^k(U \cap V)$, then $d\varphi \wedge \omega$ is a well-defined k-form on M (it is 0 outside of $\operatorname{supp} d\varphi \subset U \cap V$). If in addition $d\omega = 0$, then $d(d\varphi \wedge \omega) = 0$ and so $d\varphi \wedge \omega$ determines an element of $H^{p+1}_{\operatorname{de} \mathbf{R}}(M)$. Furthermore, for every $\eta \in E^{k-1}(U \cap V)$, $d\varphi \wedge \eta$ is a well-defined k-form on M and

$$d(d\varphi \wedge \eta) = d\varphi \wedge d\eta \in E^{k+1}(M).$$

Thus, the homomorphism

$$\delta_p \colon H^p(U \cap V) \longrightarrow H^{p+1}(M), \qquad [\omega] \longrightarrow [\mathrm{d}\varphi \wedge \omega],$$

is well-defined (the image of $[\omega]$ is independent of the choice of representative ω , since any two such choices differ by an image of d, which is sent to zero by h). This is the boundary homomorphism δ_p of Proposition 5.17 in the given case, with $\varphi_V = \varphi$ and $\varphi_U = 1 - \varphi$. Furthermore, this homomorphism is independent of the choice of φ by Proposition 5.17, but this can also be seen directly. If $\varphi' \in C^{\infty}(M)$ is another function such that $\operatorname{supp} \varphi' \subset V$ and $\operatorname{supp} \{1 - \varphi'\} \subset U$, then $\operatorname{supp} \{\varphi - \varphi'\} \subset U \cap V$ and thus $(\varphi - \varphi')\omega$ is a well-defined k-form on M for every k-form ω on $U \cap V$. If in addition, ω is closed,

$$d((\varphi - \varphi')\omega) = (d\varphi - d\varphi') \wedge \omega = d\varphi \wedge \omega - d\varphi' \wedge \omega \implies [d\varphi \wedge \omega] = [d\varphi' \wedge \omega] \in H^{p+1}(M).$$

In contrast, $d\varphi \wedge \omega$ need not be an exact form on M; it looks like $d(\varphi\omega)$ if $d\omega = 0$, but $\varphi\omega$ is not a well-defined k-form on M because $\sup \varphi \varphi$ is contained in V, not in $U \cap V$, and ω is defined only on $U \cap V$. On the other hand, if $\omega \in E^k(V)$, $\varphi\omega$ is a well-defined k-form on M, and so $[d\varphi \wedge \omega] = 0$ in $H^{p+1}_{deB}(M)$; this corresponds to $\delta_k \circ g_k = 0$.

(b) Since M is a compact subspace of the Hausdorff space \mathbb{R}^{n+1} , $\mathbb{R}^{n+1} - M$ is an open subspace of \mathbb{R}^{n+1} and thus a smooth manifold. Thus, the number of connected components is the dimension of $H^0_{\text{de R}}(\mathbb{R}^{n+1}-M)$ as a real vector space. We will apply Mayer-Vietoris with $U = \mathbb{R}^{n+1} - M$ and V a nice neighborhood of M in \mathbb{R}^{n+1} , so that $\mathbb{R}^{n+1} = U \cup V$. The goal is not to determine $H^*_{\text{de R}}(\mathbb{R}^{n+1})$, but $H^0_{\text{de R}}(U)$.

Let $\mathcal{N} \longrightarrow M$ be the normal bundle of M in \mathbb{R}^{n+1} . Since M and \mathbb{R}^{n+1} are orientable, \mathcal{N} is orientable by Problem 4 on PS6. Since the codimension of M in \mathbb{R}^{n+1} is one, \mathcal{N} is a line bundle. Since it is orientable, \mathcal{N} is trivial, i.e. isomorphic to $M \times \mathbb{R}$, by Lemma 12.1 in *Lecture Notes*. In particular, (\mathcal{N}, M) is diffeomorphic to $(M \times \mathbb{R}, M \times 0)$, via a diffeomorphism restricting to the identity on M. In general, we can choose a neighborhood V of M in \mathbb{R}^{n+1} so that (V, M) is diffeomorphic to (\mathcal{N}, M) , via a diffeomorphism restricting to the identity on M. Thus, in this case, we can choose a neighborhood Vof M in \mathbb{R}^{n+1} such that (\mathcal{N}, M) is diffeomorphism to $(M \times \mathbb{R}, M \times 0)$, via a diffeomorphism restricting to the identity on M. This implies that

$$U \cap V = (\mathbb{R}^{n+1} - M) \cap V = V - M \approx M \times \mathbb{R}^*, \quad \text{where} \quad \mathbb{R}^* = \mathbb{R} - \{0\}.$$

The first four terms of MV for $M = U \cup V$ are

$$0 \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(\mathbb{R}^{n+1}) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^0_{\mathrm{de}\,\mathrm{R}}(V) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U \cap V) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\mathbb{R}^{n+1}).$$

Since \mathbb{R}^{n+1} and M are connected,

$$H^0_{\mathrm{de\,R}}(\mathbb{R}^{n+1}) \approx \mathbb{R}, \quad H^0_{\mathrm{de\,R}}(V) \approx H^0_{\mathrm{de\,R}}(M \times \mathbb{R}) \approx \mathbb{R}, \quad H^0_{\mathrm{de\,R}}(U \cap V) \approx H^0_{\mathrm{de\,R}}(M \times \mathbb{R}^*) \approx \mathbb{R}^2.$$

By the Poincare Lemma, $H^1_{\text{de R}}(\mathbb{R}^{n+1}) = 0$. Thus, the above sequence reduces to

$$0 \longrightarrow \mathbb{R} \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U) \oplus \mathbb{R} \longrightarrow \mathbb{R}^2 \longrightarrow 0.$$

Since this sequence is exact, it follows that $H^0_{\text{de R}}(U) \approx \mathbb{R}^2$, i.e. $\mathbb{R}^{n+1} - M \approx U$ has exactly two connected components.

Problem 3 (10pts)

(a) Show that the inclusion map $S^n \longrightarrow \mathbb{R}^{n+1} - 0$ induces an isomorphism in cohomology. (b) Show that for all $n \ge 0$ and $p \in \mathbb{Z}$,

$$H^p_{\mathrm{de\,R}}(S^n) \approx \begin{cases} \mathbb{R}^2, & \text{if } p = n = 0; \\ \mathbb{R}, & \text{if } p = 0, n, n \neq 0; \\ 0, & \text{otherwise.} \end{cases}$$

(c) Show that S^n is not a product of two positive-dimensional manifolds.

(a) Let $i: S^n \longrightarrow \mathbb{R}^{n+1} - 0$ be the inclusion and

$$r: \mathbb{R}^{n+1} - 0 \longrightarrow S^n, \qquad r(z) = \frac{z}{|z|},$$

the standard retraction. Then, $r \circ i = id_{S^n}$ and $i \circ r$ is smoothly homotopic to $id_{\mathbb{R}^{n+1}-0}$ via the map

$$F(x,t) = (1-t)\frac{z}{|z|} + t z$$

Thus, by Chapter 5, #19,

$$i^* \circ r^* = \operatorname{id}_{S^n}^* = \operatorname{id} \colon H^*_{\operatorname{deR}}(S^n) \longrightarrow H^*_{\operatorname{deR}}(S^n) \quad \text{and} \\ r^* \circ i^* = \operatorname{id}_{\mathbb{R}^{n+1}-0}^* = \operatorname{id} \colon H^*_{\operatorname{deR}}(\mathbb{R}^{n+1}-0) \longrightarrow H^*_{\operatorname{deR}}(\mathbb{R}^{n+1}-0).$$

This means that

$$i^*: H^*_{\operatorname{de} \mathbf{R}}(\mathbb{R}^{n+1}-0) \longrightarrow H^*_{\operatorname{de} \mathbf{R}}(S^n)$$

is an isomorphism.

(b) If p < 0 or p > n, $H^p_{\text{de R}}(S^n) = 0$ by definition because $E^p(S^n) = 0$ in these cases. The space S^0 consists of two points and thus $H^0_{\text{de R}}(S^0) \approx \mathbb{R}^2$. The n, p=1 case is done in 4.18 (it can also be verified from MV).

Suppose $n \ge 1$ and the statement holds for n. Let U and V be the complements of the south and north poles in S^{n+1} , respectively. Since these open subsets of S^{n+1} are diffeomorphic to \mathbb{R}^{n+1} ,

$$H^p_{\mathrm{de\,R}}(U) \approx H^p_{\mathrm{de\,R}}(V) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0, \\ 0, & \text{if } p \neq 0. \end{cases}$$

by the Poincare Lemma. Furthermore, $U \cap V$ is diffeomorphic to $\mathbb{R}^{n+1} - 0$. By part (a) and the induction assumption,

$$H^p_{\operatorname{de} \mathbf{R}}(U \cap V) \approx H^p_{\operatorname{de} \mathbf{R}}(S^n) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0, n; \\ 0, & \text{if } p \neq 0, n. \end{cases}$$

By MV, applied to $S^{n+1} = U \cup V$, the sequence

$$H^{p-1}_{\mathrm{de}\,\mathrm{R}}(U)\oplus H^{p-1}_{\mathrm{de}\,\mathrm{R}}(V)\longrightarrow H^{p-1}_{\mathrm{de}\,\mathrm{R}}(U\cap V)\longrightarrow H^{p}_{\mathrm{de}\,\mathrm{R}}(S^{n+1})\longrightarrow H^{p}_{\mathrm{de}\,\mathrm{R}}(U)\oplus H^{p}_{\mathrm{de}\,\mathrm{R}}(V)$$

is exact for all $p \ge 1$. Thus, if $2 \le p \le n$, $H^p_{\text{de R}}(S^{n+1}) = 0$, since the two groups surrounding $H^p_{\text{de R}}(S^{n+1})$ vanish. In the $p = n+1 \ge 2$ case, the above sequence becomes

$$0 \longrightarrow \mathbb{R} \longrightarrow H^p_{\operatorname{deR}}(S^{n+1}) \longrightarrow 0.$$

Thus, $H^{n+1}_{\text{deR}}(S^{n+1}) \approx \mathbb{R}$. In the remaining p=1 case, we consider the first 5 terms of the long sequence:

$$0 \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(S^{n+1}) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^0_{\mathrm{de}\,\mathrm{R}}(V) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U \cap V) \xrightarrow{\delta_0} H^1_{\mathrm{de}\,\mathrm{R}}(S^{n+1}) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^1_{\mathrm{de}\,\mathrm{R}}(V).$$

Since $n \ge 1, S^{n+1}, U, V$, and $U \cap V$ are connected and this sequence reduces to

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \xrightarrow{\delta_0} H^1_{\mathrm{de}\,\mathrm{R}}(S^{n+1}) \longrightarrow 0.$$

Since this sequence is exact, δ_0 must be the zero homomorphism and thus $H^1_{\text{de R}}(S^{n+1}) = 0$. This completes verification of the inductive step.

Caution: In order to conclude that δ_0 is the zero homomorphism, it is essential that \mathbb{R} is a field, rather than a ring. The same conclusion about δ_0 holds if we replace \mathbb{R} by any field. However, if we replace \mathbb{R} by the ring \mathbb{Z} , we could have

$$0 \longrightarrow \mathbb{Z} \xrightarrow{f_0} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{g_0} \mathbb{Z} \xrightarrow{\delta_0} \mathbb{Z}_2 \longrightarrow 0, \qquad f_0(a) = (a, 0), \quad g_0(b, c) = (0, 2c), \quad \delta_0(d) = d + 2\mathbb{Z}.$$

This is an exact sequence of \mathbb{Z} -modules (i.e. abelian groups). In general, if \mathbb{R} is a ring, the last group must be all torsion.

Remark: The fact that $H^1_{deR}(S^n) = 0$ for $n \ge 2$ can be obtained immediately, without any induction, from Hurewicz Theorem and de Rham Theorem (to be proved):

$$\pi_1(S^n) = 0 \implies H_1(S^n; \mathbb{Z}) = \operatorname{Abel}(\pi_1(S^n)) = 0 \implies H_1(S^n; \mathbb{R}) \approx H_1(S^n; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} = 0$$
$$\implies H^1_{\operatorname{de} \mathbb{R}}(S^n) \approx \left(H_1(S^n; \mathbb{R})\right)^* \approx 0.$$

(c) Suppose $S^n = M^p \times N^q$ for some p, q > 0. Since S^n is compact and orientable, so are M and N (see Problem 5 on the 06 midterm). Let $\alpha \in E^p(M)$ and $\beta \in E^q(N)$ be nowhere-zero top forms. By Problem 5 on the 06 midterm,

$$\pi_1^* \alpha \wedge \pi_2^* \beta \in E^n(S^n)$$

is a nowhere-zero top form. Therefore,

$$\int_{M} \pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta \qquad \Longrightarrow \qquad \left[\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right] \neq 0 \in H^{n}_{\operatorname{de} \mathbf{R}}(S^{n})$$

by Stokes' Theorem. On the other hand,

$$\left[\pi_1^* \alpha \wedge \pi_2^* \beta\right] = \left[\pi_1^* \alpha\right] \wedge \left[\pi_2^* \beta\right] = \pi_1^* [\alpha] \wedge \pi_2^* [\beta].$$

Since 0 < p, q < n, by part (b)

 $H^p_{\mathrm{deR}}(S^n) = 0, \quad H^q_{\mathrm{deR}}(S^n) = 0 \quad \Longrightarrow \quad \pi^*_1[\alpha] = 0, \quad \pi^*_2[\beta] = 0 \quad \Longrightarrow \quad \left[\pi^*_1 \alpha \wedge \pi^*_2 \beta\right] = \pi^*_1[\alpha] \wedge \pi^*_2[\beta] = 0.$ This is a contradiction.

Problem 4 (20pts)

(a) Use Mayer-Vietoris (not Kunneth formula) to compute $H^*_{\text{de R}}(T^2)$, where T^2 is the two-torus, $S^1 \times S^1$. Find a basis for $H^*_{\text{de R}}(T^2)$; justify your answer.

(b) Let Σ_g be a compact connected orientable surface of genus g (donut with g holes). Let $B \subset \Sigma_g$ be a small closed ball or a single point. Relate $H^*_{\operatorname{de R}}(\Sigma_g - B)$ to $H^*_{\operatorname{de R}}(\Sigma_g)$. (c) Show that

$$H^p_{\mathrm{de}\,\mathrm{R}}(\Sigma_g) = \begin{cases} \mathbb{R}, & \text{if } p = 0, 2; \\ \mathbb{R}^{2g}, & \text{if } p = 1; \\ 0, & \text{otherwise.} \end{cases}$$

(a) View T^2 as a donut lying flat on a table. Let U and V be the complements of the top and bottom circles in T^2 , respectively. Formally,

$$U = S^1 \times \left(S^1 - \{1\}\right) \approx S^1 \times \mathbb{R}, \quad V = S^1 \times \left(S^1 - \{-1\}\right) \approx S^1 \times \mathbb{R} \qquad \Longrightarrow \qquad U \cap V \approx S^1 \times \mathbb{R}^*.$$

By the invariance of the de Rham cohomology under smooth homotopies

$$\begin{split} H^p_{\mathrm{de\,R}}(U) &\approx H^p_{\mathrm{de\,R}}(V) \approx H^p_{\mathrm{de\,R}}(S^1) \approx \begin{cases} \mathbb{R}, & \mathrm{if} \ p = 0, 1; \\ 0, & \mathrm{if} \ p \neq 0, 1; \end{cases} \\ H^p_{\mathrm{de\,R}}(U \cap V) &\approx H^p_{\mathrm{de\,R}}\left(S^1 \sqcup S^1\right) \approx H^p_{\mathrm{de\,R}}(S^1) \oplus H^p_{\mathrm{de\,R}}(S^1) \approx \begin{cases} \mathbb{R}^2, & \mathrm{if} \ p = 0, 1; \\ 0, & \mathrm{if} \ p \neq 0, 1. \end{cases} \end{split}$$

Since T^2 is connected, $H^0_{\mathrm{de\,R}}(T^2) \approx \mathbb{R}$ By MV,

$$\begin{split} 0 &\longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(T^2) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^0_{\mathrm{de}\,\mathrm{R}}(V) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(U \cap V) \\ &\stackrel{\delta_0}{\longrightarrow} H^1_{\mathrm{de}\,\mathrm{R}}(T^2) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^1_{\mathrm{de}\,\mathrm{R}}(V) \xrightarrow{g_1} H^1_{\mathrm{de}\,\mathrm{R}}(U \cap V) \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(T^2) \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^2_{\mathrm{de}\,\mathrm{R}}(V). \end{split}$$

The remaining groups vanish for dimensional reasons. Plugging in for the known groups, we obtain

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R}^2$$
$$\xrightarrow{\delta_0} H^1_{\mathrm{de}\,\mathrm{R}}(T^2) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{g_1} \mathbb{R}^2 \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(T^2) \longrightarrow 0.$$

By the exactness of the sequence, the image of δ_0 must be \mathbb{R} . Since $H^1_{\text{de R}}(S^1)$ is nonzero and the inclusion map $S^1 \times \mathbb{R}^- \longrightarrow S^1 \times \mathbb{R}$ induces an isomorphism in cohomology (being a smooth homotopy equivalence), the inclusion map

$$U \cap V \approx S^1 \times (\mathbb{R}^- \sqcup \mathbb{R}^+) \longrightarrow U \approx S^1 \times \mathbb{R}$$

induces a nontrivial homomorphism on the first cohomology. Thus, the homomorphism g_1 in the above sequence is nontrivial. Its cokernel is $H^2_{\text{de R}}(T^2)$. Since T^2 is compact and oriented, $H^2_{\text{de R}}(T^2)$ is nonzero and $\text{Im } g_1 \subsetneq \mathbb{R}^2$. Thus, $\text{Im } g_1$ is a one-dimensional subspace of \mathbb{R}^2 and $H^2_{\text{de R}}(T^2) \approx \mathbb{R}$ (this can also be obtained by studying g_1 in more detail). The above exact sequence then induces an exact sequence

$$0 \longrightarrow \operatorname{Im} \delta_0 \approx \mathbb{R} \longrightarrow H^1_{\operatorname{de} \mathrm{R}}(T^2) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{g_1} \operatorname{Im} g_1 \approx \mathbb{R}^1 \longrightarrow 0.$$

From this exact sequence we conclude that $H^1_{\text{de R}}(T^2) \approx \mathbb{R}^2$

The one-dimensional vector space $H^0_{de\,R}(T^2)$ consists of the constant functions on T^2 . Thus the constant function 1 forms a basis for $H^0_{de\,R}(T^2)$. If $d\theta$ is the standard volume form on S^1 , as in 4.18, or any other nowhere-zero one-form on S^1 , then $\pi_1^* d\theta \wedge \pi_2^* d\theta$ is a nowhere-zero top form on T^2 . Therefore,

$$[\pi_1^* \mathrm{d}\theta] \wedge [\pi_2^* \mathrm{d}\theta] = [\pi_1^* \mathrm{d}\theta \wedge \pi_2^* \mathrm{d}\theta] \neq 0 \in H^2_{\mathrm{de\,R}}(T^2)$$

and $\{[\pi_1^*d\theta], [\pi_2^*d\theta]\}$ must be a linearly independent set of vectors in $H^1_{de R}(T^2)$. Since $H^1_{de R}(T^2)$ is two-dimensional, this is a basis for $H^1_{de R}(T^2)$. Finally, since $H^2_{de R}(T^2)$ is one-dimensional and $[\pi_1^*d\theta] \wedge [\pi_2^*d\theta]$ is nonzero, it forms a basis for $H^2_{de R}(T^2)$.

Remark: Note that we have determined $H^*_{\text{de R}}(T^2)$ as a graded *ring.* By the above, we have an isomorphism of graded rings

$$H^*_{\mathrm{de\,R}}(T^2) = \Lambda^* H^1_{\mathrm{de\,R}}(T^2) = \Lambda^* \mathbb{R}\left\{ [\pi_1^* \mathrm{d}\theta], [\pi_2^* \mathrm{d}\theta] \right\} \approx \Lambda^* \mathbb{R}^2,$$

where $\mathbb{R}\{[\pi_1^*d\theta], [\pi_2^*d\theta]\}\$ is the vector space with basis $\{[\pi_1^*d\theta], [\pi_2^*d\theta]\}\$. The first equality above holds for all tori.

(b) Since Σ_q is connected, so is $\Sigma_q - B$ and therefore

$$H^0_{\operatorname{de} \mathbf{R}}(\Sigma_g - B) \approx H^0_{\operatorname{de} \mathbf{R}}(\Sigma_g) \approx \mathbb{R}$$

Let V be a small open ball in Σ_g containing B. Then, $(\Sigma_g - B) \cap V$ is either an open disk with a point removed or an open annulus, so that

$$(\Sigma_g - B) \cap V \approx S^1 \times (-1, 1) \qquad \Longrightarrow \qquad H^p_{\operatorname{de} \mathbf{R}}(\Sigma_g - B) \approx H^p_{\operatorname{de} \mathbf{R}}(S^1) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0, 1, \\ 0, & \text{if } p \neq 0, 1, \end{cases}$$

by the invariance of the de Rham cohomology under smooth homotopy equivalences. Since Σ_g is the union of the open subsets $\Sigma_g - B$ and V, by MV

$$\begin{split} 0 &\longrightarrow H^0_{\mathrm{de\,R}}(\Sigma_g) \longrightarrow H^0_{\mathrm{de\,R}}(\Sigma_g - B) \oplus H^0_{\mathrm{de\,R}}(V) \longrightarrow H^0_{\mathrm{de\,R}}\big((\Sigma_g - B) \cap V\big) \\ &\stackrel{\delta_0}{\longrightarrow} H^1_{\mathrm{de\,R}}(\Sigma_g) \longrightarrow H^1_{\mathrm{de\,R}}(\Sigma_g - B) \oplus H^1_{\mathrm{de\,R}}(V) \xrightarrow{g_1} H^1_{\mathrm{de\,R}}\big((\Sigma_g - B) \cap V\big) \\ &\stackrel{\delta_1}{\longrightarrow} H^2_{\mathrm{de\,R}}(\Sigma_g) \longrightarrow H^2_{\mathrm{de\,R}}(\Sigma_g - B) \oplus H^2_{\mathrm{de\,R}}(V) \longrightarrow H^2_{\mathrm{de\,R}}\big((\Sigma_g - B) \cap V\big). \end{split}$$

Plugging in for the known groups, we obtain

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R}$$
$$\xrightarrow{\delta_0} H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_g) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B) \oplus 0 \xrightarrow{g_1} \mathbb{R}$$
$$\xrightarrow{\delta_1} H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g) \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B) \oplus 0 \longrightarrow 0.$$

By exactness, δ_0 must be zero and therefore we have an exact sequence

$$0 \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_g) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B) \xrightarrow{g_1} H^1_{\mathrm{de}\,\mathrm{R}}\big((\Sigma_g - B) \cap V\big) \approx \mathbb{R} \xrightarrow{\delta_1} H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g) \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B) \longrightarrow 0.$$

In the next paragraph we show that the homomorphism δ_1 is nonzero. By exactness, g_1 must then be trivial and we obtain two exact sequences

$$0 \longrightarrow H^1_{\operatorname{de} \mathrm{R}}(\Sigma_g) \longrightarrow H^1_{\operatorname{de} \mathrm{R}}(\Sigma_g - B) \xrightarrow{g_1} 0, \qquad 0 \longrightarrow \mathbb{R} \xrightarrow{\delta_1} H^2_{\operatorname{de} \mathrm{R}}(\Sigma_g) \longrightarrow H^2_{\operatorname{de} \mathrm{R}}(\Sigma_g - B) \longrightarrow 0.$$

From this, we conclude that

$$H^p_{\mathrm{de\,R}}(\Sigma_g - B) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0; \\ H^1_{\mathrm{de\,R}}(\Sigma_g), & \text{if } p = 1; \\ H^2_{\mathrm{de\,R}}(\Sigma_g)/\mathbb{R}, & \text{if } p = 2. \end{cases}$$

Furthermore, the isomorphism between $H^1_{\operatorname{de R}}(\Sigma_g)$ and $H^1_{\operatorname{de R}}(\Sigma_g - B)$ is induced by the inclusion $\Sigma_g - B \longrightarrow \Sigma_g$.

In order to see that the homomorphism

$$\delta_1 \colon H^1_{\operatorname{de} \mathbf{R}} \left((\Sigma_g - B) \cap V \right) \longrightarrow H^2_{\operatorname{de} \mathbf{R}} (\Sigma_g)$$

is nonzero, we use Problem 2a and the definition of δ given in the *Note* there. Choose $\varphi \in C^{\infty}(\Sigma_g)$ such that $\operatorname{supp} \varphi \subset V$ and $\operatorname{supp} \{1-\varphi\} \subset \Sigma_g - B$. Let

$$\gamma = \pi_1^* \mathrm{d}\theta \in E^1 \big(\mathbb{R} \times (1/2, 1) \big) \approx E^1 \big((\Sigma_g - B) \cap V \big).$$

We will show that

$$\delta([\gamma]) \equiv \left[\mathrm{d}\varphi \wedge \gamma\right] \equiv \left[\mathrm{d}\varphi \wedge \pi_1^* \mathrm{d}\theta\right] \neq 0 \in H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g)$$

by showing that the integral of $d\varphi \wedge \gamma$ over the *orientable* manifold Σ_g is not zero. Since the compact set $\sup(1-\varphi) \cap \sup \varphi$ is contained in the open annulus V-B, there exist 1/2 < r < R < 1 such that

 $\operatorname{supp}(1-\varphi)\cap\operatorname{supp}\varphi\subset A\,\equiv\,S^1\times[r,R]\subset V-B\qquad\Longrightarrow\qquad\varphi|_{S^1\times r}=1,\ \varphi|_{S^1\times R}=0.$

Since $d\varphi \wedge \pi_1^* d\theta$ vanishes outside of A,

$$\int_{M} \mathrm{d}\varphi \wedge \pi_{1}^{*} \mathrm{d}\theta = \int_{A} \mathrm{d}\varphi \wedge \pi_{1}^{*} \mathrm{d}\theta = \int_{A} \mathrm{d}(\varphi \pi_{1}^{*} \mathrm{d}\theta) = \int_{\partial A} \varphi \pi_{1}^{*} \mathrm{d}\theta$$
$$= \pm \left(\int_{S^{1} \times R} \varphi \pi_{1}^{*} \mathrm{d}\theta - \int_{S^{1} \times r} \varphi \pi_{1}^{*} \mathrm{d}\theta\right) = \pm \int_{S^{1} \times r} \pi_{1}^{*} \mathrm{d}\theta = \pm 2\pi \neq 0.$$

The third equality above follows from Stokes' Theorem.

Remark: If M is a connected *non*-compact *n*-dimensional manifold, $H^n_{de R}(M) = 0$; see Spivak p369 for a proof. This fact would simplify the solution, but first needs to be established.

(c) The cases g=0, 1 were proved in Problem 3b and part (a) above. Suppose $g \ge 1$ and the statement holds for g. Since Σ_{g+1} is connected, $H^0_{\text{de R}}(\Sigma_{g+1}) \approx \mathbb{R}$. Note that

$$\Sigma_{g+1} = \Sigma_g \# \Sigma_1 = \Sigma_g \# T^2,$$

i.e. Σ_{g+1} can be obtained from Σ_g and T^2 by removing small open disks from the two surfaces and joining the two boundary circles together. We thus can write

$$\Sigma_{g+1} = (\Sigma_g - B_1) \cup (T^2 - B_2),$$

where B_1 and B_2 are slightly smaller closed balls. The overlap of U and V in Σ_{g+1} is a small band around the circle joining the two surfaces. Thus,

$$(\Sigma_g - B_1) \cap (T^2 - B_2) \approx S^1 \times (-1, 1) \implies H^p_{\operatorname{de} \mathbf{R}} \left((\Sigma_g - B_1) \cap (T^2 - B_2) \right) \approx H^p_{\operatorname{de} \mathbf{R}} (S^1) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0, 1, \\ 0, & \text{if } p \neq 0, 1, \end{cases}$$

by the invariance of the de Rham cohomology under smooth homotopy equivalences. By the induction assumption and part (b),

$$H^p_{\mathrm{de}\,\mathrm{R}}(\Sigma - B_1) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0; \\ \mathbb{R}^{2g}, & \text{if } p = 1; \\ 0, & \text{otherwise;} \end{cases} \quad \text{and} \quad H^p_{\mathrm{de}\,\mathrm{R}}(T^2 - B_2) \approx \begin{cases} \mathbb{R}, & \text{if } p = 0; \\ \mathbb{R}^2, & \text{if } p = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Since Σ_{g+1} is the union of open subsets $\Sigma_g - B_1$ and $T^2 - B_2$, by MV

$$0 \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B_1) \oplus H^0_{\mathrm{de}\,\mathrm{R}}(T^2 - B_2) \longrightarrow H^0_{\mathrm{de}\,\mathrm{R}}((\Sigma_g - B_1) \cap (T^2 - B_2))$$

$$\stackrel{\delta_0}{\longrightarrow} H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B_1) \oplus H^1_{\mathrm{de}\,\mathrm{R}}(T^2 - B_2) \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}((\Sigma_g - B_1) \cap (T^2 - B_2))$$

$$\longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_g - B_1) \oplus H^2_{\mathrm{de}\,\mathrm{R}}(T^2 - B_2).$$

Plugging in for the known groups, we obtain

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R}$$
$$\stackrel{\delta_0}{\longrightarrow} H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow \mathbb{R}^{2g} \oplus \mathbb{R}^2 \longrightarrow \mathbb{R} \xrightarrow{\delta_1} H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow 0$$

By exactness, δ_0 must be zero and therefore we have an exact sequence

$$0 \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow \mathbb{R}^{2g+2} \xrightarrow{g_1} \mathbb{R} \xrightarrow{\delta_1} H^2_{\mathrm{de}\,\mathrm{R}}(\Sigma_{g+1}) \longrightarrow 0.$$

Since Σ_{g+1} is compact and orientable, $H^2_{de R}(\Sigma_{g+1})$ is nonzero. Therefore, the homomorphism δ_1 is nonzero and thus an isomorphism, while the homomorphism g_1 is zero. It follows that

$$H^1_{\operatorname{deR}}(\Sigma_{g+1}) \approx \mathbb{R}^{2g+2}$$
 and $H^2_{\operatorname{deR}}(\Sigma_{g+1}) \approx \mathbb{R}$.

This completes verification of the inductive step.

Remark: The de Rham cohomology of Σ_g can be determined without Mayer-Vietoris. Since Σ_g is connected, $H^0_{\text{de R}}(\Sigma_g) \approx \mathbb{R}$. Since Σ_g is a 2-dimensional compact orientable manifold, by the Poincare Duality (to be proved)

$$H^2_{\operatorname{de} \mathbf{R}}(\Sigma_g) \approx \left(H^{2-2}_{\operatorname{de} \mathbf{R}}(\Sigma_g) \right)^* \approx \mathbb{R}.$$

Finally, by Hurewicz Theorem (Problem 1) and de Rham Theorem (to be proved):

$$\pi_1(\Sigma_g) = \left\langle a_1, b_1, \dots, a_g, b_g | a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} \right\rangle \implies H_1(\Sigma; \mathbb{Z}) = \operatorname{Abel}\left(\pi_1(\Sigma_g)\right) \approx \mathbb{Z}^{2g}$$
$$\implies H_1(\Sigma_g; \mathbb{R}) \approx H_1(\Sigma_g; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} \approx \mathbb{R}^{2g} \implies H_{\operatorname{de} \operatorname{R}}^1(\Sigma_g) \approx \left(H_1(\Sigma_g; \mathbb{R})\right)^* \approx \mathbb{R}^{2g}.$$

Problem 5 (10pts)

(a) Suppose $q: \tilde{M} \longrightarrow M$ is a regular covering projection with a finite group of deck transformations G (so that $M = \tilde{M}/G$). Show that

$$q^* \colon H^*_{\mathrm{de\,R}}(M) \longrightarrow H^*_{\mathrm{de\,R}}(\tilde{M})^G \equiv \left\{ \alpha \! \in \! H^*_{\mathrm{de\,R}}(\tilde{M}) \colon g^* \alpha \! = \! \alpha \,\, \forall \, g \! \in \! G \right\}$$

is an isomorphism. Does this statement continue to hold if G is not assumed to be finite? (b) Determine $H^*_{\operatorname{de R}}(K)$, where K is the Klein bottle. Find a basis for $H^*_{\operatorname{de R}}(K)$; justify your answer.

(a) If $g\!\in\!G,\,q\!=\!q\!\circ\!g$ and

$$q^*[\beta] = \{q \circ g\}^*[\beta] = g^*q^*[\beta] \quad \forall \ [\beta] \in H^*_{\operatorname{de} \mathbf{R}}(M).$$

Thus, the image of q^* is contained in $H^*_{\operatorname{de R}}(\tilde{M})^G$. We next show that the image of q^* is all of $H^*_{\operatorname{de R}}(\tilde{M})^G$. If $\alpha \in E^*(\tilde{M})$ is such that $[\alpha] \in H^*_{\operatorname{de R}}(\tilde{M})^G$, let

$$\tilde{\alpha} = \frac{1}{|G|} \sum_{g \in G} g^* \alpha \in E^*(\tilde{M})^G.$$

Since $dg^* = g^*d$, $d\tilde{\alpha} = 0$ and

$$[\tilde{\alpha}] = \frac{1}{|G|} \sum_{g \in G} [g^* \alpha] = \frac{1}{|G|} \sum_{g \in G} g^*[\alpha] = \frac{1}{|G|} \sum_{g \in G} [\alpha] = [\alpha] \in H^*_{\operatorname{de} \mathbf{R}}(\tilde{M}).$$

On the other hand, since $\tilde{\alpha} \in E^*(\tilde{M})^G$, $\tilde{\alpha} = q^*\beta$ for some $\beta \in E^*(M)$ by Problem 6b on PS6. Since $d\tilde{\alpha} = 0$ and q is a local diffeomorphism (and thus $q^* : E^*(M) \longrightarrow E^*(\tilde{M})$ is injective), $d\beta = 0$. Thus, $[\beta] \in H^*(M)$ and

$$[\alpha] = [\tilde{\alpha}] = q^*[\beta] \in H^*(\tilde{M}).$$

Thus, the map

$$q^* \colon H^*_{\operatorname{de} \mathbf{R}}(M) \longrightarrow H^*_{\operatorname{de} \mathbf{R}}(\tilde{M})^G$$

is surjective. Finally, we show that q^* is injective. Suppose $\beta \in E^*(M)$ and $q^*\beta = d\alpha$ for some $\alpha \in E^*(\tilde{M})$. With $\tilde{\alpha}$ defined as above,

$$\mathrm{d}\tilde{\alpha} = \frac{1}{|G|} \sum_{g \in G} \mathrm{d}g^* \alpha = \frac{1}{|G|} \sum_{g \in G} g^* \mathrm{d}\alpha = \frac{1}{|G|} \sum_{g \in G} g^* q^* \beta = \frac{1}{|G|} \sum_{g \in G} q^* \beta = q^* \beta.$$

Since $\tilde{\alpha} \in E^*(\tilde{M})^G$, $\tilde{\alpha} = q^*\gamma$ for some $\gamma \in E^*(M)$ and

$$q^* \mathrm{d}\gamma = \mathrm{d} \, q^* \gamma = \mathrm{d} \tilde{\alpha} = q^* \beta.$$

Since q is a local diffeomorphism, q^* is injective and thus

$$\beta = d\gamma \qquad \Longrightarrow \qquad [\beta] = [0] \in H^*_{\mathrm{de}\,\mathbf{R}}(M),$$

i.e. q^* is injective on cohomology.

The statement may not hold if G is infinite. For example, if $q: \mathbb{R} \longrightarrow S^1$ is the standard covering map, the map

$$q^*: H^1_{\mathrm{de}\,\mathrm{R}}(S^1) \approx \mathbb{R} \longrightarrow H^1_{\mathrm{de}\,\mathrm{R}}(\mathbb{R}) = 0$$

cannot be injective.

(b) Since K is connected, $H^0_{\text{de R}}(K) \approx \mathbb{R}$. By Exercise 3 on p454 of Munkres, there is a 2:1 covering map $q: T^2 \longrightarrow K$. The corresponding group of covering transformations is isomorphic to \mathbb{Z}_2 . Let g be the non-trivial diffeomorphism. From Exercise 3, it can be written as

$$g(e^{i\theta_1}, e^{i\theta_2}) = \left(-e^{i\theta_1}, e^{-i\theta_2}\right) \equiv \left(g_1(e^{i\theta_1}), g_2(e^{i\theta_2})\right).$$

With $d\theta$ as in Problem 4a,

$$g^*\pi_1^*\mathrm{d}\theta = \{\pi_1 \circ g\}^*\mathrm{d}\theta = \{g_1 \circ \pi_1\}^*\mathrm{d}\theta = \pi_1^*g_1^*\mathrm{d}\theta = \pi_1^*\mathrm{d}\theta;$$

$$g^*\pi_2^*\mathrm{d}\theta = \{\pi_2 \circ g\}^*\mathrm{d}\theta = \{g_2 \circ \pi_2\}^*\mathrm{d}\theta = \pi_2^*g_2^*\mathrm{d}\theta = \pi_2^*(-\mathrm{d}\theta) = -\pi_2^*\mathrm{d}\theta;$$

$$g^*(\pi_1^*\mathrm{d}\theta \wedge \pi_2^*\mathrm{d}\theta) = g^*\pi_1^*\mathrm{d}\theta \wedge g^*\pi_2^*\mathrm{d}\theta = \pi_1^*\mathrm{d}\theta \wedge (-\pi_2^*\mathrm{d}\theta) = -\pi_1^*\mathrm{d}\theta \wedge \pi_2^*\mathrm{d}\theta.$$

By Problem 4a, $\{[\pi_1^*d\theta], [\pi_2^*d\theta]\}$ and $\{[\pi_1^*d\theta] \land [\pi_2^*d\theta]\}$ are bases for $H^1_{de R}(T^2)$ and $H^2_{de R}(T^2)$, respectively. Thus, by part (a),

$$H^1_{\operatorname{deR}}(K) \approx H^1_{\operatorname{deR}}(T^2)^G = \mathbb{R}\left\{ [\pi_1^* \mathrm{d}\theta] \right\} \approx \mathbb{R}, \qquad H^2_{\operatorname{deR}}(K) \approx H^2_{\operatorname{deR}}(T^2)^G = 0.$$

Since the isomorphisms are induced by q^* , a basis for $H^1_{\operatorname{de R}}(K)$ consists of the equivalence class of the one-form α on K such that $q^*\alpha = \pi_1^* \operatorname{d} \theta$. A basis for $H^0_{\operatorname{de R}}(K)$ is formed by the constant function 1.

Problem 6: Chapter 5, #4 (5pts)

A smooth function f on a manifold M determines a section \mathbf{f} of the sheaf of germs of smooth functions, $\mathfrak{C}^{\infty}(M)$. The set $f^{-1}(0)$ is closed, while $\mathbf{f}^{-1}(0)$ is open. How do you reconcile these two facts? Consider examples.

The section **f** of the sheaf $\mathfrak{C}^{\infty}(M)$ vanishes at some $p \in M$ if its germ at p is the same as the germ of the 0-function at p. This means that for every $p \in \mathbf{f}^{-1}(0)$, there exists an open neighborhood U_p of p in M such that $f|_{U_p} \equiv 0$, so that

$$\mathbf{f}^{-1}(0) \equiv \bigcup_{p \in M} U_p$$

is open in M. In other words, vanishing of \mathbf{f} at a point p means vanishing of f on a neighborhood of p; the latter is an open condition on p.

As an example, suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x. Then, f(0) = 0, but $\mathbf{f}(0) \neq 0$ because f does not vanish on a neighborhood of 0. As another example, suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a smooth function such that

$$f(x) = 0 \quad \forall \ x \le 0, \qquad f(x) > 0 \quad \forall \ x > 0.$$

Then, $\mathbf{f}^{-1}(0) = \mathbb{R}^{-}$, while $f^{-1}(0) = \mathbb{R}^{-} \cup \{0\}$.

Problem 7 (5pts)

Let $K = \mathbb{Z}$ and let $\pi : S_0 \longrightarrow \mathbb{R}$ be the corresponding skyscraper sheaf, with the only non-trivial stack over $0 \in \mathbb{R}$; see Subsection 5.11. What is S_0 as a topological space?

This is a line with countably many origins, indexed by \mathbb{Z} . Explicitly, $S_0 = \mathbb{R}^* \sqcup 0 \times \mathbb{Z}$ as sets. The projection map is given by

$$\pi: S_0 \longrightarrow \mathbb{R}, \qquad \pi(x) = \begin{cases} x, & \text{if } x \in \mathbb{R}^*; \\ 0, & \text{if } x \in 0 \times \mathbb{Z}. \end{cases}$$

Each fiber of this projection map is a \mathbb{Z} -module, either 0 or \mathbb{Z} . A basis for the topology on \mathcal{S}_0 consists of the intervals (a, b) with $ab \ge 0$, and the sets

$$(a,b)_m \equiv (a,0) \sqcup \{0 \times m\} \sqcup (0,b),$$

with ab < 0 (i.e. a and b have different signs) and $m \in \mathbb{Z}$. This topology is forced on S_0 by the requirement that each point $x \in \mathbb{R}^*$ and $(0, m) \in 0 \times \mathbb{Z}$ have a neighborhood U such that $\pi: U \longrightarrow \pi(U)$ is a homeomorphism. With the given topology,

$$\pi\colon (-\infty,\infty)_m\longrightarrow \mathbb{R}$$

is a homeomorphism for all $m \in \mathbb{Z}$. For $k \in \mathbb{Z}$, the multiplication map by k induces a homeomorphism

$$(-\infty,\infty)_m \longrightarrow (-\infty,\infty)_{km},$$

while the addition map restricts to a homeomorphism

$$\{(m_1,m_2)\} \cup \{(x,x) \colon x \in \mathbb{R}^*\} \longrightarrow (-\infty,\infty)_{m_1+m_2}.$$

Thus, the \mathbb{Z} -module operations are continuous.