MAT 531: Topology\&Geometry, II Spring 2011

Problem Set 7
Due on Thursday, $4 / 7$, in class

Note: This problem set has two pages. It covers 1.5 weeks, and so it is longer than usual. The first problem is a leftover from Chapter 4.

1. Let X be a path-connected topological space and let $\left(\mathcal{S}_{*}(X), \partial\right)$ be the singular chain complex of continuous simplices into X with integer coefficients. Denote by $H_{1}(X ; \mathbb{Z})$ the corresponding first homology group.
(a) Show that there exists a well-defined surjective homomorphism

$$
h: \pi_{1}\left(X, x_{0}\right) \longrightarrow H_{1}(X ; \mathbb{Z}) .
$$

(b) Show that the kernel of this homomorphism is the commutator subgroup of $\pi_{1}\left(X, x_{0}\right)$ so that h induces an isomorphism

$$
\Phi: \pi_{1}\left(X, x_{0}\right) /\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right] \longrightarrow H_{1}(X ; \mathbb{Z}) .
$$

This is the first part of the Hurewicz Theorem.
Hint: For each $x \in X$, choose a path from x_{0} to x. Use these paths to turn each 1-simplex into a loop based at x_{0} and construct a homomorphism

$$
\mathcal{S}_{1}(X) \longrightarrow \pi_{1}\left(X, x_{0}\right) /\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right] .
$$

Show that it vanishes on $\partial \mathcal{S}_{2}(X)$, well-defined on ker ∂ (may not be necessary), and its composition with Φ is the identity on $\pi_{1}\left(X, x_{0}\right) /\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right]$. Sketch something.
2. (a) Prove Mayer-Vietoris for Cohomology: If M is a smooth manifold, $U, V \subset M$ open subsets, and $M=U \cup V$, then there exists an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}(M) \xrightarrow{f_{0}} H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \xrightarrow{g_{0}} H_{\mathrm{deR}}^{0}(U \cap V) \xrightarrow{\delta_{0}} \\
& \quad \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}(M) \xrightarrow{f_{1}} H_{\mathrm{deR}}^{1}(U) \oplus H_{\mathrm{deR}}^{1}(V) \xrightarrow{g_{1}} H_{\mathrm{deR}}^{1}(U \cap V) \xrightarrow{\delta_{1}} \\
& \xrightarrow{\delta_{1}} \ldots \\
& \vdots
\end{aligned}
$$

where

$$
f_{i}(\alpha)=\left(\left.\alpha\right|_{U},\left.\alpha\right|_{V}\right) \quad \text { and } \quad g_{i}(\beta, \gamma)=\left.\beta\right|_{U \cap V}-\left.\gamma\right|_{U \cap V} .
$$

(b) Suppose M is a compact connected orientable n-dimensional submanifold of \mathbb{R}^{n+1}. Show that $\mathbb{R}^{n+1}-M$ has exactly two connected components. How is the compactness of M used?
3. (a) Show that the inclusion map $S^{n} \longrightarrow \mathbb{R}^{n+1}-0$ induces an isomorphism in cohomology.
(b) Show that for all $n \geq 0$ and $p \in \mathbb{Z}$,

$$
H_{\mathrm{deR}}^{p}\left(S^{n}\right) \approx \begin{cases}\mathbb{R}^{2}, & \text { if } p=n=0 \\ \mathbb{R}, & \text { if } p=0, n, n \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Hint: Discuss the $p \leq 0, p>n, n=0,1$ cases separately, before starting an induction on n. The case $n=1$ is the subject of 4.14 .
(c) Show that S^{n} is not a product of two positive-dimensional manifolds.

Note: Do not use the Kunneth formula, unless you are intending to prove it. However, the cup/wedge product can be used and might be useful here.
4. (a) Use Mayer-Vietoris (not Kunneth formula) to compute $H_{\mathrm{deR}}^{*}\left(T^{2}\right)$, where T^{2} is the twotorus, $S^{1} \times S^{1}$. Find a basis for $H_{\mathrm{deR}}^{*}\left(T^{2}\right)$; justify your answer.
(b) Let Σ_{g} be a compact connected orientable surface of genus g (donut with g holes). Let $B \subset \Sigma_{g}$ be a small closed ball or a single point. Relate $H_{\text {deR }}^{*}\left(\Sigma_{g}-B\right)$ to $H_{\text {de }}^{*}\left(\Sigma_{g}\right)$ (do not compute H_{de}^{p} for $p=1,2$ explicitly).
(c) Show that

$$
H_{\mathrm{deR}}^{p}\left(\Sigma_{g}\right)= \begin{cases}\mathbb{R}, & \text { if } p=0,2 \\ \mathbb{R}^{2 g}, & \text { if } p=1 \\ 0, & \text { otherwise }\end{cases}
$$

Hint: Discuss the cases $g=0,1$ before starting an induction on g. Note that

$$
\Sigma_{g_{1}+g_{2}} \approx \Sigma_{g_{1}} \# \Sigma_{g_{2}} .
$$

5. (a) Suppose $q: \tilde{M} \longrightarrow M$ is a regular covering projection with a finite group of deck transformations G (so that $M=\tilde{M} / G)$. Show that

$$
q^{*}: H_{\mathrm{deR}}^{*}(M) \longrightarrow H_{\mathrm{deR}}^{*}(\tilde{M})^{G} \equiv\left\{\alpha \in H_{\mathrm{deR}}^{*}(\tilde{M}): g^{*} \alpha=\alpha \forall g \in G\right\}
$$

is an isomorphism. Does this statement continue to hold if G is not assumed to be finite?
(b) Determine $H_{\text {deR }}^{*}(K)$, where K is the Klein bottle. Find a basis for $H_{\text {deR }}^{*}(K)$; justify your answer. Hint: see Exercise 3 on p454 of Munkres.
6. Chapter 5, \#4 (p216)
7. Let $K=\mathbb{Z}$ and let $\pi: \mathcal{S}_{0} \longrightarrow \mathbb{R}$ be the corresponding skyscraper sheaf, with the only non-trivial stack over $0 \in \mathbb{R}$; see 5.11 . What is \mathcal{S}_{0} as a topological space?
Hint: it is something familiar.

Exercises (figure these out, but do not hand them in): Chapter 5, \#11, 13, 16, 17 (pp 216,217); verify Lemma 5.14 (p172). The kernel of the first map in (2) of Lemma 5.14 is denoted by $A^{\prime \prime} * B$ or $\operatorname{Tor}\left(A^{\prime \prime}, B\right)$ and known as the torsion product of $A^{\prime \prime}$ and $B ; A^{\prime \prime} * B=B * A^{\prime \prime}$.

