MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 7
Problem 1 (15pts)

Let X be a path-connected topological space and $\left(\mathcal{S}_{*}(X), \partial\right)$ the singular chain complex of continuous simplices into X with integer coefficients. Denote by $H_{1}(X ; \mathbb{Z})$ the corresponding first homology group. (a) Show that there exists a well-defined surjective homomorphism

$$
h: \pi_{1}\left(X, x_{0}\right) \longrightarrow H_{1}(X ; \mathbb{Z}) .
$$

(b) Show that the kernel of this homomorphism is the commutator subgroup of $\pi_{1}\left(X, x_{0}\right)$ so that h induces an isomorphism

$$
\Phi: \pi_{1}\left(X, x_{0}\right) /\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right] \longrightarrow H_{1}(X ; \mathbb{Z})
$$

This is the first part of the Hurewicz Theorem.
The motivation for this result is that $\pi_{1}\left(X, x_{0}\right)$ is generated by loops based at $x_{0} \in X$, i.e. continuous maps $\alpha: I \longrightarrow X$ such that $\alpha(0)=\alpha(1)=x_{0}$, while $H_{1}(X ; \mathbb{Z})$ is generated by formal linear combinations of 1 -simplicies, i.e. continuous maps

$$
f: \Delta^{1}=I \longrightarrow X
$$

In particular, a loop (as well as any path) in X is a 1 -simplex. However, the equivalence relations on paths and 1-simplicies used to define $\pi_{1}\left(X, x_{0}\right)$ and $H_{1}(X ; \mathbb{Z})$ and the groups structures are quite different. So we will need to show that equivalent paths are equivalent as 1 -simplicies and a product of two paths corresponds to the sum of the two 1 -simplicies.

We will denote the path-homotopy equivalence class of a path α (loop or not) by $[\alpha]$ and the image of a 1-simplex in $S_{1}(X) / \partial S_{2}(X)$ by $\{\alpha\}$. It will be essential to distinguish between a point $x_{0} \in X$ and the k-simplex taking the entire standard k-simplex Δ^{k} to x_{0}. Denote the latter by $f_{k, x_{0}}$.

Lemma 0: If $\alpha: I \longrightarrow X$ is a loop, $\partial \alpha=0$.
Lemma 1: If $x_{0} \in X, f_{1, x_{0}} \in \partial \mathcal{S}_{2}(X)$.
Lemma 2: If $\alpha, \beta: I \longrightarrow X$ are path-homotopic, then $\alpha-\beta \in \partial \mathcal{S}_{2}(X)$.
Lemma 3: If $\alpha, \beta: I \longrightarrow X$ are paths such that $\alpha(1)=\beta(0)$, then $\alpha+\beta-\alpha * \beta \in \partial \mathcal{S}_{2}(X)$.
Lemma 4: If $\alpha: I \longrightarrow X$ and $\bar{\alpha}: I \longrightarrow X$ is its inverse, then $\alpha+\bar{\alpha} \in \partial \mathcal{S}_{2}(X)$.
Lemma 5: If $F: \Delta^{2} \longrightarrow X$ is a 2 -simplex, then

$$
\left[\left(F \circ \iota_{0}^{2}\right) * \overline{\left(F \circ \iota_{1}^{2}\right)} *\left(F \circ \iota_{2}^{2}\right)\right]=[\mathrm{id}] \in \pi_{1}(X, F(1,0)) .
$$

First, recall the maps ι_{j}^{1} and ι_{j}^{2} used to define the boundaries of 1- and 2-simplicies:

$$
\begin{gathered}
\quad \iota_{j}^{1}: \Delta^{0} \longrightarrow \Delta^{1}, \quad \iota_{0}^{1}(0)=1, \quad \iota_{1}^{1}(0)=0 ; \\
\iota_{j}^{2}: \Delta^{1} \longrightarrow \Delta^{2}, \quad \iota_{0}^{2}(s)=(1-s, s), \quad \iota_{1}^{2}(s)=(0, s), \quad \iota_{2}^{2}(s)=(s, 0) \quad \forall s \in I ;
\end{gathered}
$$

Figure 1: The boundary maps $\iota_{j}^{1}: \Delta^{0} \longrightarrow \Delta^{1}$ and $\iota_{j}^{2}: \Delta^{1} \longrightarrow \Delta^{2}$.
see Figure 1. These maps respect the orders of the vertices. By the above, if α is a loop based at x_{0},

$$
\partial \alpha=\alpha \circ \iota_{0}^{1}-\alpha \circ \iota_{1}^{1}=f_{0, \alpha(1)}-f_{0, \alpha(0)}=f_{0, x_{0}}-f_{0, x_{0}}=0 .
$$

For Lemma 1, note that

$$
\partial f_{2, x_{0}}=f_{2, x_{0}} \circ \iota_{0}^{2}-f_{2, x_{0}} \circ \iota_{1}^{2}+f_{2, x_{0}} \circ \iota_{2}^{2}=f_{1, x_{0}}-f_{1, x_{0}}+f_{1, x_{0}}=f_{1, x_{0}},
$$

since $f_{2, x_{0}} \circ \iota_{j}^{2}$ maps all of I to x_{0}. For Lemma 2, choose a path-homotopy from α to β, i.e. a continuous map

$$
F: I \times I \longrightarrow X \quad \text { s.t. } \quad F(s, 0)=\alpha(s), \quad F(s, 1)=\beta(s), \quad F(0, t)=F(1, t) \quad \forall s, t \in[0,1] .
$$

There is a quotient map

$$
q: I \times I \longrightarrow \Delta^{2} \quad \text { s.t. } \quad q(s, 0)=(s, 0), \quad q(s, 1)=q(0, s), \quad q(0, t)=(0,0), \quad q(1, t)=(1-t, t),
$$

i.e. q contracts the left edge of $I \times I$ and maps the other three edges linearly onto the edges of Δ^{2}. Since F is constant along the fibers of q, F induces a continuous map

$$
\begin{aligned}
\bar{F}: \Delta^{2} \longrightarrow X \quad \text { s.t. } \quad \begin{aligned}
F=\bar{F} \circ q & \Longrightarrow \bar{F}(s, 0)=\alpha(s), \quad \bar{F}(0, t)=\beta(t), \quad \bar{F}(s, 1-s)=x_{1} \quad \forall s, t \in I \\
& \Longrightarrow \partial \bar{F}=\bar{F} \circ \iota_{0}^{2}-\bar{F} \circ \iota_{1}^{2}+\bar{F} \circ \iota_{2}^{2}=f_{1, x_{1}}-\beta+\alpha ;
\end{aligned}
\end{aligned}
$$

see Figure 2. Along with Lemma 1, this implies Lemma 2.

Figure 2: A path homotopy gives rise to a boundary between the corresponding 1-simplices.
For Lemma 3, define

$$
F: \Delta^{2} \longrightarrow X \quad \text { by } \quad F(x, y)= \begin{cases}\alpha(x+2 y), & \text { if } x+2 y \leq 1 \\ \beta(x+2 y-1), & \text { if } x+2 y \geq 1\end{cases}
$$

Figure 3: A boundary between the 1 -simplex corresponding to a composition of paths and the sum of the 1 -simplices corresponding to the paths.
see Figure 3. This map is well-defined and continuous, since it is continuous on the two closed sets and agrees on the overlap, where it equals $\alpha(1)=\beta(0)$. Furthermore,

$$
\begin{gathered}
F\left(\iota_{0}^{2}(s)\right)=F(1-s, s)=\beta(s), \quad F\left(\iota_{2}^{2}(s)\right)=F(s, 0)=\alpha(s) ; \\
F\left(\iota_{1}^{2}(s)\right)=F(0, s)= \begin{cases}\alpha(2 s), & \text { if } 2 s \leq 1 ; \\
\beta(2 s-1), & \text { if } 2 s \geq 1 ;\end{cases} \\
\Longrightarrow \quad \partial F=F \circ \iota_{0}^{2}-F \circ \iota_{1}^{2}+F \circ \iota_{2}^{2}=\beta-\alpha * \beta+\alpha .
\end{gathered}
$$

For Lemma 4, note that

$$
\alpha+\bar{\alpha}=(\alpha+\bar{\alpha}-\alpha * \bar{\alpha})+\left(\alpha * \bar{\alpha}-f_{1, \alpha(0)}\right)+f_{1, \alpha(0)} .
$$

Since $\alpha * \bar{\alpha}$ is path-homotopic to the constant path $f_{1, \alpha(0)}$, each of the three expressions above belongs to $\partial \mathcal{S}_{2}(X)$ by Lemmas 1-3. This implies Lemma 4.

For Lemma 5, choose a continuous map $q: I \times I \longrightarrow \Delta^{2}$ such that

$$
q(s, 0)=\left\{\begin{array}{ll}
(1-2 s, 2 s), & \text { if } s \in[0,1 / 2] ; \\
(0,3-4 s), & \text { if } s \in[1 / 2,3 / 4] ; \\
(4 s-3,0), & \text { if } s \in[3 / 4,1] ;
\end{array} \quad q(s, 1)=q(0, t)=q(1, t)=(1,0) \quad \forall s, t \in I .\right.
$$

Then, $F \circ q$ is a path-homotopy from $\left(F \circ \iota_{0}^{2}\right) *\left(\overline{\left(F \circ \iota_{1}^{2}\right)} *\left(F \circ \iota_{2}^{2}\right)\right)$ to the constant loop $f_{1, F(1,0)}$; see Figure 4.

Figure 4: Boundary of a 2-simplex is loop homotopic to the constant loop.
(a) We now define the homomorphism

$$
h: \pi_{1}\left(X, x_{0}\right) \longrightarrow H_{1}(X ; \mathbb{Z}) \quad \text { by } \quad h([\alpha])=\{\alpha\} \in H_{1}(X ; \mathbb{Z}) .
$$

By Lemma $0, \partial \alpha=0$ and thus $\{\alpha\} \in H_{1}(X ; \mathbb{Z})$. By Lemma 2, the map h is well-defined, i.e.

$$
[\alpha]=[\beta] \quad \Longrightarrow \quad\{\alpha\}=\{\beta\} .
$$

By Lemma 3, h is indeed a homomorphism:

$$
h([\alpha] *[\beta])=h([\alpha * \beta])=\{\alpha * \beta\}=\{\alpha\}+\{\beta\}=h([\alpha])+h([\beta]) .
$$

To show that h is surjective, for each $x \in X$ choose a path $\gamma_{x}:(I, 0,1) \longrightarrow\left(X, x_{0}, x\right)$ from x_{0} to x. If

$$
\begin{gathered}
c=\sum_{i=1}^{N} a_{i} \sigma_{i} \in \mathcal{S}_{1}(X), \\
\text { let } \quad \alpha_{c}=\left(\gamma_{\sigma_{1}(0)} * \sigma_{1} * \bar{\gamma}_{\sigma_{1}(1)}\right)^{a_{1}} * \ldots *\left(\gamma_{\sigma_{N}(0)} * \sigma_{N} * \bar{\gamma}_{\sigma_{N}(1)}\right)^{a_{N}} .
\end{gathered}
$$

This is a product of loops at x_{0}. It is essential that $a_{i} \in \mathbb{Z}$, i.e. we are dealing with integer homology. The loop α_{c} is not uniquely determined by c, even if the paths γ_{x} are fixed, as it depends on the ordering of the σ_{i} 's. This is irrelevant, however, at this point. Since h is a homomorphism,

$$
\begin{aligned}
h\left(\left[\alpha_{c}\right]\right) & =\sum_{i=1}^{N} a_{i} h\left(\left[\gamma_{\sigma_{i}(0)} * \sigma_{i} * \bar{\gamma}_{\sigma_{i}(1)}\right]\right)=\sum_{i=1}^{N} a_{i}\left\{\gamma_{\sigma_{i}(0)} * \sigma_{i} * \bar{\gamma}_{\sigma_{i}(1)}\right\} \\
& =\sum_{i=1}^{N} a_{i}\left(\left\{\gamma_{\sigma_{i}(0)}\right\}+\left\{\sigma_{i}\right\}-\left\{\gamma_{\sigma_{i}(1)}\right\}\right)=\{c\}+\sum_{i=1}^{N} a_{i}\left(\left\{\gamma_{\sigma_{i}(0)}\right\}-\left\{\gamma_{\sigma_{i}(1)}\right\}\right) .
\end{aligned}
$$

The third equality above follows from Lemma 3 (not from h being a homomorphism). If $c \in \operatorname{ker} \partial$,

$$
\begin{gathered}
\sum_{i=1}^{N} a_{i}\left(f_{1, \sigma_{i}(1)}-f_{1, \sigma_{i}(0)}\right)=\partial c=0 \quad \Longrightarrow \quad \sum_{i=1}^{N} a_{i}\left(\left\{\gamma_{\sigma_{i}(0)}\right\}-\left\{\gamma_{\sigma_{i}(1)}\right\}\right)=0 \\
\Longrightarrow \quad h\left(\left[\alpha_{c}\right]\right)=\{c\} \in H_{1}(X ; \mathbb{Z}) \quad \forall c \in \operatorname{ker} \partial
\end{gathered}
$$

This shows that h is surjective.
(b) Since the group $H_{1}(X ; \mathbb{Z})$ is abelian, h must vanish on the commutator subgroup of $\pi_{1}\left(X ; x_{0}\right)$. Since this subgroup is normal, h induces a group homomorphism

$$
\Phi: \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right) \equiv \pi_{1}\left(X, x_{0}\right) /\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right] \longrightarrow H_{1}(X ; \mathbb{Z})
$$

We will show that this map is an isomorphism by constructing an inverse Ψ for Φ.
If α is a loop based at x_{0}, denote its image (and the image of $[\alpha]$) in $\operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right)$ by $\langle\alpha\rangle$. For each 1 -simplex $\sigma \in \mathcal{S}_{1}(X)$, let

$$
g(\sigma)=\left\langle\alpha_{\sigma}\right\rangle \in \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right) .
$$

Since $\mathcal{S}_{1}(X)$ is a free abelian group with a basis consisting of 1 -simplicies σ and $\operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right)$ is abelian, g extends to a homomorphism

$$
g: \mathcal{S}_{1}(X) \longrightarrow \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right)
$$

If $F: \Delta^{2} \longrightarrow X$ is a 2 -simplex,

$$
\begin{aligned}
g(\partial F) & =g\left(F \circ \iota_{0}^{2}\right)-g\left(F \circ \iota_{1}^{2}\right)+g\left(F \circ \iota_{2}^{2}\right) \\
& =\left\langle\gamma_{F\left(\iota_{0}^{2}(0)\right)} *\left(F \circ \iota_{0}^{2}\right) * \bar{\gamma}_{F\left(\iota_{0}^{2}(1)\right)}\right\rangle-\left\langle\gamma_{F\left(\iota_{1}^{2}(0)\right)} *\left(F \circ \iota_{1}^{2}\right) * \bar{\gamma}_{F\left(\iota_{1}^{2}(1)\right)}\right\rangle+\left\langle\gamma_{F\left(\iota_{2}^{2}(0)\right)} *\left(F \circ \iota_{2}^{2}\right) * \bar{\gamma}_{F\left(\iota_{2}^{2}(1)\right)}\right\rangle \\
& =\left\langle\left(\gamma_{F(1,0)} *\left(F \circ \iota_{0}^{2}\right) * \bar{\gamma}_{F(0,1)}\right) *\left(\gamma_{F(0,0)} *\left(F \circ \iota_{1}^{2}\right) * \bar{\gamma}_{F(0,1)}\right)^{-1} *\left(\gamma_{F(0,0)} *\left(F \circ \iota_{2}^{2}\right) * \bar{\gamma}_{F(1,0)}\right)\right\rangle \\
& =\left\langle\gamma_{F(1,0)} *\left(\left(F \circ \iota_{0}^{2}\right) * \overline{\left(F \circ \iota_{1}^{2}\right)} *\left(F \circ \iota_{2}^{2}\right)\right) * \bar{\gamma}_{F(1,0)}\right\rangle .
\end{aligned}
$$

By Lemma $5,\left(F \circ \iota_{0}^{2}\right) * \overline{\left(F \circ \iota_{1}^{2}\right)} *\left(F \circ \iota_{2}^{2}\right)$ is path-homotopic to the constant loop at $F(1,0)$ and thus

$$
\begin{aligned}
& {\left[\gamma_{F(1,0)} *\left(\left(F \circ \iota_{0}^{2}\right) * \overline{\left(F \circ \iota_{1}^{2}\right)} *\left(F \circ \iota_{2}^{2}\right)\right) * \bar{\gamma}_{F(1,0)}\right]=[\mathrm{id}] } \in \pi_{1}\left(X, x_{0}\right) \\
&\left.\Longrightarrow \quad g(\partial F)=\left\langle\gamma_{F(1,0)} *\left(\left(F \circ \iota_{0}^{2}\right) * \overline{\left(F \circ \iota_{1}^{2}\right)}\right) *\left(F \circ \iota_{2}^{2}\right)\right) * \bar{\gamma}_{F(1,0)}\right\rangle=0 \in \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right) .
\end{aligned}
$$

It follows that g vanishes on the subgroup $\partial \mathcal{S}_{2}(X)$ of $\mathcal{S}_{1}(X)$ and therefore induces a homomorphism

$$
\Psi: \mathcal{S}_{1}(X) / \partial \mathcal{S}_{2}(X) \longrightarrow \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right)
$$

If α is a loop at $x_{0}, \gamma_{x_{0}}$ is a loop at x_{0}, and thus

$$
\begin{aligned}
& \Psi(\Phi(\langle\alpha\rangle))= \Psi(\{\alpha\})= \\
& \Longrightarrow \quad\left\{\gamma_{\alpha(0)} * \alpha * \bar{\gamma}_{\alpha(1)}\right\}=\left\{\gamma_{x_{0}} * \alpha * \bar{\gamma}_{x_{0}}\right\}=\left\{\gamma_{x_{0}}\right\}+\{\alpha\}-\left\{\gamma_{x_{0}}\right\}=\{\alpha\} \\
& \Psi \circ \Phi=\operatorname{Id}: \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right) \longrightarrow \operatorname{Abel}\left(\pi_{1}\left(X, x_{0}\right)\right) .
\end{aligned}
$$

This implies that Φ is injective. On the other hand, it is surjective by part (a).

Problem 2 (10pts)

(a) Prove Mayer-Vietoris for Cohomology: If M is a smooth manifold, $U, V \subset M$ open subsets, and $M=U \cup V$, then there exists an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}(M) \xrightarrow{f_{0}} H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \xrightarrow{g_{0}} H_{\mathrm{deR}}^{0}(U \cap V) \xrightarrow{\delta_{0}} \\
& \quad \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}(M) \xrightarrow{f_{1}} H_{\mathrm{deR}}^{1}(U) \oplus H_{\mathrm{deR}}^{1}(V) \xrightarrow{g_{1}} H_{\mathrm{deR}}^{1}(U \cap V) \xrightarrow{\delta_{1}} \\
& \xrightarrow{\delta_{1}} \ldots
\end{aligned}
$$

$$
\vdots
$$

where

$$
f_{i}(\alpha)=\left(\left.\alpha\right|_{U},\left.\alpha\right|_{V}\right) \quad \text { and } \quad g_{i}(\beta, \gamma)=\left.\beta\right|_{U \cap V}-\left.\gamma\right|_{U \cap V} .
$$

(b) Suppose M is a compact connected orientable n-dimensional submanifold of \mathbb{R}^{n+1}. Show that $\mathbb{R}^{n+1}-M$ has exactly two connected components. How is the compactness of M used?
(a) We construct an exact sequence of cochain complexes and then apply Proposition 5.17 (ses of cochain complexes gives les in cohomology). Define

$$
\begin{gathered}
\underline{0} \longrightarrow\left(E^{*}(M), \mathrm{d}_{M}\right) \xrightarrow{f}\left(E^{*}(U) \oplus E^{*}(V), \mathrm{d}_{U} \oplus \mathrm{~d}_{V}\right) \xrightarrow{g}\left(E^{*}(U \cap V), \mathrm{d}_{U \cap V}\right) \longrightarrow \underline{0} \\
\text { by } \quad f(\alpha)=\left(\left.\alpha\right|_{U},\left.\alpha\right|_{V}\right) \text { and } \quad g(\beta, \gamma)=\left.\beta\right|_{U \cap V}-\left.\gamma\right|_{U \cap V} .
\end{gathered}
$$

The homomorphisms f and g preserve the grading of the complexes (take p-forms to p-forms) and commute with the differentials by Proposition 2.23b (restriction to a submanifold is the same as the pullback by the inclusion map). Thus, f and g are indeed homomorphisms of cochain complexes. The homomorphisms f is injective since $M=U \cup V$ and it is immediate that $g \circ f=0$, i.e. $\operatorname{Im} f \subset \operatorname{ker} g$. By the Pasting Lemma for smooth functions, $\operatorname{Im} f \supset \operatorname{ker} g$. Thus, the sequence above is exact at the first two positions. To see that it is exact at the third position, i.e. g is surjective, let $\left\{\varphi_{U}, \varphi_{V}\right\}$ be a partition of unity subordinate to the open cover $\{U, V\}$ of M, i.e.

$$
\varphi_{U}, \varphi_{V}: M \longrightarrow[0,1], \quad \operatorname{supp} \varphi_{U} \subset U, \quad \operatorname{supp} \varphi_{V} \subset V, \quad \varphi_{U}+\varphi_{V} \equiv 1
$$

If $\omega \in E^{*}(U \cap V)$, define $\varphi_{V} \omega \in E^{*}(U)$ and $\varphi_{U} \omega \in E^{*}(V)$ by

$$
\left.\left\{\varphi_{V} \omega\right\}\right|_{p}=\left\{\left.\begin{array}{ll}
\varphi_{V}(p)\left\{\left.\omega\right|_{p}\right\}, & \text { if } p \in U \cap V ; \\
0, & \text { if } p \in U-\operatorname{supp} \varphi_{V} ;
\end{array} \quad\left\{\varphi_{U} \omega\right\}\right|_{p}= \begin{cases}\varphi_{U}(p)\left\{\left.\omega\right|_{p}\right\}, & \text { if } p \in U \cap V \\
0, & \text { if } p \in V-\operatorname{supp} \varphi_{U}\end{cases}\right.
$$

Since $\operatorname{supp} \varphi_{V} \subset V$ is a closed subset of M, U is the union of the open subsets $U \cap V$ and $U-\operatorname{supp} \varphi_{V}$. Since the definition of $\varphi_{V} \omega$ is smooth on $U \cap V$ and $U-\operatorname{supp} \varphi_{V}$ and agrees on the overlap, $\varphi_{V} \omega$ is a well-defined smooth form on U, i.e. an element of $E^{*}(U)$. Similarly, $\varphi_{U} \omega \in E^{*}(V)$. By definition,

$$
g\left(\varphi_{V} \omega,-\varphi_{U} \omega\right)=\left.\left\{\varphi_{V} \omega\right\}\right|_{U \cap V}-\left(-\left.\left\{\varphi_{U} \omega\right\}\right|_{U \cap V}\right)=\left.\varphi_{V}\right|_{U \cap V} \omega+\left.\varphi_{U}\right|_{U \cap V} \omega=\omega
$$

Thus, g is surjective. The Mayer-Vietoris sequence in cohomology is the long exact sequence corresponding to the above short exact sequence of chain complexes via Proposition 5.17.

Note: According to the above and the proof of Proposition 5.17, the MV boundary homomorphism δ is obtained as follows. Choose $\varphi \in C^{\infty}(M)$ such that $\operatorname{supp} \varphi \subset V$ and $\operatorname{supp}\{1-\varphi\} \subset U$. Then,

$$
\mathrm{d} \varphi \in E^{1}(M) \quad \text { s.t. } \quad \operatorname{supp} \mathrm{d} \varphi \subset U \cap V .
$$

Thus, if $\omega \in E^{k}(U \cap V)$, then $\mathrm{d} \varphi \wedge \omega$ is a well-defined k-form on M (it is 0 outside of $\operatorname{supp} \mathrm{d} \varphi \subset U \cap V$). If in addition $\mathrm{d} \omega=0$, then $\mathrm{d}(\mathrm{d} \varphi \wedge \omega)=0$ and so $\mathrm{d} \varphi \wedge \omega$ determines an element of $H_{\mathrm{deR}}^{p+1}(M)$. Furthermore, for every $\eta \in E^{k-1}(U \cap V), \mathrm{d} \varphi \wedge \eta$ is a well-defined k-form on M and

$$
\mathrm{d}(\mathrm{~d} \varphi \wedge \eta)=\mathrm{d} \varphi \wedge \mathrm{~d} \eta \in E^{k+1}(M)
$$

Thus, the homomorphism

$$
\delta_{p}: H^{p}(U \cap V) \longrightarrow H^{p+1}(M), \quad[\omega] \longrightarrow[\mathrm{d} \varphi \wedge \omega]
$$

is well-defined (the image of $[\omega]$ is independent of the choice of representative ω, since any two such choices differ by an image of d , which is sent to zero by h). This is the boundary homomorphism δ_{p} of Proposition 5.17 in the given case, with $\varphi_{V}=\varphi$ and $\varphi_{U}=1-\varphi$. Furthermore, this homomorphism is independent of the choice of φ by Proposition 5.17, but this can also be seen directly. If $\varphi^{\prime} \in C^{\infty}(M)$ is another function such that $\operatorname{supp} \varphi^{\prime} \subset V$ and $\operatorname{supp}\left\{1-\varphi^{\prime}\right\} \subset U$, then $\operatorname{supp}\left\{\varphi-\varphi^{\prime}\right\} \subset U \cap V$ and thus $\left(\varphi-\varphi^{\prime}\right) \omega$ is a well-defined k-form on M for every k-form ω on $U \cap V$. If in addition, ω is closed,

$$
\mathrm{d}\left(\left(\varphi-\varphi^{\prime}\right) \omega\right)=\left(\mathrm{d} \varphi-\mathrm{d} \varphi^{\prime}\right) \wedge \omega=\mathrm{d} \varphi \wedge \omega-\mathrm{d} \varphi^{\prime} \wedge \omega \quad \Longrightarrow \quad[\mathrm{d} \varphi \wedge \omega]=\left[\mathrm{d} \varphi^{\prime} \wedge \omega\right] \in H^{p+1}(M)
$$

In contrast, $\mathrm{d} \varphi \wedge \omega$ need not be an exact form on M; it looks like $\mathrm{d}(\varphi \omega)$ if $\mathrm{d} \omega=0$, but $\varphi \omega$ is not a well-defined k-form on M because $\operatorname{supp} \varphi$ is contained in V, not in $U \cap V$, and ω is defined only on $U \cap V$. On the other hand, if $\omega \in E^{k}(V), \varphi \omega$ is a well-defined k-form on M, and so [$\left.\mathrm{d} \varphi \wedge \omega\right]=0$ in $H_{\mathrm{deR}}^{p+1}(M)$; this corresponds to $\delta_{k} \circ g_{k}=0$.
(b) Since M is a compact subspace of the Hausdorff space $\mathbb{R}^{n+1}, \mathbb{R}^{n+1}-M$ is an open subspace of \mathbb{R}^{n+1} and thus a smooth manifold. Thus, the number of connected components is the dimension of $H_{\mathrm{deR}}^{0}\left(\mathbb{R}^{n+1}-M\right)$ as a real vector space. We will apply Mayer-Vietoris with $U=\mathbb{R}^{n+1}-M$ and V a nice neighborhood of M in \mathbb{R}^{n+1}, so that $\mathbb{R}^{n+1}=U \cup V$. The goal is not to determine $H_{\text {de }}^{*}\left(\mathbb{R}^{n+1}\right)$, but $H_{\text {deR }}^{0}(U)$.

Let $\mathcal{N} \longrightarrow M$ be the normal bundle of M in \mathbb{R}^{n+1}. Since M and \mathbb{R}^{n+1} are orientable, \mathcal{N} is orientable by Problem 4 on PS6. Since the codimension of M in \mathbb{R}^{n+1} is one, \mathcal{N} is a line bundle. Since it is orientable, \mathcal{N} is trivial, i.e. isomorphic to $M \times \mathbb{R}$, by Lemma 12.1 in Lecture Notes. In particular, (\mathcal{N}, M) is diffeomorphic to ($M \times \mathbb{R}, M \times 0$), via a diffeomorphism restricting to the identity on M. In general, we can choose a neighborhood V of M in \mathbb{R}^{n+1} so that (V, M) is diffeomorphic to (\mathcal{N}, M), via a diffeomorphism restricting to the identity on M. Thus, in this case, we can choose a neighborhood V of M in \mathbb{R}^{n+1} such that (\mathcal{N}, M) is diffeomorphism to $(M \times \mathbb{R}, M \times 0)$, via a diffeomorphism restricting to the identity on M. This implies that

$$
U \cap V=\left(\mathbb{R}^{n+1}-M\right) \cap V=V-M \approx M \times \mathbb{R}^{*}, \quad \text { where } \quad \mathbb{R}^{*}=\mathbb{R}-\{0\}
$$

The first four terms of MV for $M=U \cup V$ are

$$
0 \longrightarrow H_{\mathrm{deR}}^{0}\left(\mathbb{R}^{n+1}\right) \longrightarrow H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \longrightarrow H_{\mathrm{deR}}^{0}(U \cap V) \longrightarrow H_{\mathrm{deR}}^{1}\left(\mathbb{R}^{n+1}\right)
$$

Since \mathbb{R}^{n+1} and M are connected,

$$
H_{\mathrm{deR}}^{0}\left(\mathbb{R}^{n+1}\right) \approx \mathbb{R}, \quad H_{\mathrm{deR}}^{0}(V) \approx H_{\mathrm{de}}^{0}(M \times \mathbb{R}) \approx \mathbb{R}, \quad H_{\mathrm{de} \mathrm{R}}^{0}(U \cap V) \approx H_{\mathrm{de} \mathrm{R}}^{0}\left(M \times \mathbb{R}^{*}\right) \approx \mathbb{R}^{2}
$$

By the Poincare Lemma, $H_{\text {de }}^{1}\left(\mathbb{R}^{n+1}\right)=0$. Thus, the above sequence reduces to

$$
0 \longrightarrow \mathbb{R} \longrightarrow H_{\mathrm{de}}^{0}(U) \oplus \mathbb{R} \longrightarrow \mathbb{R}^{2} \longrightarrow 0
$$

Since this sequence is exact, it follows that $H_{\mathrm{de} \mathrm{R}}^{0}(U) \approx \mathbb{R}^{2}$, i.e. $\mathbb{R}^{n+1}-M \approx U$ has exactly two connected components.

Problem 3 (10pts)

(a) Show that the inclusion map $S^{n} \longrightarrow \mathbb{R}^{n+1}-0$ induces an isomorphism in cohomology.
(b) Show that for all $n \geq 0$ and $p \in \mathbb{Z}$,

$$
H_{\mathrm{deR}}^{p}\left(S^{n}\right) \approx \begin{cases}\mathbb{R}^{2}, & \text { if } p=n=0 \\ \mathbb{R}, & \text { if } p=0, n, n \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(c) Show that S^{n} is not a product of two positive-dimensional manifolds.
(a) Let $i: S^{n} \longrightarrow \mathbb{R}^{n+1}-0$ be the inclusion and

$$
r: \mathbb{R}^{n+1}-0 \longrightarrow S^{n}, \quad r(z)=\frac{z}{|z|},
$$

the standard retraction. Then, $r \circ i=\mathrm{id}_{S^{n}}$ and $i o r$ is smoothly homotopic to $\mathrm{id}_{\mathbb{R}^{n+1}-0}$ via the map

$$
F(x, t)=(1-t) \frac{z}{|z|}+t z .
$$

Thus, by Chapter 5, \#19,

$$
\begin{gathered}
i^{*} \circ r^{*}=\operatorname{id}_{S^{n}}^{*}=\operatorname{id}: H_{\mathrm{deR}}^{*}\left(S^{n}\right) \longrightarrow H_{\mathrm{deR}}^{*}\left(S^{n}\right) \quad \text { and } \\
r^{*} \circ i^{*}=\operatorname{id}_{\mathbb{R}^{n+1}-0}^{*}=\operatorname{id}: H_{\mathrm{deR}}^{*}\left(\mathbb{R}^{n+1}-0\right) \longrightarrow H_{\mathrm{deR}}^{*}\left(\mathbb{R}^{n+1}-0\right) .
\end{gathered}
$$

This means that

$$
i^{*}: H_{\mathrm{deR}}^{*}\left(\mathbb{R}^{n+1}-0\right) \longrightarrow H_{\mathrm{deR}}^{*}\left(S^{n}\right)
$$

is an isomorphism.
(b) If $p<0$ or $p>n, H_{\text {de }}^{p}\left(S^{n}\right)=0$ by definition because $E^{p}\left(S^{n}\right)=0$ in these cases. The space S^{0} consists of two points and thus $H_{\mathrm{deR}}^{0}\left(S^{0}\right) \approx \mathbb{R}^{2}$. The $n, p=1$ case is done in 4.18 (it can also be verified from MV).

Suppose $n \geq 1$ and the statement holds for n. Let U and V be the complements of the south and north poles in S^{n+1}, respectively. Since these open subsets of S^{n+1} are diffeomorphic to \mathbb{R}^{n+1},

$$
H_{\mathrm{deR}}^{p}(U) \approx H_{\mathrm{deR}}^{p}(V) \approx \begin{cases}\mathbb{R}, & \text { if } p=0 \\ 0, & \text { if } p \neq 0\end{cases}
$$

by the Poincare Lemma. Furthermore, $U \cap V$ is diffeomorphic to $\mathbb{R}^{n+1}-0$. By part (a) and the induction assumption,

$$
H_{\mathrm{deR}}^{p}(U \cap V) \approx H_{\mathrm{deR}}^{p}\left(S^{n}\right) \approx \begin{cases}\mathbb{R}, & \text { if } p=0, n ; \\ 0, & \text { if } p \neq 0, n\end{cases}
$$

By MV, applied to $S^{n+1}=U \cup V$, the sequence

$$
H_{\mathrm{deR}}^{p-1}(U) \oplus H_{\mathrm{deR}}^{p-1}(V) \longrightarrow H_{\mathrm{deR}}^{p-1}(U \cap V) \longrightarrow H_{\mathrm{deR}}^{p}\left(S^{n+1}\right) \longrightarrow H_{\mathrm{deR}}^{p}(U) \oplus H_{\mathrm{deR}}^{p}(V)
$$

is exact for all $p \geq 1$. Thus, if $2 \leq p \leq n, H_{\text {de }}^{p}\left(S^{n+1}\right)=0$, since the two groups surrounding $H_{\text {deR }}^{p}\left(S^{n+1}\right)$ vanish. In the $p=n+1 \geq 2$ case, the above sequence becomes

$$
0 \longrightarrow \mathbb{R} \longrightarrow H_{\mathrm{deR}}^{p}\left(S^{n+1}\right) \longrightarrow 0
$$

Thus, $H_{\mathrm{deR}}^{n+1}\left(S^{n+1}\right) \approx \mathbb{R}$. In the remaining $p=1$ case, we consider the first 5 terms of the long sequence:

$$
0 \longrightarrow H_{\mathrm{deR}}^{0}\left(S^{n+1}\right) \longrightarrow H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \longrightarrow H_{\mathrm{deR}}^{0}(U \cap V) \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}\left(S^{n+1}\right) \longrightarrow H_{\mathrm{deR}}^{1}(U) \oplus H_{\mathrm{deR}}^{1}(V) .
$$

Since $n \geq 1, S^{n+1}, U, V$, and $U \cap V$ are connected and this sequence reduces to

$$
0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}\left(S^{n+1}\right) \longrightarrow 0 .
$$

Since this sequence is exact, δ_{0} must be the zero homomorphism and thus $H_{\mathrm{deR}}^{1}\left(S^{n+1}\right)=0$. This completes verification of the inductive step.

Caution: In order to conclude that δ_{0} is the zero homomorphism, it is essential that \mathbb{R} is a field, rather than a ring. The same conclusion about δ_{0} holds if we replace \mathbb{R} by any field. However, if we replace \mathbb{R} by the ring \mathbb{Z}, we could have

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{f_{0}} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{g_{0}} \mathbb{Z} \xrightarrow{\delta_{0}} \mathbb{Z}_{2} \longrightarrow 0, \quad f_{0}(a)=(a, 0), \quad g_{0}(b, c)=(0,2 c), \quad \delta_{0}(d)=d+2 \mathbb{Z} .
$$

This is an exact sequence of \mathbb{Z}-modules (i.e. abelian groups). In general, if \mathbb{R} is a ring, the last group must be all torsion.

Remark: The fact that $H_{\mathrm{deR}}^{1}\left(S^{n}\right)=0$ for $n \geq 2$ can be obtained immediately, without any induction, from Hurewicz Theorem and de Rham Theorem (to be proved):

$$
\begin{gathered}
\pi_{1}\left(S^{n}\right)=0 \quad \Longrightarrow \quad H_{1}\left(S^{n} ; \mathbb{Z}\right)=\operatorname{Abel}\left(\pi_{1}\left(S^{n}\right)\right)=0 \quad \Longrightarrow \quad H_{1}\left(S^{n} ; \mathbb{R}\right) \approx H_{1}\left(S^{n} ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{R}=0 \\
\Longrightarrow \quad H_{\mathrm{deR}}^{1}\left(S^{n}\right) \approx\left(H_{1}\left(S^{n} ; \mathbb{R}\right)\right)^{*} \approx 0 .
\end{gathered}
$$

(c) Suppose $S^{n}=M^{p} \times N^{q}$ for some $p, q>0$. Since S^{n} is compact and orientable, so are M and N (see Problem 5 on the 06 midterm). Let $\alpha \in E^{p}(M)$ and $\beta \in E^{q}(N)$ be nowhere-zero top forms. By Problem 5 on the 06 midterm,

$$
\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta \in E^{n}\left(S^{n}\right)
$$

is a nowhere-zero top form. Therefore,

$$
\int_{M} \pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta \quad \Longrightarrow \quad\left[\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right] \neq 0 \in H_{\mathrm{de} \mathrm{R}}^{n}\left(S^{n}\right)
$$

by Stokes' Theorem. On the other hand,

$$
\left[\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right]=\left[\pi_{1}^{*} \alpha\right] \wedge\left[\pi_{2}^{*} \beta\right]=\pi_{1}^{*}[\alpha] \wedge \pi_{2}^{*}[\beta] .
$$

Since $0<p, q<n$, by part (b)
$H_{\mathrm{deR}}^{p}\left(S^{n}\right)=0, \quad H_{\mathrm{deR}}^{q}\left(S^{n}\right)=0 \quad \Longrightarrow \quad \pi_{1}^{*}[\alpha]=0, \quad \pi_{2}^{*}[\beta]=0 \quad \Longrightarrow \quad\left[\pi_{1}^{*} \alpha \wedge \pi_{2}^{*} \beta\right]=\pi_{1}^{*}[\alpha] \wedge \pi_{2}^{*}[\beta]=0$.
This is a contradiction.

Problem 4 (20pts)

(a) Use Mayer-Vietoris (not Kunneth formula) to compute $H_{\mathrm{de} \mathrm{R}}^{*}\left(T^{2}\right)$, where T^{2} is the two-torus, $S^{1} \times S^{1}$. Find a basis for $H_{\mathrm{deR}}^{*}\left(T^{2}\right)$; justify your answer.
(b) Let Σ_{g} be a compact connected orientable surface of genus g (donut with g holes). Let $B \subset \Sigma_{g}$ be a small closed ball or a single point. Relate $H_{\mathrm{deR}}^{*}\left(\Sigma_{g}-B\right)$ to $H_{\mathrm{deR}}^{*}\left(\Sigma_{g}\right)$.
(c) Show that

$$
H_{\mathrm{de}}^{p}\left(\Sigma_{g}\right)= \begin{cases}\mathbb{R}, & \text { if } p=0,2 \\ \mathbb{R}^{2 g}, & \text { if } p=1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) View T^{2} as a donut lying flat on a table. Let U and V be the complements of the top and bottom circles in T^{2}, respectively. Formally,

$$
U=S^{1} \times\left(S^{1}-\{1\}\right) \approx S^{1} \times \mathbb{R}, \quad V=S^{1} \times\left(S^{1}-\{-1\}\right) \approx S^{1} \times \mathbb{R} \quad \Longrightarrow \quad U \cap V \approx S^{1} \times \mathbb{R}^{*}
$$

By the invariance of the de Rham cohomology under smooth homotopies

$$
\begin{gathered}
H_{\mathrm{deR}}^{p}(U) \approx H_{\mathrm{deR}}^{p}(V) \approx H_{\mathrm{deR}}^{p}\left(S^{1}\right) \approx \begin{cases}\mathbb{R}, & \text { if } p=0,1 ; \\
0, & \text { if } p \neq 0,1 ;\end{cases} \\
H_{\mathrm{deR}}^{p}(U \cap V) \approx H_{\mathrm{deR}}^{p}\left(S^{1} \sqcup S^{1}\right) \approx H_{\mathrm{deR}}^{p}\left(S^{1}\right) \oplus H_{\mathrm{deR}}^{p}\left(S^{1}\right) \approx \begin{cases}\mathbb{R}^{2}, & \text { if } p=0,1 ; \\
0, & \text { if } p \neq 0,1 .\end{cases}
\end{gathered}
$$

Since T^{2} is connected, $H_{\mathrm{deR}}^{0}\left(T^{2}\right) \approx \mathbb{R}$ By MV,

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}\left(T^{2}\right) \longrightarrow H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \longrightarrow H_{\mathrm{deR}}^{0}(U \cap V) \\
& \xrightarrow[\mathrm{\delta}]{ } H_{\mathrm{deR}}^{1}\left(T^{2}\right) \longrightarrow H_{\mathrm{deR}}^{1}(U) \oplus H_{\mathrm{deR}}^{1}(V) \xrightarrow{g_{1}} H_{\mathrm{deR}}^{1}(U \cap V) \longrightarrow H_{\mathrm{deR}}^{2}\left(T^{2}\right) \longrightarrow H_{\mathrm{deR}}^{2}(U) \oplus H_{\mathrm{deR}}^{2}(V) .
\end{aligned}
$$

The remaining groups vanish for dimensional reasons. Plugging in for the known groups, we obtain

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R}^{2} \\
& \quad \xrightarrow{\delta_{0}} H_{\mathrm{de}}^{1}\left(T^{2}\right) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{g_{1}} \mathbb{R}^{2} \longrightarrow H_{\mathrm{deR}}^{2}\left(T^{2}\right) \longrightarrow 0
\end{aligned}
$$

By the exactness of the sequence, the image of δ_{0} must be \mathbb{R}. Since $H_{\text {deR }}^{1}\left(S^{1}\right)$ is nonzero and the inclusion map $S^{1} \times \mathbb{R}^{-} \longrightarrow S^{1} \times \mathbb{R}$ induces an isomorphism in cohomology (being a smooth homotopy equivalence), the inclusion map

$$
U \cap V \approx S^{1} \times\left(\mathbb{R}^{-} \sqcup \mathbb{R}^{+}\right) \longrightarrow U \approx S^{1} \times \mathbb{R}
$$

induces a nontrivial homomorphism on the first cohomology. Thus, the homomorphism g_{1} in the above sequence is nontrivial. Its cokernel is $H_{\text {deR }}^{2}\left(T^{2}\right)$. Since T^{2} is compact and oriented, $H_{\text {deR }}^{2}\left(T^{2}\right)$ is nonzero and $\operatorname{Im} g_{1} \subsetneq \mathbb{R}^{2}$. Thus, $\operatorname{Im} g_{1}$ is a one-dimensional subspace of \mathbb{R}^{2} and $H_{\mathrm{deR}}^{2}\left(T^{2}\right) \approx \mathbb{R}$ (this can also be obtained by studying g_{1} in more detail). The above exact sequence then induces an exact sequence

$$
0 \longrightarrow \operatorname{Im} \delta_{0} \approx \mathbb{R} \longrightarrow H_{\mathrm{deR}}^{1}\left(T^{2}\right) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{g_{1}} \operatorname{Im} g_{1} \approx \mathbb{R}^{1} \longrightarrow 0
$$

From this exact sequence we conclude that $H_{\mathrm{deR}}^{1}\left(T^{2}\right) \approx \mathbb{R}^{2}$
The one-dimensional vector space $H_{\mathrm{de}}^{0}\left(T^{2}\right)$ consists of the constant functions on T^{2}. Thus the constant function 1 forms a basis for $H_{\mathrm{de} \mathrm{R}}^{0}\left(T^{2}\right)$. If $\mathrm{d} \theta$ is the standard volume form on S^{1}, as in 4.18, or any other nowhere-zero one-form on S^{1}, then $\pi_{1}^{*} \mathrm{~d} \theta \wedge \pi_{2}^{*} \mathrm{~d} \theta$ is a nowhere-zero top form on T^{2}. Therefore,

$$
\left[\pi_{1}^{*} \mathrm{~d} \theta\right] \wedge\left[\pi_{2}^{*} \mathrm{~d} \theta\right]=\left[\pi_{1}^{*} \mathrm{~d} \theta \wedge \pi_{2}^{*} \mathrm{~d} \theta\right] \neq 0 \in H_{\mathrm{deR}}^{2}\left(T^{2}\right)
$$

and $\left\{\left[\pi_{1}^{*} \mathrm{~d} \theta\right],\left[\pi_{2}^{*} \mathrm{~d} \theta\right]\right\}$ must be a linearly independent set of vectors in $H_{\mathrm{deR}}^{1}\left(T^{2}\right)$. Since $H_{\mathrm{deR}}^{1}\left(T^{2}\right)$ is two-dimensional, this is a basis for $H_{\text {deR }}^{1}\left(T^{2}\right)$. Finally, since $H_{\mathrm{deR}}^{2}\left(T^{2}\right)$ is one-dimensional and $\left[\pi_{1}^{*} \mathrm{~d} \theta\right] \wedge\left[\pi_{2}^{*} \mathrm{~d} \theta\right]$ is nonzero, it forms a basis for $H_{\text {deR }}^{2}\left(T^{2}\right)$.

Remark: Note that we have determined $H_{\text {deR }}^{*}\left(T^{2}\right)$ as a graded ring. By the above, we have an isomorphism of graded rings

$$
H_{\mathrm{deR}}^{*}\left(T^{2}\right)=\Lambda^{*} H_{\mathrm{deR}}^{1}\left(T^{2}\right)=\Lambda^{*} \mathbb{R}\left\{\left[\pi_{1}^{*} \mathrm{~d} \theta\right],\left[\pi_{2}^{*} \mathrm{~d} \theta\right]\right\} \approx \Lambda^{*} \mathbb{R}^{2}
$$

where $\mathbb{R}\left\{\left[\pi_{1}^{*} d \theta\right],\left[\pi_{2}^{*} d \theta\right]\right\}$ is the vector space with basis $\left\{\left[\pi_{1}^{*} d \theta\right],\left[\pi_{2}^{*} d \theta\right]\right\}$. The first equality above holds for all tori.
(b) Since Σ_{g} is connected, so is $\Sigma_{g}-B$ and therefore

$$
H_{\mathrm{deR}}^{0}\left(\Sigma_{g}-B\right) \approx H_{\mathrm{deR}}^{0}\left(\Sigma_{g}\right) \approx \mathbb{R}
$$

Let V be a small open ball in Σ_{g} containing B. Then, $\left(\Sigma_{g}-B\right) \cap V$ is either an open disk with a point removed or an open annulus, so that

$$
\left(\Sigma_{g}-B\right) \cap V \approx S^{1} \times(-1,1) \quad \Longrightarrow \quad H_{\mathrm{deR}}^{p}\left(\Sigma_{g}-B\right) \approx H_{\mathrm{deR}}^{p}\left(S^{1}\right) \approx \begin{cases}\mathbb{R}, & \text { if } p=0,1, \\ 0, & \text { if } p \neq 0,1,\end{cases}
$$

by the invariance of the de Rham cohomology under smooth homotopy equivalences. Since Σ_{g} is the union of the open subsets $\Sigma_{g}-B$ and V, by MV

$$
\begin{aligned}
0 \longrightarrow H_{\mathrm{deR}}^{0}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{0}\left(\Sigma_{g}-B\right) \oplus H_{\mathrm{deR}}^{0}(V) \longrightarrow H_{\mathrm{deR}}^{0}\left(\left(\Sigma_{g}-B\right) \cap V\right) \\
\xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B\right) \oplus H_{\mathrm{deR}}^{1}(V) \xrightarrow{g_{1}} H_{\mathrm{deR}}^{1}\left(\left(\Sigma_{g}-B\right) \cap V\right) \\
\xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}-B\right) \oplus H_{\mathrm{deR}}^{2}(V) \longrightarrow H_{\mathrm{deR}}^{2}\left(\left(\Sigma_{g}-B\right) \cap V\right) .
\end{aligned}
$$

Plugging in for the known groups, we obtain

$$
\begin{aligned}
0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \\
\quad \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B\right) \oplus 0 \xrightarrow{g_{1}} \mathbb{R} \\
\quad \xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}-B\right) \oplus 0 \longrightarrow 0 .
\end{aligned}
$$

By exactness, δ_{0} must be zero and therefore we have an exact sequence
$0 \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B\right) \xrightarrow{g_{1}} H_{\mathrm{deR}}^{1}\left(\left(\Sigma_{g}-B\right) \cap V\right) \approx \mathbb{R} \xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}-B\right) \longrightarrow 0$.
In the next paragraph we show that the homomorphism δ_{1} is nonzero. By exactness, g_{1} must then be trivial and we obtain two exact sequences

$$
0 \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B\right) \xrightarrow{g_{1}} 0, \quad 0 \longrightarrow \mathbb{R} \xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}-B\right) \longrightarrow 0
$$

From this, we conclude that

$$
H_{\mathrm{deR}}^{p}\left(\Sigma_{g}-B\right) \approx \begin{cases}\mathbb{R}, & \text { if } p=0 \\ H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right), & \text { if } p=1 ; \\ H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) / \mathbb{R}, & \text { if } p=2\end{cases}
$$

Furthermore, the isomorphism between $H_{\mathrm{deR}}^{1}\left(\Sigma_{g}\right)$ and $H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B\right)$ is induced by the inclusion $\Sigma_{g}-B \longrightarrow \Sigma_{g}$.

In order to see that the homomorphism

$$
\delta_{1}: H_{\mathrm{deR}}^{1}\left(\left(\Sigma_{g}-B\right) \cap V\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right)
$$

is nonzero, we use Problem 2a and the definition of δ given in the Note there. Choose $\varphi \in C^{\infty}\left(\Sigma_{g}\right)$ such that $\operatorname{supp} \varphi \subset V$ and $\operatorname{supp}\{1-\varphi\} \subset \Sigma_{g}-B$. Let

$$
\gamma=\pi_{1}^{*} \mathrm{~d} \theta \in E^{1}(\mathbb{R} \times(1 / 2,1)) \approx E^{1}\left(\left(\Sigma_{g}-B\right) \cap V\right) .
$$

We will show that

$$
\delta([\gamma]) \equiv[\mathrm{d} \varphi \wedge \gamma] \equiv\left[\mathrm{d} \varphi \wedge \pi_{1}^{*} \mathrm{~d} \theta\right] \neq 0 \in H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right)
$$

by showing that the integral of $\mathrm{d} \varphi \wedge \gamma$ over the orientable manifold Σ_{g} is not zero. Since the compact set $\operatorname{supp}(1-\varphi) \cap \operatorname{supp} \varphi$ is contained in the open annulus $V-B$, there exist $1 / 2<r<R<1$ such that

$$
\operatorname{supp}(1-\varphi) \cap \operatorname{supp} \varphi \subset A \equiv S^{1} \times[r, R] \subset V-\left.B \quad \Longrightarrow \quad \varphi\right|_{S^{1} \times r}=1,\left.\quad \varphi\right|_{S^{1} \times R}=0
$$

Since $\mathrm{d} \varphi \wedge \pi_{1}^{*} \mathrm{~d} \theta$ vanishes outside of A,

$$
\begin{aligned}
\int_{M} \mathrm{~d} \varphi \wedge \pi_{1}^{*} \mathrm{~d} \theta & =\int_{A} \mathrm{~d} \varphi \wedge \pi_{1}^{*} \mathrm{~d} \theta=\int_{A} \mathrm{~d}\left(\varphi \pi_{1}^{*} \mathrm{~d} \theta\right)=\int_{\partial A} \varphi \pi_{1}^{*} \mathrm{~d} \theta \\
& = \pm\left(\int_{S^{1} \times R} \varphi \pi_{1}^{*} \mathrm{~d} \theta-\int_{S^{1} \times r} \varphi \pi_{1}^{*} \mathrm{~d} \theta\right)= \pm \int_{S^{1} \times r} \pi_{1}^{*} \mathrm{~d} \theta= \pm 2 \pi \neq 0
\end{aligned}
$$

The third equality above follows from Stokes' Theorem.
Remark: If M is a connected non-compact n-dimensional manifold, $H_{\text {deR }}^{n}(M)=0$; see Spivak p369 for a proof. This fact would simplify the solution, but first needs to be established.
(c) The cases $g=0,1$ were proved in Problem 3b and part (a) above. Suppose $g \geq 1$ and the statement holds for g. Since Σ_{g+1} is connected, $H_{\mathrm{deR}}^{0}\left(\Sigma_{g+1}\right) \approx \mathbb{R}$. Note that

$$
\Sigma_{g+1}=\Sigma_{g} \# \Sigma_{1}=\Sigma_{g} \# T^{2}
$$

i.e. Σ_{g+1} can be obtained from Σ_{g} and T^{2} by removing small open disks from the two surfaces and joining the two boundary circles together. We thus can write

$$
\Sigma_{g+1}=\left(\Sigma_{g}-B_{1}\right) \cup\left(T^{2}-B_{2}\right)
$$

where B_{1} and B_{2} are slightly smaller closed balls. The overlap of U and V in Σ_{g+1} is a small band around the circle joining the two surfaces. Thus,
$\left(\Sigma_{g}-B_{1}\right) \cap\left(T^{2}-B_{2}\right) \approx S^{1} \times(-1,1) \quad \Longrightarrow \quad H_{\mathrm{deR}}^{p}\left(\left(\Sigma_{g}-B_{1}\right) \cap\left(T^{2}-B_{2}\right)\right) \approx H_{\mathrm{deR}}^{p}\left(S^{1}\right) \approx \begin{cases}\mathbb{R}, & \text { if } p=0,1, \\ 0, & \text { if } p \neq 0,1,\end{cases}$
by the invariance of the de Rham cohomology under smooth homotopy equivalences. By the induction assumption and part (b),

$$
H_{\mathrm{deR}}^{p}\left(\Sigma-B_{1}\right) \approx\left\{\begin{array} { l l }
{ \mathbb { R } , } & { \text { if } p = 0 ; } \\
{ \mathbb { R } ^ { 2 g } , } & { \text { if } p = 1 ; } \\
{ 0 , } & { \text { otherwise } ; }
\end{array} \quad \text { and } \quad H _ { \mathrm { deR } } ^ { p } (T ^ { 2 } - B _ { 2 }) \approx \left\{\begin{array}{ll}
\mathbb{R}, & \text { if } p=0 \\
\mathbb{R}^{2}, & \text { if } p=1 \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

Since Σ_{g+1} is the union of open subsets $\Sigma_{g}-B_{1}$ and $T^{2}-B_{2}$, by MV

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}\left(\Sigma_{g+1}\right) \longrightarrow H_{\mathrm{deR}}^{0}\left(\Sigma_{g}-B_{1}\right) \oplus H_{\mathrm{deR}}^{0}\left(T^{2}-B_{2}\right) \longrightarrow H_{\mathrm{deR}}^{0}\left(\left(\Sigma_{g}-B_{1}\right) \cap\left(T^{2}-B_{2}\right)\right) \\
& \quad \delta_{0} \\
& \quad H_{\mathrm{deR}}^{1}\left(\Sigma_{g+1}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g}-B_{1}\right) \oplus H_{\mathrm{deR}}^{1}\left(T^{2}-B_{2}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(\left(\Sigma_{g}-B_{1}\right) \cap\left(T^{2}-B_{2}\right)\right) \\
&\left(\Sigma_{g+1}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\Sigma_{g}-B_{1}\right) \oplus H_{\mathrm{deR}}^{2}\left(T^{2}-B_{2}\right) .
\end{aligned}
$$

Plugging in for the known groups, we obtain

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \\
& \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}\left(\Sigma_{g+1}\right) \longrightarrow \mathbb{R}^{2 g} \oplus \mathbb{R}^{2} \longrightarrow \mathbb{R} \xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g+1}\right) \longrightarrow 0 .
\end{aligned}
$$

By exactness, δ_{0} must be zero and therefore we have an exact sequence

$$
0 \longrightarrow H_{\mathrm{deR}}^{1}\left(\Sigma_{g+1}\right) \longrightarrow \mathbb{R}^{2 g+2} \xrightarrow{g_{1}} \mathbb{R} \xrightarrow{\delta_{1}} H_{\mathrm{deR}}^{2}\left(\Sigma_{g+1}\right) \longrightarrow 0 .
$$

Since Σ_{g+1} is compact and orientable, $H_{\mathrm{deR}}^{2}\left(\Sigma_{g+1}\right)$ is nonzero. Therefore, the homomorphism δ_{1} is nonzero and thus an isomorphism, while the homomorphism g_{1} is zero. It follows that

$$
H_{\mathrm{deR}}^{1}\left(\Sigma_{g+1}\right) \approx \mathbb{R}^{2 g+2} \quad \text { and } \quad H_{\mathrm{deR}}^{2}\left(\Sigma_{g+1}\right) \approx \mathbb{R} .
$$

This completes verification of the inductive step.
Remark: The de Rham cohomology of Σ_{g} can be determined without Mayer-Vietoris. Since Σ_{g} is connected, $H_{\mathrm{deR}}^{0}\left(\Sigma_{g}\right) \approx \mathbb{R}$. Since Σ_{g} is a 2-dimensional compact orientable manifold, by the Poincare Duality (to be proved)

$$
H_{\mathrm{deR}}^{2}\left(\Sigma_{g}\right) \approx\left(H_{\mathrm{deR}}^{2-2}\left(\Sigma_{g}\right)\right)^{*} \approx \mathbb{R} .
$$

Finally, by Hurewicz Theorem (Problem 1) and de Rham Theorem (to be proved):

$$
\begin{array}{ccc}
\pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle & \Longrightarrow \quad H_{1}(\Sigma ; \mathbb{Z})=\operatorname{Abel}\left(\pi_{1}\left(\Sigma_{g}\right)\right) \approx \mathbb{Z}^{2 g} \\
\Longrightarrow \quad H_{1}\left(\Sigma_{g} ; \mathbb{R}\right) \approx H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{R} \approx \mathbb{R}^{2 g} \quad \Longrightarrow \quad H_{\mathrm{de}}^{1}\left(\Sigma_{g}\right) \approx\left(H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)\right)^{*} \approx \mathbb{R}^{2 g}
\end{array}
$$

Problem 5 (10pts)

(a) Suppose $q: \tilde{M} \longrightarrow M$ is a regular covering projection with a finite group of deck transformations G (so that $M=\tilde{M} / G$). Show that

$$
q^{*}: H_{\mathrm{deR}}^{*}(M) \longrightarrow H_{\mathrm{deR}}^{*}(\tilde{M})^{G} \equiv\left\{\alpha \in H_{\mathrm{deR}}^{*}(\tilde{M}): g^{*} \alpha=\alpha \forall g \in G\right\}
$$

is an isomorphism. Does this statement continue to hold if G is not assumed to be finite?
(b) Determine $H_{\text {deR }}^{*}(K)$, where K is the Klein bottle. Find a basis for $H_{\mathrm{de}}^{*}(K)$; justify your answer.
(a) If $g \in G, q=q \circ g$ and

$$
q^{*}[\beta]=\{q \circ g\}^{*}[\beta]=g^{*} q^{*}[\beta] \quad \forall[\beta] \in H_{\mathrm{deR}}^{*}(M) .
$$

Thus, the image of q^{*} is contained in $H_{\text {de }}^{*}(\tilde{M})^{G}$. We next show that the image of q^{*} is all of $H_{\mathrm{deR}}^{*}(\tilde{M})^{G}$. If $\alpha \in E^{*}(\tilde{M})$ is such that $[\alpha] \in H_{\mathrm{deR}}^{*}(\tilde{M})^{G}$, let

$$
\tilde{\alpha}=\frac{1}{|G|} \sum_{g \in G} g^{*} \alpha \in E^{*}(\tilde{M})^{G}
$$

Since $\mathrm{d} g^{*}=g^{*} \mathrm{~d}, \mathrm{~d} \tilde{\alpha}=0$ and

$$
[\tilde{\alpha}]=\frac{1}{|G|} \sum_{g \in G}\left[g^{*} \alpha\right]=\frac{1}{|G|} \sum_{g \in G} g^{*}[\alpha]=\frac{1}{|G|} \sum_{g \in G}[\alpha]=[\alpha] \in H_{\mathrm{deR}}^{*}(\tilde{M}) .
$$

On the other hand, since $\tilde{\alpha} \in E^{*}(\tilde{M})^{G}, \tilde{\alpha}=q^{*} \beta$ for some $\beta \in E^{*}(M)$ by Problem 6 b on PS6. Since $\mathrm{d} \tilde{\alpha}=0$ and q is a local diffeomorphism (and thus $q^{*}: E^{*}(M) \longrightarrow E^{*}(\tilde{M})$ is injective), $\mathrm{d} \beta=0$. Thus, $[\beta] \in H^{*}(M)$ and

$$
[\alpha]=[\tilde{\alpha}]=q^{*}[\beta] \in H^{*}(\tilde{M})
$$

Thus, the map

$$
q^{*}: H_{\mathrm{de} \mathrm{R}}^{*}(M) \longrightarrow H_{\mathrm{deR}}^{*}(\tilde{M})^{G}
$$

is surjective. Finally, we show that q^{*} is injective. Suppose $\beta \in E^{*}(M)$ and $q^{*} \beta=\mathrm{d} \alpha$ for some $\alpha \in E^{*}(\tilde{M})$. With $\tilde{\alpha}$ defined as above,

$$
\mathrm{d} \tilde{\alpha}=\frac{1}{|G|} \sum_{g \in G} \mathrm{~d} g^{*} \alpha=\frac{1}{|G|} \sum_{g \in G} g^{*} \mathrm{~d} \alpha=\frac{1}{|G|} \sum_{g \in G} g^{*} q^{*} \beta=\frac{1}{|G|} \sum_{g \in G} q^{*} \beta=q^{*} \beta
$$

Since $\tilde{\alpha} \in E^{*}(\tilde{M})^{G}, \tilde{\alpha}=q^{*} \gamma$ for some $\gamma \in E^{*}(M)$ and

$$
q^{*} \mathrm{~d} \gamma=\mathrm{d} q^{*} \gamma=\mathrm{d} \tilde{\alpha}=q^{*} \beta .
$$

Since q is a local diffeomorphism, q^{*} is injective and thus

$$
\beta=\mathrm{d} \gamma \quad \Longrightarrow \quad[\beta]=[0] \in H_{\mathrm{deR}}^{*}(M),
$$

i.e. q^{*} is injective on cohomology.

The statement may not hold if G is infinite. For example, if $q: \mathbb{R} \longrightarrow S^{1}$ is the standard covering map, the map

$$
q^{*}: H_{\mathrm{deR}}^{1}\left(S^{1}\right) \approx \mathbb{R} \longrightarrow H_{\mathrm{deR}}^{1}(\mathbb{R})=0
$$

cannot be injective.
(b) Since K is connected, $H_{\mathrm{deR}}^{0}(K) \approx \mathbb{R}$. By Exercise 3 on p 454 of Munkres, there is a $2: 1$ covering map $q: T^{2} \longrightarrow K$. The corresponding group of covering transformations is isomorphic to \mathbb{Z}_{2}. Let g be the non-trivial diffeomorphism. From Exercise 3, it can be written as

$$
g\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right)=\left(-e^{i \theta_{1}}, e^{-i \theta_{2}}\right) \equiv\left(g_{1}\left(e^{i \theta_{1}}\right), g_{2}\left(e^{i \theta_{2}}\right)\right)
$$

With d θ as in Problem 4a,

$$
\begin{aligned}
g^{*} \pi_{1}^{*} \mathrm{~d} \theta & =\left\{\pi_{1} \circ g\right\}^{*} \mathrm{~d} \theta=\left\{g_{1} \circ \pi_{1}\right\}^{*} \mathrm{~d} \theta=\pi_{1}^{*} g_{1}^{*} \mathrm{~d} \theta=\pi_{1}^{*} \mathrm{~d} \theta ; \\
g^{*} \pi_{2}^{*} \mathrm{~d} \theta & =\left\{\pi_{2} \circ g\right\}^{*} \mathrm{~d} \theta=\left\{g_{2} \circ \pi_{2}\right\}^{*} \mathrm{~d} \theta=\pi_{2}^{*} g_{2}^{*} \mathrm{~d} \theta=\pi_{2}^{*}(-\mathrm{d} \theta)=-\pi_{2}^{*} \mathrm{~d} \theta ; \\
g^{*}\left(\pi_{1}^{*} \mathrm{~d} \theta \wedge \pi_{2}^{*} \mathrm{~d} \theta\right) & =g^{*} \pi_{1}^{*} \mathrm{~d} \theta \wedge g^{*} \pi_{2}^{*} \mathrm{~d} \theta=\pi_{1}^{*} \mathrm{~d} \theta \wedge\left(-\pi_{2}^{*} \mathrm{~d} \theta\right)=-\pi_{1}^{*} \mathrm{~d} \theta \wedge \pi_{2}^{*} \mathrm{~d} \theta .
\end{aligned}
$$

By Problem 4a, $\left\{\left[\pi_{1}^{*} \mathrm{~d} \theta\right],\left[\pi_{2}^{*} \mathrm{~d} \theta\right]\right\}$ and $\left\{\left[\pi_{1}^{*} d \theta\right] \wedge\left[\pi_{2}^{*} \mathrm{~d} \theta\right]\right\}$ are bases for $H_{\text {deR }}^{1}\left(T^{2}\right)$ and $H_{\text {de }}^{2}\left(T^{2}\right)$, respectively. Thus, by part (a),

$$
H_{\mathrm{deR}}^{1}(K) \approx H_{\mathrm{deR}}^{1}\left(T^{2}\right)^{G}=\mathbb{R}\left\{\left[\pi_{1}^{*} \mathrm{~d} \theta\right]\right\} \approx \mathbb{R}, \quad H_{\mathrm{deR}}^{2}(K) \approx H_{\mathrm{deR}}^{2}\left(T^{2}\right)^{G}=0
$$

Since the isomorphisms are induced by q^{*}, a basis for $H_{\text {deR }}^{1}(K)$ consists of the equivalence class of the one-form α on K such that $q^{*} \alpha=\pi_{1}^{*} \mathrm{~d} \theta$. A basis for $H_{\text {deR }}^{0}(K)$ is formed by the constant function 1 .

Problem 6: Chapter 5, \#4 (5pts)

A smooth function f on a manifold M determines a section \mathbf{f} of the sheaf of germs of smooth functions, $\mathfrak{C}^{\infty}(M)$. The set $f^{-1}(0)$ is closed, while $\mathbf{f}^{-1}(0)$ is open. How do you reconcile these two facts? Consider examples.

The section \mathbf{f} of the sheaf $\mathfrak{C}^{\infty}(M)$ vanishes at some $p \in M$ if its germ at p is the same as the germ of the 0 -function at p. This means that for every $p \in \mathbf{f}^{-1}(0)$, there exists an open neighborhood U_{p} of p in M such that $\left.f\right|_{U_{p}} \equiv 0$, so that

$$
\mathbf{f}^{-1}(0) \equiv \bigcup_{p \in M} U_{p}
$$

is open in M. In other words, vanishing of \mathbf{f} at a point p means vanishing of f on a neighborhood of p; the latter is an open condition on p.

As an example, suppose $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x$. Then, $f(0)=0$, but $\mathbf{f}(0) \neq 0$ because f does not vanish on a neighborhood of 0 . As another example, suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a smooth function such that

$$
f(x)=0 \quad \forall x \leq 0, \quad f(x)>0 \quad \forall x>0 .
$$

Then, $\mathbf{f}^{-1}(0)=\mathbb{R}^{-}$, while $f^{-1}(0)=\mathbb{R}^{-} \cup\{0\}$.

Problem 7 (5pts)

Let $K=\mathbb{Z}$ and let $\pi: \mathcal{S}_{0} \longrightarrow \mathbb{R}$ be the corresponding skyscraper sheaf, with the only non-trivial stack over $0 \in \mathbb{R}$; see Subsection 5.11. What is \mathcal{S}_{0} as a topological space?

This is a line with countably many origins, indexed by \mathbb{Z}. Explicitly, $S_{0}=\mathbb{R}^{*} \sqcup 0 \times \mathbb{Z}$ as sets. The projection map is given by

$$
\pi: S_{0} \longrightarrow \mathbb{R}, \quad \pi(x)= \begin{cases}x, & \text { if } x \in \mathbb{R}^{*} ; \\ 0, & \text { if } x \in 0 \times \mathbb{Z}\end{cases}
$$

Each fiber of this projection map is a \mathbb{Z}-module, either 0 or \mathbb{Z}. A basis for the topology on \mathcal{S}_{0} consists of the intervals (a, b) with $a b \geq 0$, and the sets

$$
(a, b)_{m} \equiv(a, 0) \sqcup\{0 \times m\} \sqcup(0, b),
$$

with $a b<0$ (i.e. a and b have different signs) and $m \in \mathbb{Z}$. This topology is forced on \mathcal{S}_{0} by the requirement that each point $x \in \mathbb{R}^{*}$ and $(0, m) \in 0 \times \mathbb{Z}$ have a neighborhood U such that $\pi: U \longrightarrow \pi(U)$ is a homeomorphism. With the given topology,

$$
\pi:(-\infty, \infty)_{m} \longrightarrow \mathbb{R}
$$

is a homeomorphism for all $m \in \mathbb{Z}$. For $k \in \mathbb{Z}$, the multiplication map by k induces a homeomorphism

$$
(-\infty, \infty)_{m} \longrightarrow(-\infty, \infty)_{k m}
$$

while the addition map restricts to a homeomorphism

$$
\left\{\left(m_{1}, m_{2}\right)\right\} \cup\left\{(x, x): x \in \mathbb{R}^{*}\right\} \longrightarrow(-\infty, \infty)_{m_{1}+m_{2}} .
$$

Thus, the \mathbb{Z}-module operations are continuous.

