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Solutions to Problem Set 7

Problem 1 (15pts)

Let X be a path-connected topological space and (S∗(X), ∂) the singular chain complex of continuous
simplices into X with integer coefficients. Denote by H1(X;Z) the corresponding first homology group.
(a) Show that there exists a well-defined surjective homomorphism

h : π1(X,x0) −→ H1(X;Z).

(b) Show that the kernel of this homomorphism is the commutator subgroup of π1(X,x0) so that h
induces an isomorphism

Φ: π1(X,x0)
/[

π1(X,x0), π1(X,x0)
]

−→ H1(X;Z).

This is the first part of the Hurewicz Theorem.

The motivation for this result is that π1(X,x0) is generated by loops based at x0∈X, i.e. continuous
maps α : I−→X such that α(0)=α(1)=x0, while H1(X;Z) is generated by formal linear combinations
of 1-simplicies, i.e. continuous maps

f : ∆1=I −→ X.

In particular, a loop (as well as any path) in X is a 1-simplex. However, the equivalence relations
on paths and 1-simplicies used to define π1(X,x0) and H1(X;Z) and the groups structures are quite
different. So we will need to show that equivalent paths are equivalent as 1-simplicies and a product
of two paths corresponds to the sum of the two 1-simplicies.

We will denote the path-homotopy equivalence class of a path α (loop or not) by [α] and the image of
a 1-simplex in S1(X)/∂S2(X) by {α}. It will be essential to distinguish between a point x0∈X and
the k-simplex taking the entire standard k-simplex ∆k to x0. Denote the latter by fk,x0

.

Lemma 0: If α : I−→X is a loop, ∂α=0.
Lemma 1: If x0∈X, f1,x0

∈∂S2(X).
Lemma 2: If α, β : I−→X are path-homotopic, then α−β∈∂S2(X).
Lemma 3: If α, β : I−→X are paths such that α(1)=β(0), then α+β−α∗β∈∂S2(X).
Lemma 4: If α : I−→X and ᾱ : I−→X is its inverse, then α+ᾱ∈∂S2(X).
Lemma 5: If F : ∆2−→X is a 2-simplex, then

[

(F ◦ι20)∗(F ◦ι21)∗(F ◦ι22)
]

= [id] ∈ π1
(

X,F (1, 0)
)

.

First, recall the maps ι1j and ι2j used to define the boundaries of 1- and 2-simplicies:

ι1j : ∆
0 −→ ∆1, ι10(0) = 1, ι11(0) = 0;

ι2j : ∆
1−→∆2, ι20(s) = (1−s, s), ι21(s) = (0, s), ι22(s) = (s, 0) ∀ s∈I;
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Figure 1: The boundary maps ι1j : ∆
0−→∆1 and ι2j : ∆

1−→∆2.

see Figure 1. These maps respect the orders of the vertices. By the above, if α is a loop based at x0,

∂α = α ◦ ι10 − α ◦ ι11 = f0,α(1) − f0,α(0) = f0,x0
− f0,x0

= 0.

For Lemma 1, note that

∂f2,x0
= f2,x0

◦ ι20 − f2,x0
◦ ι21 + f2,x0

◦ ι22 = f1,x0
− f1,x0

+ f1,x0
= f1,x0

,

since f2,x0
◦ ι2j maps all of I to x0. For Lemma 2, choose a path-homotopy from α to β, i.e. a

continuous map

F : I×I −→ X s.t. F (s, 0) = α(s), F (s, 1) = β(s), F (0, t) = F (1, t) ∀ s, t∈ [0, 1].

There is a quotient map

q : I×I −→ ∆2 s.t. q(s, 0) = (s, 0), q(s, 1) = q(0, s), q(0, t) = (0, 0), q(1, t) = (1−t, t),

i.e. q contracts the left edge of I×I and maps the other three edges linearly onto the edges of ∆2.
Since F is constant along the fibers of q, F induces a continuous map

F̄ : ∆2 −→ X s.t. F = F̄ ◦ q =⇒ F̄ (s, 0) = α(s), F̄ (0, t) = β(t), F̄ (s, 1−s) = x1 ∀ s, t∈I

=⇒ ∂F̄ = F̄ ◦ ι20 − F̄ ◦ ι21 + F̄ ◦ ι22 = f1,x1
− β + α;

see Figure 2. Along with Lemma 1, this implies Lemma 2.
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Figure 2: A path homotopy gives rise to a boundary between the corresponding 1-simplices.

For Lemma 3, define

F : ∆2 −→ X by F (x, y) =

{

α(x+2y), if x+2y≤1;

β(x+2y−1), if x+2y≥1.
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Figure 3: A boundary between the 1-simplex corresponding to a composition of paths and the sum of
the 1-simplices corresponding to the paths.

see Figure 3. This map is well-defined and continuous, since it is continuous on the two closed sets
and agrees on the overlap, where it equals α(1)=β(0). Furthermore,

F
(

ι20(s)
)

= F (1−s, s) = β(s), F
(

ι22(s)
)

= F (s, 0) = α(s);

F
(

ι21(s)
)

= F (0, s) =

{

α(2s), if 2s≤1;

β(2s−1), if 2s≥1;

=⇒ ∂F = F ◦ ι20 − F ◦ ι21 + F ◦ ι22 = β − α∗β + α.

For Lemma 4, note that

α+ᾱ =
(

α+ᾱ−α∗ᾱ
)

+
(

α∗ᾱ−f1,α(0)
)

+ f1,α(0).

Since α∗ᾱ is path-homotopic to the constant path f1,α(0), each of the three expressions above belongs
to ∂S2(X) by Lemmas 1-3. This implies Lemma 4.

For Lemma 5, choose a continuous map q : I×I−→∆2 such that

q(s, 0) =











(1−2s, 2s), if s∈ [0, 1/2];

(0, 3−4s), if s∈ [1/2, 3/4];

(4s−3, 0), if s∈ [3/4, 1];

q(s, 1) = q(0, t) = q(1, t) = (1, 0) ∀ s, t∈I.

Then, F◦q is a path-homotopy from (F◦ι20)∗
(

(F ◦ι21)∗(F◦ι
2
2)
)

to the constant loop f1,F (1,0); see Figure 4.
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Figure 4: Boundary of a 2-simplex is loop homotopic to the constant loop.

(a) We now define the homomorphism

h : π1(X,x0) −→ H1(X;Z) by h
(

[α]
)

= {α} ∈ H1(X;Z).

By Lemma 0, ∂α=0 and thus {α}∈H1(X;Z). By Lemma 2, the map h is well-defined, i.e.

[α] = [β] =⇒ {α} = {β}.
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By Lemma 3, h is indeed a homomorphism:

h
(

[α]∗[β]
)

= h
(

[α∗β]
)

= {α∗β} = {α}+{β} = h
(

[α]
)

+ h
(

[β]
)

.

To show that h is surjective, for each x∈X choose a path γx : (I, 0, 1)−→(X,x0, x) from x0 to x. If

c =
N
∑

i=1

aiσi ∈ S1(X),

let αc =
(

γσ1(0)∗σ1∗γ̄σ1(1)

)a1 ∗ . . . ∗
(

γσN (0)∗σN ∗γ̄σN (1)

)aN .

This is a product of loops at x0. It is essential that ai∈Z, i.e. we are dealing with integer homology.
The loop αc is not uniquely determined by c, even if the paths γx are fixed, as it depends on the
ordering of the σi’s. This is irrelevant, however, at this point. Since h is a homomorphism,

h
(

[αc]
)

=
N
∑

i=1

aih
(

[γσi(0)∗σi∗γ̄σi(1)]
)

=
N
∑

i=1

ai
{

γσi(0)∗σi∗γ̄σi(1)

}

=
N
∑

i=1

ai
(

{γσi(0)}+{σi}−{γσi(1)}
)

= {c}+
N
∑

i=1

ai
(

{γσi(0)} −{γσi(1)}
)

.

The third equality above follows from Lemma 3 (not from h being a homomorphism). If c∈ker ∂,

N
∑

i=1

ai
(

f1,σi(1)−f1,σi(0)

)

= ∂c = 0 =⇒
N
∑

i=1

ai
(

{γσi(0)} −{γσi(1)}
)

= 0

=⇒ h
(

[αc]
)

= {c} ∈ H1(X;Z) ∀ c ∈ ker ∂.

This shows that h is surjective.

(b) Since the group H1(X;Z) is abelian, h must vanish on the commutator subgroup of π1(X;x0).
Since this subgroup is normal, h induces a group homomorphism

Φ: Abel
(

π1(X,x0)
)

≡π1(X,x0)
/[

π1(X,x0), π1(X,x0)
]

−→ H1(X;Z).

We will show that this map is an isomorphism by constructing an inverse Ψ for Φ.

If α is a loop based at x0, denote its image (and the image of [α]) in Abel(π1(X,x0)) by 〈α〉. For each
1-simplex σ∈S1(X), let

g(σ) = 〈ασ〉 ∈ Abel
(

π1(X,x0)
)

.

Since S1(X) is a free abelian group with a basis consisting of 1-simplicies σ and Abel(π1(X,x0)) is
abelian, g extends to a homomorphism

g : S1(X) −→ Abel
(

π1(X,x0)
)

.

If F : ∆2−→X is a 2-simplex,

g(∂F ) = g(F ◦ι20)− g(F ◦ι21) + g(F ◦ι22)

=
〈

γF (ι2
0
(0))∗(F ◦ι20)∗γ̄F (ι2

0
(1))

〉

−
〈

γF (ι2
1
(0))∗(F ◦ι21)∗γ̄F (ι2

1
(1))

〉

+
〈

γF (ι2
2
(0))∗(F ◦ι22)∗γ̄F (ι2

2
(1))

〉

=
〈(

γF (1,0)∗(F ◦ι20)∗γ̄F (0,1)

)

∗
(

γF (0,0)∗(F ◦ι21)∗γ̄F (0,1)

)

−1
∗
(

γF (0,0)∗(F ◦ι22)∗γ̄F (1,0)

)〉

=
〈

γF (1,0) ∗
(

(F ◦ι20)∗(F ◦ι21)∗(F ◦ι22)
)

∗ γ̄F (1,0)

〉

.
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By Lemma 5, (F ◦ι20)∗(F ◦ι21)∗(F ◦ι22) is path-homotopic to the constant loop at F (1, 0) and thus

[

γF (1,0) ∗
(

(F ◦ι20)∗(F ◦ι21)∗(F ◦ι22)
)

∗ γ̄F (1,0)

]

= [id] ∈ π1(X,x0)

=⇒ g(∂F ) =
〈

γF (1,0) ∗
(

(F ◦ι20)∗(F ◦ι21)∗(F ◦ι22)
)

∗ γ̄F (1,0)

〉

= 0 ∈ Abel
(

π1(X,x0)
)

.

It follows that g vanishes on the subgroup ∂S2(X) of S1(X) and therefore induces a homomorphism

Ψ: S1(X)
/

∂S2(X) −→ Abel
(

π1(X,x0)
)

.

If α is a loop at x0, γx0
is a loop at x0, and thus

Ψ
(

Φ(〈α〉)
)

= Ψ
(

{α}
)

=
{

γα(0)∗α∗ γ̄α(1)
}

=
{

γx0
∗α∗ γ̄x0

}

= {γx0
}+ {α} − {γx0

} = {α}

=⇒ Ψ◦Φ=Id: Abel
(

π1(X,x0)
)

−→ Abel
(

π1(X,x0)
)

.

This implies that Φ is injective. On the other hand, it is surjective by part (a).

Problem 2 (10pts)

(a) Prove Mayer-Vietoris for Cohomology: If M is a smooth manifold, U, V ⊂ M open subsets, and
M=U∪V , then there exists an exact sequence

0 −→ H0
deR(M)

f0
−→ H0

deR(U)⊕H0
deR(V )

g0
−→ H0

deR(U∩V )
δ0−→

δ0−→ H1
deR(M)

f1
−→ H1

deR(U)⊕H1
deR(V )

g1
−→ H1

deR(U∩V )
δ1−→

δ1−→ . . .

...

where fi(α) =
(

α|U , α|V
)

and gi(β, γ) = β|U∩V − γ|U∩V .

(b) Suppose M is a compact connected orientable n-dimensional submanifold of Rn+1. Show that
Rn+1−M has exactly two connected components. How is the compactness of M used?

(a) We construct an exact sequence of cochain complexes and then apply Proposition 5.17 (ses of
cochain complexes gives les in cohomology). Define

0 −→
(

E∗(M), dM
) f
−→

(

E∗(U)⊕E∗(V ), dU⊕dV
) g
−→

(

E∗(U∩V ), dU∩V

)

−→ 0

by f(α) =
(

α|U , α|V
)

and g(β, γ) = β|U∩V − γ|U∩V .

The homomorphisms f and g preserve the grading of the complexes (take p-forms to p-forms) and
commute with the differentials by Proposition 2.23b (restriction to a submanifold is the same as the
pullback by the inclusion map). Thus, f and g are indeed homomorphisms of cochain complexes. The
homomorphisms f is injective since M = U ∪V and it is immediate that g◦f = 0, i.e. Imf ⊂ ker g.
By the Pasting Lemma for smooth functions, Imf ⊃ ker g. Thus, the sequence above is exact at the
first two positions. To see that it is exact at the third position, i.e. g is surjective, let {ϕU , ϕV } be a
partition of unity subordinate to the open cover {U, V } of M , i.e.

ϕU , ϕV : M−→ [0, 1], suppϕU ⊂ U, suppϕV ⊂ V, ϕU + ϕV ≡ 1.
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If ω∈E∗(U∩V ), define ϕV ω∈E∗(U) and ϕUω∈E∗(V ) by

{ϕV ω}
∣

∣

p
=

{

ϕV (p){ω|p}, if p∈U∩V ;

0, if p∈U−suppϕV ;
{ϕUω}

∣

∣

p
=

{

ϕU (p){ω|p}, if p∈U∩V ;

0, if p∈V −suppϕU .

Since suppϕV ⊂V is a closed subset of M , U is the union of the open subsets U∩V and U−suppϕV .
Since the definition of ϕV ω is smooth on U∩V and U−suppϕV and agrees on the overlap, ϕV ω is a
well-defined smooth form on U , i.e. an element of E∗(U). Similarly, ϕUω∈E∗(V ). By definition,

g
(

ϕV ω,−ϕUω
)

= {ϕV ω}
∣

∣

U∩V
−
(

− {ϕUω}
∣

∣

U∩V

)

= ϕV |U∩V ω + ϕU |U∩V ω = ω.

Thus, g is surjective. The Mayer-Vietoris sequence in cohomology is the long exact sequence corre-
sponding to the above short exact sequence of chain complexes via Proposition 5.17.

Note: According to the above and the proof of Proposition 5.17, the MV boundary homomorphism δ
is obtained as follows. Choose ϕ∈C∞(M) such that suppϕ⊂V and supp{1−ϕ}⊂U . Then,

dϕ ∈ E1(M) s.t. supp dϕ ⊂ U∩V.

Thus, if ω∈Ek(U∩V ), then dϕ∧ω is a well-defined k-form on M (it is 0 outside of supp dϕ⊂U∩V ). If
in addition dω=0, then d(dϕ∧ω)=0 and so dϕ∧ω determines an element of Hp+1

deR(M). Furthermore,
for every η∈Ek−1(U∩V ), dϕ∧η is a well-defined k-form on M and

d
(

dϕ∧η) = dϕ ∧ dη ∈ Ek+1(M).

Thus, the homomorphism

δp : H
p(U∩V ) −→ Hp+1(M), [ω] −→ [dϕ∧ω],

is well-defined (the image of [ω] is independent of the choice of representative ω, since any two such
choices differ by an image of d, which is sent to zero by h). This is the boundary homomorphism δp of
Proposition 5.17 in the given case, with ϕV =ϕ and ϕU =1−ϕ. Furthermore, this homomorphism is
independent of the choice of ϕ by Proposition 5.17, but this can also be seen directly. If ϕ′∈C∞(M)
is another function such that suppϕ′⊂V and supp{1−ϕ′}⊂U , then supp{ϕ−ϕ′}⊂U∩V and thus
(ϕ−ϕ′)ω is a well-defined k-form on M for every k-form ω on U∩V . If in addition, ω is closed,

d
(

(ϕ−ϕ′)ω
)

=
(

dϕ− dϕ′
)

∧ ω = dϕ ∧ ω − dϕ′ ∧ ω =⇒ [dϕ ∧ ω] = [dϕ′ ∧ ω] ∈ Hp+1(M).

In contrast, dϕ ∧ ω need not be an exact form on M ; it looks like d(ϕω) if dω = 0, but ϕω is not
a well-defined k-form on M because suppϕ is contained in V , not in U ∩V , and ω is defined only
on U∩V . On the other hand, if ω∈Ek(V ), ϕω is a well-defined k-form on M , and so [dϕ∧ω]=0 in
Hp+1

deR(M); this corresponds to δk◦gk=0.

(b) Since M is a compact subspace of the Hausdorff space Rn+1, Rn+1−M is an open subspace
of Rn+1 and thus a smooth manifold. Thus, the number of connected components is the dimension
of H0

deR(R
n+1−M) as a real vector space. We will apply Mayer-Vietoris with U =Rn+1−M and V

a nice neighborhood of M in Rn+1, so that Rn+1=U∪V . The goal is not to determine H∗

deR(R
n+1),

but H0
deR(U).
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Let N −→M be the normal bundle of M in Rn+1. Since M and Rn+1 are orientable, N is orientable
by Problem 4 on PS6. Since the codimension of M in Rn+1 is one, N is a line bundle. Since it is
orientable, N is trivial, i.e. isomorphic to M×R, by Lemma 12.1 in Lecture Notes. In particular,
(N ,M) is diffeomorphic to (M×R,M×0), via a diffeomorphism restricting to the identity on M . In
general, we can choose a neighborhood V of M in Rn+1 so that (V,M) is diffeomorphic to (N ,M), via
a diffeomorphism restricting to the identity on M . Thus, in this case, we can choose a neighborhood V
of M in Rn+1 such that (N ,M) is diffeomorphism to (M×R,M×0), via a diffeomorphism restricting
to the identity on M . This implies that

U∩V = (Rn+1−M)∩V = V −M ≈ M×R∗, where R∗=R−{0}.

The first four terms of MV for M=U∪V are

0 −→ H0
deR(R

n+1) −→ H0
deR(U)⊕H0

deR(V ) −→ H0
deR(U∩V ) −→ H1

deR(R
n+1).

Since Rn+1 and M are connected,

H0
deR(R

n+1) ≈ R, H0
deR(V ) ≈ H0

deR(M×R) ≈ R, H0
deR(U∩V ) ≈ H0

deR(M×R∗) ≈ R2.

By the Poincare Lemma, H1
deR(R

n+1) = 0. Thus, the above sequence reduces to

0 −→ R −→ H0
deR(U)⊕ R −→ R2 −→ 0.

Since this sequence is exact, it follows that H0
deR(U) ≈ R2, i.e. Rn+1−M≈U has exactly two connected

components.

Problem 3 (10pts)

(a) Show that the inclusion map Sn−→Rn+1−0 induces an isomorphism in cohomology.
(b) Show that for all n≥0 and p∈Z,

Hp
deR(S

n) ≈











R2, if p=n=0;

R, if p=0, n, n 6=0;

0, otherwise.

(c) Show that Sn is not a product of two positive-dimensional manifolds.

(a) Let i : Sn−→Rn+1−0 be the inclusion and

r : Rn+1−0 −→ Sn, r(z) =
z

|z|
,

the standard retraction. Then, r◦i=idSn and i◦r is smoothly homotopic to idRn+1−0 via the map

F (x, t) = (1−t)
z

|z|
+ t z.

Thus, by Chapter 5, #19,

i∗◦r∗ = id∗Sn = id: H∗

deR(S
n) −→ H∗

deR(S
n) and

r∗◦i∗ = id∗Rn+1−0 = id: H∗

deR(R
n+1−0) −→ H∗

deR(R
n+1−0).
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This means that
i∗ : H∗

deR(R
n+1−0) −→ H∗

deR(S
n)

is an isomorphism.

(b) If p < 0 or p > n, Hp
deR(S

n) = 0 by definition because Ep(Sn) = 0 in these cases. The space S0

consists of two points and thus H0
deR(S

0)≈R2. The n, p=1 case is done in 4.18 (it can also be verified
from MV).

Suppose n≥ 1 and the statement holds for n. Let U and V be the complements of the south and
north poles in Sn+1, respectively. Since these open subsets of Sn+1 are diffeomorphic to Rn+1,

Hp
deR(U) ≈ Hp

deR(V ) ≈

{

R, if p=0,

0, if p 6=0.

by the Poincare Lemma. Furthermore, U ∩V is diffeomorphic to Rn+1− 0. By part (a) and the
induction assumption,

Hp
deR(U∩V ) ≈ Hp

deR(S
n) ≈

{

R, if p=0, n;

0, if p 6=0, n.

By MV, applied to Sn+1=U∪V , the sequence

Hp−1
deR(U)⊕Hp−1

deR(V ) −→ Hp−1
deR(U∩V ) −→ Hp

deR(S
n+1) −→ Hp

deR(U)⊕Hp
deR(V )

is exact for all p≥1. Thus, if 2≤p≤n, Hp
deR(S

n+1)=0, since the two groups surrounding Hp
deR(S

n+1)
vanish. In the p=n+1≥2 case, the above sequence becomes

0 −→ R −→ Hp
deR(S

n+1) −→ 0.

Thus, Hn+1
deR(S

n+1)≈R. In the remaining p=1 case, we consider the first 5 terms of the long sequence:

0−→H0
deR(S

n+1)−→H0
deR(U)⊕H0

deR(V )−→H0
deR(U∩V )

δ0−→H1
deR(S

n+1)−→H1
deR(U)⊕H1

deR(V ).

Since n≥1, Sn+1, U , V , and U∩V are connected and this sequence reduces to

0 −→ R −→ R⊕R −→ R
δ0−→ H1

deR(S
n+1) −→ 0.

Since this sequence is exact, δ0 must be the zero homomorphism and thus H1
deR(S

n+1) = 0. This
completes verification of the inductive step.

Caution: In order to conclude that δ0 is the zero homomorphism, it is essential that R is a field, rather
than a ring. The same conclusion about δ0 holds if we replace R by any field. However, if we replace
R by the ring Z, we could have

0 −→ Z
f0
−→ Z⊕Z

g0
−→ Z

δ0−→ Z2 −→ 0, f0(a) = (a, 0), g0(b, c) = (0, 2c), δ0(d) = d+ 2Z.

This is an exact sequence of Z-modules (i.e. abelian groups). In general, if R is a ring, the last group
must be all torsion.
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Remark: The fact that H1
deR(S

n)=0 for n≥ 2 can be obtained immediately, without any induction,
from Hurewicz Theorem and de Rham Theorem (to be proved):

π1(S
n) = 0 =⇒ H1(S

n;Z) = Abel
(

π1(S
n)
)

= 0 =⇒ H1(S
n;R) ≈ H1(S

n;Z)⊗ZR = 0

=⇒ H1
deR(S

n) ≈
(

H1(S
n;R)

)

∗
≈ 0.

(c) Suppose Sn =Mp×N q for some p, q > 0. Since Sn is compact and orientable, so are M and N
(see Problem 5 on the 06 midterm). Let α∈Ep(M) and β ∈Eq(N) be nowhere-zero top forms. By
Problem 5 on the 06 midterm,

π∗

1α∧π
∗

2β ∈ En(Sn)

is a nowhere-zero top form. Therefore,
∫

M

π∗

1α∧π
∗

2β =⇒
[

π∗

1α∧π
∗

2β
]

6= 0 ∈ Hn
deR(S

n)

by Stokes’ Theorem. On the other hand,
[

π∗

1α∧π
∗

2β
]

=
[

π∗

1α
]

∧
[

π∗

2β
]

= π∗

1[α] ∧ π∗

2[β].

Since 0< p, q< n, by part (b)

Hp
deR(S

n) = 0, Hq
deR(S

n) = 0 =⇒ π∗

1[α] = 0, π∗

2[β] = 0 =⇒
[

π∗

1α∧π
∗

2β
]

= π∗

1[α]∧ π∗

2[β] = 0.

This is a contradiction.

Problem 4 (20pts)

(a) Use Mayer-Vietoris (not Kunneth formula) to compute H∗

deR(T
2), where T 2 is the two-torus,

S1×S1. Find a basis for H∗

deR(T
2); justify your answer.

(b) Let Σg be a compact connected orientable surface of genus g (donut with g holes). Let B⊂Σg be
a small closed ball or a single point. Relate H∗

deR(Σg−B) to H∗

deR(Σg).
(c) Show that

Hp
deR(Σg) =











R, if p=0, 2;

R2g, if p=1;

0, otherwise.

(a) View T 2 as a donut lying flat on a table. Let U and V be the complements of the top and bottom
circles in T 2, respectively. Formally,

U = S1×
(

S1−{1}
)

≈ S1×R, V = S1×
(

S1−{−1}
)

≈ S1×R =⇒ U∩V ≈ S1×R∗.

By the invariance of the de Rham cohomology under smooth homotopies

Hp
deR(U) ≈ Hp

deR(V ) ≈ Hp
deR(S

1) ≈

{

R, if p=0, 1;

0, if p 6=0, 1;

Hp
deR(U∩V ) ≈ Hp

deR

(

S1⊔S1
)

≈ Hp
deR(S

1)⊕Hp
deR(S

1) ≈

{

R2, if p=0, 1;

0, if p 6=0, 1.
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Since T 2 is connected, H0
deR(T

2) ≈ R By MV,

0 −→ H0
deR(T

2) −→ H0
deR(U)⊕H0

deR(V ) −→ H0
deR(U∩V )

δ0−→ H1
deR(T

2) −→ H1
deR(U)⊕H1

deR(V )
g1
−→ H1

deR(U∩V ) −→ H2
deR(T

2) −→ H2
deR(U)⊕H2

deR(V ).

The remaining groups vanish for dimensional reasons. Plugging in for the known groups, we obtain

0 −→ R −→ R⊕R −→ R2

δ0−→ H1
deR(T

2) −→ R⊕R
g1
−→ R2 −→ H2

deR(T
2) −→ 0.

By the exactness of the sequence, the image of δ0 must be R. Since H1
deR(S

1) is nonzero and the
inclusion map S1×R− −→ S1×R induces an isomorphism in cohomology (being a smooth homotopy
equivalence), the inclusion map

U∩V ≈ S1×(R−⊔R+) −→ U ≈ S1×R

induces a nontrivial homomorphism on the first cohomology. Thus, the homomorphism g1 in the
above sequence is nontrivial. Its cokernel is H2

deR(T
2). Since T 2 is compact and oriented, H2

deR(T
2)

is nonzero and Im g1(R2. Thus, Im g1 is a one-dimensional subspace of R2 and H2
deR(T

2) ≈ R (this

can also be obtained by studying g1 in more detail). The above exact sequence then induces an exact
sequence

0 −→ Im δ0≈R −→ H1
deR(T

2) −→ R⊕R
g1
−→ Im g1≈R1 −→ 0.

From this exact sequence we conclude that H1
deR(T

2) ≈ R2

The one-dimensional vector space H0
deR(T

2) consists of the constant functions on T 2. Thus the
constant function 1 forms a basis for H0

deR(T
2). If dθ is the standard volume form on S1, as in

4.18, or any other nowhere-zero one-form on S1, then π∗

1dθ∧π
∗

2dθ is a nowhere-zero top form on T 2.
Therefore,

[π∗

1dθ] ∧ [π∗

2dθ] = [π∗

1dθ ∧ π∗

2dθ] 6= 0 ∈ H2
deR(T

2)

and {[π∗

1dθ], [π
∗

2dθ]} must be a linearly independent set of vectors in H1
deR(T

2). Since H1
deR(T

2)
is two-dimensional, this is a basis for H1

deR(T
2). Finally, since H2

deR(T
2) is one-dimensional and

[π∗

1dθ]∧[π
∗

2dθ] is nonzero, it forms a basis for H2
deR(T

2).

Remark: Note that we have determined H∗

deR(T
2) as a graded ring. By the above, we have an

isomorphism of graded rings

H∗

deR(T
2) = Λ∗H1

deR(T
2) = Λ∗R

{

[π∗

1dθ], [π
∗

2dθ]
}

≈ Λ∗R2,

where R{[π∗

1dθ], [π
∗

2dθ]} is the vector space with basis {[π∗

1dθ], [π
∗

2dθ]}. The first equality above holds
for all tori.

(b) Since Σg is connected, so is Σg−B and therefore

H0
deR(Σg−B) ≈ H0

deR(Σg) ≈ R.
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Let V be a small open ball in Σg containing B. Then, (Σg−B)∩V is either an open disk with a point
removed or an open annulus, so that

(Σg−B)∩V ≈ S1×(−1, 1) =⇒ Hp
deR(Σg−B) ≈ Hp

deR(S
1) ≈

{

R, if p=0, 1,

0, if p 6=0, 1,

by the invariance of the de Rham cohomology under smooth homotopy equivalences. Since Σg is the
union of the open subsets Σg−B and V , by MV

0 −→ H0
deR(Σg) −→ H0

deR(Σg−B)⊕H0
deR(V ) −→ H0

deR

(

(Σg−B)∩V
)

δ0−→ H1
deR(Σg) −→ H1

deR(Σg−B)⊕H1
deR(V )

g1
−→ H1

deR

(

(Σg−B)∩V
)

δ1−→ H2
deR(Σg) −→ H2

deR(Σg−B)⊕H2
deR(V ) −→ H2

deR

(

(Σg−B)∩V
)

.

Plugging in for the known groups, we obtain

0 −→ R −→ R⊕R −→ R

δ0−→ H1
deR(Σg) −→ H1

deR(Σg−B)⊕0
g1
−→ R

δ1−→ H2
deR(Σg) −→ H2

deR(Σg−B)⊕0 −→ 0.

By exactness, δ0 must be zero and therefore we have an exact sequence

0 −→ H1
deR(Σg) −→ H1

deR(Σg−B)
g1
−→ H1

deR

(

(Σg−B)∩V
)

≈R
δ1−→ H2

deR(Σg) −→ H2
deR(Σg−B) −→ 0.

In the next paragraph we show that the homomorphism δ1 is nonzero. By exactness, g1 must then be
trivial and we obtain two exact sequences

0 −→ H1
deR(Σg) −→ H1

deR(Σg−B)
g1
−→ 0, 0 −→ R

δ1−→ H2
deR(Σg) −→ H2

deR(Σg−B) −→ 0.

From this, we conclude that

Hp
deR(Σg−B) ≈











R, if p=0;

H1
deR(Σg), if p=1;

H2
deR(Σg)

/

R, if p=2.

Furthermore, the isomorphism between H1
deR(Σg) and H1

deR(Σg −B) is induced by the inclusion
Σg−B−→Σg.

In order to see that the homomorphism

δ1 : H
1
deR

(

(Σg−B)∩V
)

−→ H2
deR(Σg)

is nonzero, we use Problem 2a and the definition of δ given in the Note there. Choose ϕ∈C∞(Σg)
such that suppϕ⊂V and supp{1−ϕ}⊂Σg−B. Let

γ = π∗

1dθ ∈ E1
(

R×(1/2, 1)
)

≈ E1
(

(Σg−B)∩V
)

.

We will show that
δ
(

[γ]
)

≡
[

dϕ ∧ γ
]

≡
[

dϕ ∧ π∗

1dθ
]

6= 0 ∈ H2
deR(Σg)
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by showing that the integral of dϕ∧ γ over the orientable manifold Σg is not zero. Since the compact
set supp(1−ϕ)∩suppϕ is contained in the open annulus V −B, there exist 1/2<r<R<1 such that

supp(1−ϕ)∩suppϕ ⊂ A≡S1×[r,R] ⊂ V −B =⇒ ϕ|S1×r = 1, ϕ|S1×R = 0.

Since dϕ ∧ π∗

1dθ vanishes outside of A,
∫

M

dϕ ∧ π∗

1dθ =

∫

A

dϕ ∧ π∗

1dθ =

∫

A

d
(

ϕπ∗

1dθ
)

=

∫

∂A

ϕπ∗

1dθ

= ±
(

∫

S1×R

ϕπ∗

1dθ −

∫

S1×r

ϕπ∗

1dθ
)

= ±

∫

S1×r

π∗

1dθ = ±2π 6= 0.

The third equality above follows from Stokes’ Theorem.

Remark: If M is a connected non-compact n-dimensional manifold, Hn
deR(M)=0; see Spivak p369 for

a proof. This fact would simplify the solution, but first needs to be established.

(c) The cases g=0, 1 were proved in Problem 3b and part (a) above. Suppose g≥1 and the statement
holds for g. Since Σg+1 is connected, H0

deR(Σg+1) ≈ R. Note that

Σg+1 = Σg#Σ1 = Σg#T 2,

i.e. Σg+1 can be obtained from Σg and T 2 by removing small open disks from the two surfaces and
joining the two boundary circles together. We thus can write

Σg+1 = (Σg−B1) ∪ (T 2−B2),

where B1 and B2 are slightly smaller closed balls. The overlap of U and V in Σg+1 is a small band
around the circle joining the two surfaces. Thus,

(Σg−B1)∩(T 2−B2) ≈ S1×(−1, 1) =⇒ Hp
deR

(

(Σg−B1)∩(T
2−B2)

)

≈ Hp
deR(S

1) ≈

{

R, if p=0, 1,

0, if p 6=0, 1,

by the invariance of the de Rham cohomology under smooth homotopy equivalences. By the induction
assumption and part (b),

Hp
deR(Σ−B1) ≈











R, if p=0;

R2g, if p=1;

0, otherwise;

and Hp
deR(T

2−B2) ≈











R, if p=0;

R2, if p=1;

0, otherwise.

Since Σg+1 is the union of open subsets Σg−B1 and T 2−B2, by MV

0 −→ H0
deR(Σg+1) −→ H0

deR(Σg−B1)⊕H0
deR(T

2−B2) −→ H0
deR

(

(Σg−B1)∩(T
2−B2)

)

δ0−→ H1
deR(Σg+1) −→ H1

deR(Σg−B1)⊕H1
deR(T

2−B2) −→ H1
deR

(

(Σg−B1)∩(T
2−B2)

)

−→ H2
deR(Σg+1) −→ H2

deR(Σg−B1)⊕H2
deR(T

2−B2).

Plugging in for the known groups, we obtain

0 −→ R −→ R⊕R −→ R

δ0−→ H1
deR(Σg+1) −→ R2g⊕R2 −→ R

δ1−→ H2
deR(Σg+1) −→ 0.
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By exactness, δ0 must be zero and therefore we have an exact sequence

0 −→ H1
deR(Σg+1) −→ R2g+2 g1

−→ R
δ1−→ H2

deR(Σg+1) −→ 0.

Since Σg+1 is compact and orientable, H2
deR(Σg+1) is nonzero. Therefore, the homomorphism δ1 is

nonzero and thus an isomorphism, while the homomorphism g1 is zero. It follows that

H1
deR(Σg+1) ≈ R2g+2 and H2

deR(Σg+1) ≈ R.

This completes verification of the inductive step.

Remark: The de Rham cohomology of Σg can be determined without Mayer-Vietoris. Since Σg is
connected, H0

deR(Σg) ≈ R. Since Σg is a 2-dimensional compact orientable manifold, by the Poincare
Duality (to be proved)

H2
deR(Σg) ≈

(

H2−2
deR(Σg)

)

∗
≈ R.

Finally, by Hurewicz Theorem (Problem 1) and de Rham Theorem (to be proved):

π1(Σg) =
〈

a1, b1, . . . , ag, bg|a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g

〉

=⇒ H1(Σ;Z) = Abel
(

π1(Σg)
)

≈ Z2g

=⇒ H1(Σg;R) ≈ H1(Σg;Z)⊗ZR ≈ R2g =⇒ H1
deR(Σg) ≈

(

H1(Σg;R)
)

∗
≈ R2g.

Problem 5 (10pts)

(a) Suppose q : M̃−→M is a regular covering projection with a finite group of deck transformations G
(so that M=M̃/G). Show that

q∗ : H∗

deR(M) −→ H∗

deR(M̃)G ≡
{

α∈H∗

deR(M̃) : g∗α=α ∀ g∈G
}

is an isomorphism. Does this statement continue to hold if G is not assumed to be finite?
(b) Determine H∗

deR(K), where K is the Klein bottle. Find a basis for H∗

deR(K); justify your answer.

(a) If g∈G, q=q◦g and

q∗[β] = {q◦g}∗[β] = g∗q∗
[

β
]

∀ [β] ∈ H∗

deR(M).

Thus, the image of q∗ is contained in H∗

deR(M̃)G. We next show that the image of q∗ is all of
H∗

deR(M̃)G. If α∈E∗(M̃) is such that [α]∈H∗

deR(M̃)G, let

α̃ =
1

|G|

∑

g∈G

g∗α ∈ E∗(M̃)G.

Since dg∗=g∗d, dα̃=0 and

[α̃] =
1

|G|

∑

g∈G

[g∗α] =
1

|G|

∑

g∈G

g∗[α] =
1

|G|

∑

g∈G

[α] = [α] ∈ H∗

deR(M̃).
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On the other hand, since α̃ ∈E∗(M̃)G, α̃= q∗β for some β ∈E∗(M) by Problem 6b on PS6. Since
dα̃=0 and q is a local diffeomorphism (and thus q∗ : E∗(M)−→E∗(M̃) is injective), dβ=0. Thus,
[β]∈H∗(M) and

[α] = [α̃] = q∗[β] ∈ H∗(M̃).

Thus, the map
q∗ : H∗

deR(M) −→ H∗

deR(M̃)G

is surjective. Finally, we show that q∗ is injective. Suppose β ∈ E∗(M) and q∗β = dα for some
α∈E∗(M̃). With α̃ defined as above,

dα̃ =
1

|G|

∑

g∈G

d g∗α =
1

|G|

∑

g∈G

g∗dα =
1

|G|

∑

g∈G

g∗q∗β =
1

|G|

∑

g∈G

q∗β = q∗β.

Since α̃∈E∗(M̃)G, α̃ = q∗γ for some γ∈E∗(M) and

q∗dγ = d q∗γ = dα̃ = q∗β.

Since q is a local diffeomorphism, q∗ is injective and thus

β = dγ =⇒ [β] = [0] ∈ H∗

deR(M),

i.e. q∗ is injective on cohomology.

The statement may not hold if G is infinite. For example, if q : R−→S1 is the standard covering map,
the map

q∗ : H1
deR(S

1)≈R −→ H1
deR(R)=0

cannot be injective.

(b) Since K is connected, H0
deR(K)≈R. By Exercise 3 on p454 of Munkres, there is a 2 : 1 covering

map q : T 2−→K. The corresponding group of covering transformations is isomorphic to Z2. Let g be
the non-trivial diffeomorphism. From Exercise 3, it can be written as

g
(

eiθ1 , eiθ2
)

=
(

− eiθ1 , e−iθ2
)

≡
(

g1(e
iθ1), g2(e

iθ2)
)

.

With dθ as in Problem 4a,

g∗π∗

1dθ = {π1◦g}
∗dθ = {g1◦π1}

∗dθ = π∗

1g
∗

1dθ = π∗

1dθ;

g∗π∗

2dθ = {π2◦g}
∗dθ = {g2◦π2}

∗dθ = π∗

2g
∗

2dθ = π∗

2(−dθ) = −π∗

2dθ;

g∗
(

π∗

1dθ∧π
∗

2dθ
)

= g∗π∗

1dθ ∧ g∗π∗

2dθ = π∗

1dθ ∧ (−π∗

2dθ) = −π∗

1dθ ∧ π∗

2dθ.

By Problem 4a, {[π∗

1dθ], [π
∗

2dθ]} and {[π∗

1dθ]∧[π
∗

2dθ]} are bases for H1
deR(T

2) and H2
deR(T

2), respec-
tively. Thus, by part (a),

H1
deR(K) ≈ H1

deR(T
2)G = R

{

[π∗

1dθ]
}

≈ R, H2
deR(K) ≈ H2

deR(T
2)G = 0.

Since the isomorphisms are induced by q∗, a basis for H1
deR(K) consists of the equivalence class of the

one-form α on K such that q∗α=π∗

1dθ. A basis for H0
deR(K) is formed by the constant function 1.
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Problem 6: Chapter 5, #4 (5pts)

A smooth function f on a manifold M determines a section f of the sheaf of germs of smooth func-
tions, C∞(M). The set f−1(0) is closed, while f−1(0) is open. How do you reconcile these two facts?
Consider examples.

The section f of the sheaf C∞(M) vanishes at some p∈M if its germ at p is the same as the germ of
the 0-function at p. This means that for every p∈ f−1(0), there exists an open neighborhood Up of p
in M such that f |Up

≡0, so that

f−1(0) ≡
⋃

p∈M

Up

is open in M . In other words, vanishing of f at a point p means vanishing of f on a neighborhood
of p; the latter is an open condition on p.

As an example, suppose f : R−→R, f(x)=x. Then, f(0)=0, but f(0) 6=0 because f does not vanish
on a neighborhood of 0. As another example, suppose f : R−→R is a smooth function such that

f(x) = 0 ∀ x ≤ 0, f(x) > 0 ∀ x > 0.

Then, f−1(0)=R−, while f−1(0)=R−∪{0}.

Problem 7 (5pts)

Let K =Z and let π : S0 −→R be the corresponding skyscraper sheaf, with the only non-trivial stack
over 0∈R; see Subsection 5.11. What is S0 as a topological space?

This is a line with countably many origins, indexed by Z. Explicitly, S0 = R∗ ⊔ 0×Z as sets. The
projection map is given by

π : S0 −→ R, π(x) =

{

x, if x ∈ R∗;

0, if x ∈ 0×Z.

Each fiber of this projection map is a Z-module, either 0 or Z. A basis for the topology on S0 consists
of the intervals (a, b) with ab≥0, and the sets

(a, b)m ≡ (a, 0) ⊔ {0×m} ⊔ (0, b),

with ab < 0 (i.e. a and b have different signs) and m ∈ Z. This topology is forced on S0 by the
requirement that each point x∈R∗ and (0,m)∈0×Z have a neighborhood U such that π : U−→π(U)
is a homeomorphism. With the given topology,

π : (−∞,∞)m −→ R

is a homeomorphism for all m∈Z. For k∈Z, the multiplication map by k induces a homeomorphism

(−∞,∞)m −→ (−∞,∞)km,

while the addition map restricts to a homeomorphism
{

(m1,m2)} ∪
{

(x, x) : x∈R∗
}

−→ (−∞,∞)m1+m2
.

Thus, the Z-module operations are continuous.

15


