MAT 531: Topology&Geometry, II Spring 2011

Problem Set 7 Due on Thursday, 4/7, in class

Note: This problem set has two pages. It covers 1.5 weeks, and so it is longer than usual. The first problem is a leftover from Chapter 4.

- 1. Let X be a path-connected topological space and let $(\mathcal{S}_*(X), \partial)$ be the singular chain complex of *continuous* simplices into X with *integer* coefficients. Denote by $H_1(X;\mathbb{Z})$ the corresponding first homology group.
 - (a) Show that there exists a well-defined surjective homomorphism

$$h: \pi_1(X, x_0) \longrightarrow H_1(X; \mathbb{Z}).$$

(b) Show that the kernel of this homomorphism is the commutator subgroup of $\pi_1(X, x_0)$ so that h induces an isomorphism

$$\Phi: \pi_1(X, x_0) / \left[\pi_1(X, x_0), \pi_1(X, x_0) \right] \longrightarrow H_1(X; \mathbb{Z}).$$

This is the first part of the Hurewicz Theorem.

Hint: For each $x \in X$, choose a path from x_0 to x. Use these paths to turn each 1-simplex into a loop based at x_0 and construct a homomorphism

$$\mathcal{S}_1(X) \longrightarrow \pi_1(X, x_0) / |\pi_1(X, x_0), \pi_1(X, x_0)|.$$

Show that it vanishes on $\partial S_2(X)$, well-defined on ker ∂ (may not be necessary), and its composition with Φ is the identity on $\pi_1(X, x_0) / [\pi_1(X, x_0), \pi_1(X, x_0)]$. Sketch something.

2. (a) Prove Mayer-Vietoris for Cohomology: If M is a smooth manifold, $U, V \subset M$ open subsets, and $M = U \cup V$, then there exists an exact sequence

$$0 \longrightarrow H^{0}_{\mathrm{de}\,\mathrm{R}}(M) \xrightarrow{f_{0}} H^{0}_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^{0}_{\mathrm{de}\,\mathrm{R}}(V) \xrightarrow{g_{0}} H^{0}_{\mathrm{de}\,\mathrm{R}}(U \cap V) \xrightarrow{\delta_{0}} H^{0}_{\mathrm{de}\,\mathrm{R}}(M) \xrightarrow{f_{1}} H^{1}_{\mathrm{de}\,\mathrm{R}}(U) \oplus H^{1}_{\mathrm{de}\,\mathrm{R}}(V) \xrightarrow{g_{1}} H^{1}_{\mathrm{de}\,\mathrm{R}}(U \cap V) \xrightarrow{\delta_{1}} \frac{\delta_{1}}{M}$$
$$\xrightarrow{\delta_{1}} \dots$$
:

where

 $f_i(\alpha) = (\alpha|_U, \alpha|_V)$ and $g_i(\beta, \gamma) = \beta|_{U \cap V} - \gamma|_{U \cap V}$.

(b) Suppose M is a compact connected orientable *n*-dimensional submanifold of \mathbb{R}^{n+1} . Show that $\mathbb{R}^{n+1}-M$ has exactly two connected components. How is the compactness of M used?

3. (a) Show that the inclusion map $S^n \longrightarrow \mathbb{R}^{n+1} - 0$ induces an isomorphism in cohomology. (b) Show that for all $n \ge 0$ and $p \in \mathbb{Z}$,

$$H^p_{\mathrm{de\,R}}(S^n) \approx \begin{cases} \mathbb{R}^2, & \mathrm{if} \ p = n = 0; \\ \mathbb{R}, & \mathrm{if} \ p = 0, n, \ n \neq 0; \\ 0, & \mathrm{otherwise.} \end{cases}$$

Hint: Discuss the $p \le 0$, p > n, n = 0, 1 cases separately, before starting an induction on n. The case n = 1 is the subject of 4.14.

- (c) Show that S^n is not a product of two positive-dimensional manifolds. Note: Do not use the Kunneth formula, unless you are intending to prove it. However, the cup/wedge product can be used and might be useful here.
- 4. (a) Use Mayer-Vietoris (*not* Kunneth formula) to compute $H^*_{\text{de R}}(T^2)$, where T^2 is the twotorus, $S^1 \times S^1$. Find a basis for $H^*_{\text{de R}}(T^2)$; justify your answer.
 - (b) Let Σ_g be a compact connected orientable surface of genus g (donut with g holes). Let $B \subset \Sigma_g$ be a small closed ball or a single point. Relate $H^*_{\text{de R}}(\Sigma_g B)$ to $H^*_{\text{de R}}(\Sigma_g)$ (do not compute $H^p_{\text{de R}}$ for p=1, 2 explicitly).
 - (c) Show that

$$H^p_{\operatorname{deR}}(\Sigma_g) = \begin{cases} \mathbb{R}, & \text{if } p = 0, 2; \\ \mathbb{R}^{2g}, & \text{if } p = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Hint: Discuss the cases g=0,1 before starting an induction on g. Note that

$$\Sigma_{g_1+g_2} \approx \Sigma_{g_1} \# \Sigma_{g_2}.$$

5. (a) Suppose $q: \tilde{M} \longrightarrow M$ is a regular covering projection with a finite group of deck transformations G (so that $M = \tilde{M}/G$). Show that

$$q^* \colon H^*_{\mathrm{de}\,\mathrm{R}}(M) \longrightarrow H^*_{\mathrm{de}\,\mathrm{R}}(\tilde{M})^G \equiv \left\{ \alpha \!\in\! H^*_{\mathrm{de}\,\mathrm{R}}(\tilde{M}) \colon g^* \alpha \!=\! \alpha \,\,\forall \, g \!\in\! G \right\}$$

is an isomorphism. Does this statement continue to hold if G is not assumed to be finite?

- (b) Determine $H^*_{\text{de R}}(K)$, where K is the Klein bottle. Find a basis for $H^*_{\text{de R}}(K)$; justify your answer. *Hint:* see Exercise 3 on p454 of Munkres.
- 6. Chapter 5, #4 (p216)
- 7. Let $K = \mathbb{Z}$ and let $\pi : S_0 \longrightarrow \mathbb{R}$ be the corresponding skyscraper sheaf, with the only non-trivial stack over $0 \in \mathbb{R}$; see 5.11. What is S_0 as a topological space? *Hint:* it is something familiar.

Exercises (figure these out, but do not hand them in): Chapter 5, #11, 13, 16, 17 (pp 216,217); verify Lemma 5.14 (p172). The kernel of the first map in (2) of Lemma 5.14 is denoted by A'' * B or Tor(A'', B) and known as the torsion product of A'' and B; A'' * B = B * A''.