
MAT 531: Topology&Geometry, II
Spring 2011

Solutions to Problem Set 6

Problem 1 (10pts)

Let X be the vector field on R
n given by X =

i=n
∑

i=1

xi
∂

∂xi
.

(a) Determine the time t-flow Xt : R
n −→ R

n of X (give a formula).
(b) Use (a) to show directly from the definition of the Lie derivative LX that the homomorphism
defined by

Rk : Ek(Rn) −→ Ek(Rn), fdxi1 ∧ . . . ∧ dxik −→

(
∫ 1

0
sk−1f(sx)ds

)

dxi1 ∧ . . . ∧ dxik

is a left inverse for LX if k≥1 (this is used in the proof of the Poincare Lemma).
(c) Is Rk also a right inverse for LX for k≥1? What happens for k = 0?

(a) For each p=(p1, . . . , pn)∈R
n, we need to solve the initial-value problem

x′i(t) = xi(t) i = 1, . . . , n, xi(0) = pi i = 1, . . . , n.

The solution is xi(t)=pie
t for all i=1, . . . , n; so

Xt : R
n −→ R

n, Xt(p)=pet.

(b) We need to show that (RkLX(fdxI))p= f(p)dpxI for all f ∈C∞(Rn), dxI =dxi1∧. . .∧dxik with
k≥1, and p∈R

n. By definition,

(

RkLX(fdxI)
)

p
=

(

Rk

(

d

dt
X∗

t (fdxI)

∣

∣

∣

∣

t=0

))

p

.

Since xi◦Xt =etxi, for all q∈R
n

(

X∗
t (fdxI)

)

q
= f ◦Xt(q)dq(xi1◦Xt) ∧ . . . ∧ dq(xik ◦Xt) = f(etq)dq(e

txi1) ∧ . . . ∧ dq(e
txik)

= ektf(etq)dqxi1 ∧ . . . ∧ dqxik = ektf(etq)dqxI .

By the above two equations and the definition of Rk,

(

RkLX(fdxI)
)

p
=

(
∫ 1

0
sk−1 d

dt
ektf(etsp)

∣

∣

∣

∣

t=0

ds

)

dpxI =
d

dt

(
∫ 1

0
sk−1ektf(etsp)ds

)
∣

∣

∣

∣

t=0

dpxI

=
d

dt

(
∫ et

0
sk−1f(sp)ds

)
∣

∣

∣

∣

t=0

dpxI =
(

f(e0p) · e0
)

dpxI = f(p)dpxI ,

as needed.

(c) If f is continuous function on R
n which is not everywhere zero, then for any k ≥ 1 there exists

x∈R
n such that

∫ 1

0
sk−1f(sx)ds 6= 0.



Thus, Rk is injective. Since RkLX = id on Ek(Rn), it follows that Rk is an isomorphism and thus
LXRk=id. In the k=0 case, Rkf is not defined for f ∈E0(Rn)=C∞(Rn) such that f(0) 6=0 because
the function 1/s is not integrable near s=0. The map R0 is defined on the subspace

C∞
0
(Rn) ≡

{

f ∈C∞(Rn) : f(0)=0
}

⊂ E0(Rn),

mapping it injectively to itself. The image of the homomorphism LX on E0(Rn) is also contained in
C∞
0
(Rn). Since the argument of part (b) applies when restricted to C∞

0
(Rn), R0 is a left inverse of

LX on C∞
0
(Rn) and by injectivity also the right inverse.

Problem 2: Chapter 4, #19 (10pts)

Show that if f, g : M−→N are smooth maps that are smoothly homotopic, then

f∗ = g∗ : H∗
deR(N) −→ H∗

deR(M).

Let I=[0, 1]. For k=0, 1, define

ik : M −→ I×M by ik(p) = (k, p).

In the next paragraph we will construct a homomorphism

h : E∗(I×M) −→ E∗−1(M) s.t. i∗1 − i∗0 = h ◦ d + d ◦ h : E∗(I×M) −→ E∗(M).
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If α∈E∗(I×M) is closed, then

i∗1α− i∗0α = h ◦ dα+ d ◦ hα = d(hα) =⇒ [i∗1α] = [i∗0α] ∈ H∗
deR(M)

=⇒ i∗0= i∗1 : H
∗
deR(I×M) −→ H∗

deR(M).

Suppose F : I×M−→N is a smooth homotopy from f to g, i.e.

F (0, p) = f(p), F (1, p) = g(p) ∀ p∈M =⇒ f = F ◦ i0, g = F ◦ i1

=⇒ f∗ = (F ◦ i0)
∗ = i∗0 ◦ F

∗ = i∗1 ◦ F
∗ = (F ◦ i1)

∗ = g∗ : H∗
deR(N) −→ H∗

deR(M),

as needed.
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If α is a differential form on I×M , then α = β + dt ∧ γ for some β, γ ∈ Γ
(

I×M ;π∗
2Λ

∗T ∗M
)

. Define

h : E∗(I×M) −→ E∗−1(M) by h(β) = 0,
{

h(dt∧γ)
}

p
(X1, . . . , Xk) =

∫ 1

0
γ(t,p)(X1, . . . , Xk) dt

if β, γ ∈ Γ
(

I×M ;π∗
2Λ

∗T ∗M
)

, X1, . . . , Xk ∈ TpM.

Suppose p∈M and x=(x1, . . . , xn) : U−→R
n is a smooth chart near p. If α is a k-form on I×M ,

α|U =
∑

I

aIdxI +
∑

J

aJdt ∧ dxJ for some aI , aJ ∈ C∞(U),

where the first sum is taken over all increasing k-tuples I and the second over all increasing (k−1)-
tuples J . Then,

h(α)
∣

∣

U
=

{

0, if α|U = aIdxJ ;
( ∫ 1

0 aJ(t,x) dt
)

dxJ , if α|U = aJdt ∧ dxJ .

Thus,

{h ◦ d + d ◦ h}(aIdxI) = h

(

∂aI
∂t

dt ∧ dxI +
i=n
∑

i=1

∂aI
∂xi

dxi ∧ dxI

)

=

(
∫ 1

0

∂aI
∂t

(t,x) dt

)

dxI =
(

aI(1,x)− aI(0,x)
)

dxI = {i∗1−i∗0}(aIdxI);

{h ◦ d + d ◦ h}
(

aJdt ∧ dxJ
)

= h

(

−
i=n
∑

i=1

∂aJ
∂xi

dt ∧ dxi ∧ dxJ

)

+ d

(
∫ 1

0
aJ(t,x) dt

)

dxJ

)

= −
i=n
∑

i=1

(
∫ 1

0

∂aJ
∂t

(t,x) dt

)

dxi ∧ dxJ +
i=n
∑

i=1

(
∫ 1

0

∂aJ
∂xi

(t,x) dt

)

dxi ∧ dxJ

= 0 = {i∗1−i∗0}(aJdt ∧ dxJ).

The last equality holds because i∗kdt=0.

Problem 3 (5pts)

Show that a one-form α on S1 is exact if and only if

∫

[0,1]
f∗α = 0

for every smooth function f : [0, 1]−→S1 such that f(0)=f(1).

Suppose α is an exact one-form on S1, i.e. α=dg for some g∈C∞(S1). If f : [0, 1]−→S1 is a smooth
function such that f(0)=f(1), then

∫

[0,1]
f∗α =

∫

[0,1]
f∗dg =

∫

[0,1]
d(f∗g) =

∫

[0,1]
d(g ◦ f)

=

∫ 1

0

d(g ◦ f)

dt
dt = g ◦ f

∣

∣

∣

t=1

t=0
= g(f(1))− g(f(0)) = 0.
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Conversely, let q : R−→S1, t−→e2πit, be the standard covering map and suppose

∫

[0,1]
q∗α = 0.

Define

g̃ : R −→ R by g̃(t) =

∫ t

0
q∗α.

Since q∗α is a smooth one-form on R, g̃ is a smooth function on R. Furthermore, for all t∈R,

g̃(t+1)− g̃(t) =

∫ t+1

t

q∗α =

∫ 1

0
q∗tα =

∫ 1

0
q∗α = 0, where qt(s) = q(t+s).

Thus, g̃ is constant along the fibers of the quotient projection map q and descends to a continuous
map g from the quotient:

R

g̃

  @
@

@

@

@

@

@

@

q
��

S1 g //___ R

Since q is a local diffeomorphism and g̃ is smooth, so is g. Furthermore,

(q∗dg)t = dt(q
∗g) = dt(g ◦ q) = dtg̃ =

(

d

dt

∫ t

0
q∗α

)

dt

=

(

d

dt

∫ t

0
{q∗α}

( d

ds

)

ds

)

dt = {q∗α}
( d

ds

)∣

∣

∣

s=t
dt = q∗α|t.

Since q is a local diffeomorphism, it follows that dg=α, i.e. α is an exact one-form.

Problem 4 (5pts)

(a) Suppose ϕ : M −→ R
N is an immersion. Show that M is orientable if and only if the normal

bundle to the immersion ϕ is orientable.
(b: Chapter 4, #1) Suppose ϕ : Md−→R

d+1 is an immersion. Show that M is orientable if and only
if there exists a nowhere-vanishing normal vector field along (M,ϕ).

(a) By Section 10 in Lecture Notes, the normal bundle Nϕ is given by

Nϕ = ϕ∗TRN
/

Im dϕ =⇒ ϕ∗TRN ≈ Imdϕ⊕Nϕ ≈ TM ⊕Nϕ

=⇒ M×R = ϕ∗(RN×R) ≈ ϕ∗Λtop(TRN ) ≈ Λtopϕ∗(TRN ) ≈ Λtop(TM)⊗ ΛtopNϕ .

The vector bundles Λtop(TM) and ΛtopNϕ are line bundles. By (4) of Lemma 12.1 in Lecture Notes,
a line bundle is orientable if and only if it is trivial. Since the tensor product of any line bundle L
with the trivial line bundle is L again, by the above if Λtop(TM) is trivial, then so is ΛtopNϕ, and vice
versa. Thus, the line bundle ΛtopNϕ is orientable if and only if the line bundle Λtop(TM) is orientable.
On the other hand, by (3) of Lemma 12.1, a vector bundle V −→M is orientable if and only if the
line bundle ΛtopV is orientable. We conclude that the vector bundle Nϕ is orientable if and only if
the vector bundle TM is orientable, i.e. M is orientable.
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(b) By part (a), M is orientable if and only the normal bundle Nϕ is orientable. Since Nϕ is a line
bundle in this case, by (4) of Lemma 12.1 and by Lemma 8.5 in Lecture Notes Nϕ is orientable if
and only if Nϕ admits a nowhere-vanishing section. Since TRn has a natural metric, such a section
corresponds to a vector field Y along (M,ϕ) which is everywhere normal to Imdϕ, i.e.

Y (p) ∈ Tϕ(p)R
d+1 and

〈

Y (p), dpϕ(X)
〉

= 0 ∀ X ∈ TpM, p ∈ M.

Thus, M is orientable if and only if there exists a nowhere-vanishing normal vector field along (M,ϕ).

Problem 5 (10pts)

Let M be a smooth manifold.
(a) Show that every real vector bundle V −→M admits a Riemannian metric and every complex vector
bundle admits a hermitian metric.
(b) Show that if M is connected and there exists a non-orientable vector bundle V −→M , then M
admits a connected double-cover (2:1 covering map).
(c) Show that if the order of π1(M) is finite and odd, then M is orientable.

(a) Let V −→ M be a real vector bundle of rank k. Choose a locally finite open cover of M by
trivializations {(Uα, hα)}α∈A of V , i.e.

hα : V |Uα
−→ Uα×R

k

is a diffeomorphism commuting with the projections maps to Uα which is linear on each fiber. Such
a cover exists because M is paracompact. Let {ϕα}α∈A be a partition of unity on M subordinate
to {Uα}α∈A, i.e.

ϕα ∈ C∞(M), ϕα(M) ⊂ [0, 1],
∑

α∈A

ϕα(p) = 1 ∀ p∈M,

and suppϕα ≡ ϕ−1
α (R−0) ⊂ Uα ∀α ∈ A.

For each α∈A, define a symmetric bilinear form 〈, 〉α on V by

〈X1, X2〉α =

{

ϕα(p)〈hα(X1), hα(X2)〉, if X1, X2 ∈ Vp, p∈Uα;

0, if X1, X2 ∈ Vp, p∈M−suppϕα,

where 〈hα(X1), hα(X2)〉 denotes the standard inner-product on R
k. Since 〈, 〉α is smooth over the open

sets Uα and M−suppϕα and agrees on the overlap, 〈, 〉α is a well-defined smooth bilinear symmetric
form on all of M . We define a symmetric bilinear form 〈, 〉 on M by

〈X1, X2〉 =
∑

α∈A

〈X1, X2〉α ∀ X1, X2 ∈ Vp, p∈M.

Since for every p∈M there exists a neighborhood U of p that intersects only finitely many of the open
sets Uα, the above sum is a finite sum of smooth bilinear forms, and therefore is smooth. Furthermore,

〈X,X〉 =
∑

α∈A

〈X,X〉α ∀X ∈ Vp, p∈M.
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By construction, 〈X,X〉α≥0 for all α∈A. Since for every p∈M there exists β∈A such that ϕβ(p)>0,

〈X,X〉β > 0 ∀ X∈Vp−0 =⇒
∑

α∈A

〈X,X〉α ≥ 〈X,X〉β > 0 ∀ X∈Vp−0,

i.e. 〈, 〉 is nondegenerate. Thus, 〈, 〉 is a Riemannian metric in V . The construction in the complex case
is analogous: simply replace R

k with its standard inner-product by C
k with its standard hermitian

inner-product.

(b) Suppose M is connected and V −→M is a non-orientable vector bundle. By (3) of Lemma 12.1 in
Lecture Notes, the line bundle ΛtopV −→M is non-orientable. Choose a Riemannian metric in ΛtopV .
By (5) of Lemma 12.1, π : S(ΛtopV )−→V is connected. It is a 2:1 covering map.

(c) We assume that M is connected (otherwise, π1(M) depends on the choice of component). If M is
non-orientable, the vector bundle TM −→M is not orientable. By part (b), there exists a connected
2:1-covering map π : M̃−→M . By Theorem 54.6 in Munkres,

π∗
(

π1(M̃)
)

⊂ π1(M)

is a subgroup of index two, i.e. the corresponding set of cosets consists of two elements. Since all
cosets have the same cardinality, the index of every subgroup must divide the order of the group (if
it is finite). Thus, if π1(M) is finite and odd, M does not admit a connected 2 : 1-covering map and
must then be orientable.

Problem 6 (15pts)

(a) Show that the antipodal map on Sn⊂R
n+1 (i.e. x−→−x) is orientation-preserving if n is odd and

orientation-reversing if n is even.
(b) Show that RPn is orientable if and only if n is odd.
(c) Describe the orientable double cover of RPn×RPn with n even.

(a) Denote by ι : Sn −→ R
n+1 the inclusion map, by ã : Rn+1 −→ R

n+1 the antipodal map, and by
a : Sn−→Sn its restriction to Sn:

Sn a //

ι
��

Sn

ι
��

R
n+1 ã // Rn+1

Let Ω=dx1∧. . .dxn+1 be the standard volume form on R
n+1 and

X =
n+1
∑

i=1

xi
∂

∂xi
∈ Γ(Rn+1;TRn+1) .

Since the function

f : Rn+1 −→ R, (x1, . . . , xn+1) −→
n+1
∑

i=1

x2i ,

is constant on Sn⊂R
n+1, dpf vanishes on TpS

n⊂R
n+1. Since

X(f) =
n+1
∑

i=1

xi
∂

∂xi
(f) = 2

n+1
∑

i=1

x2i ,
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X(f)p 6=0 for all p∈Sn and thus Xp 6∈TpS
n. Since Ω is a volume form on R

n+1, it follows that

α ≡ ι∗(iXΩ) =
(

iXΩ
)

|TSn

is a volume form on Sn (Ωp is nonzero on any set of n+1 linearly independent vectors in R
n+1,

in particular if the first one of them is Xp and the remaining are n linearly independent vectors in
TpS

n⊂R
n+1). Since ã∗Ω=(−1)n+1Ω and dã(X)=X on R

n+1,

a∗α = a∗ι∗(iXΩ) = ι∗ã∗
(

idã(X)Ω
)

= ι∗
(

iX(ã∗Ω)
)

= (−1)n+1ι∗(iXΩ) = (−1)n+1α.

Thus, a : Sn−→Sn is orientation-preserving if and only if n+1 is even.

(b) We first make the following general observation. Suppose M̃ is a smooth manifold and G is a
group that acts on M by diffeomorphisms and properly discontinuously; see Section 81 in Munkres.
By Problem 2 on PS1, M ≡ M̃/G is a smooth manifold, with smooth structure induced from that
of M̃ via the quotient projection map q : M̃−→M . We claim that

{

q∗α : α∈E∗(M)
}

= E∗(M̃)G ≡
{

α̃∈E∗(M̃) : g∗α̃= α̃ ∀ g∈G
}

. (1)

Since q ◦ g = q, for all α∈E∗(M)

q∗α = (q ◦ g)∗α = g∗(q∗α) =⇒
{

q∗α : α∈E∗(M)
}

⊂ E∗(M̃)G.

Conversely, suppose α̃ ∈ E∗(M̃)G; define α ∈ E∗(M) as follows. If p ∈ M , choose p̃ ∈ q−1(p) and
neighborhoods U and Ũ of p and p̃ inM and M̃ , respectively, such that q : Ũ−→U is a diffeomorphism.
Define

αp ∈ Λ∗T ∗
pM by {q|Ũ}

∗(αp) = α̃p̃.

If p̃′ ∈ q−1(p) is another point, there exists g ∈G such that gp̃′ = p̃. We can then take Ũ ′ = g−1(Ũ).
Since q ◦ g=q,

{q|Ũ ′}
∗
(

αp

)

= {q|Ũ ◦ g}
∗
(

αp

)

= g∗
(

q|∗
Ũ
(αp)

)

= g∗(α̃p̃) = α̃p̃′ ,

i.e. α is well-defined. Since q|Ũ is a diffeomorphism, α is smooth. We have now proved (1). One
consequence of (1) is that a volume form (and thus an orientation) on M corresponds to a volume
form for M̃ which is preserved by G.

Let α be the volume form on Sn defined in (a) and a : Sn−→Sn the antipodal map. By definition,

RPn = Sn/Z2, where (−1)x = a(x) ∀x ∈ Sn.

By part (a), a∗α = (−1)n+1α. Thus, if n is odd, then α ∈ E∗(Sn)Z2 and defines an orientation
on RPn; so RPn is orientable in this case. On the other hand, if n is even there exists no non-
vanishing β∈En(Sn)Z2 and thus RPn is not orientable in this case by the previous paragraph. For if
β∈En(Sn)Z2 , then β=fα for some f ∈C∞(Sn) and therefore

fα = β = a∗β = (f ◦ a)a∗α = −(f ◦ a)α =⇒ f ◦ a = −f.

Thus, f and β must vanish somewhere on Sn.

(c) By Theorem 60.1 in Munkres,

π1(RP
n×RPn) ≈ π1(RP

n)× π1(RP
n) = Z2 ⊕ Z2.
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The universal cover of RPn×RPn is Sn×Sn and

RPn×RPn = (Sn×Sn)
/

π1(RP
n×RPn) = (Sn×Sn)

/

Z2⊕Z2;

see Section 81 in Munkres. The group Z2⊕Z2≈{±1}×{±1} acts on (Sn×Sn) by

(

(−1)p×(−1)q
)

· (x×y) = ap(x)× aq(y).

By Section 82 in Munkres, the connected double covers of RPn×RPn correspond to (the conjugacy
classes) of the subgroups of π1(RP

n×RPn) of index two. The cover corresponding to a subgroup G
of Z2⊕Z2 is

(Sn×Sn)
/

G −→ (Sn×Sn)
/

Z2⊕Z2.

There are three index-two subgroups of Z2⊕Z2: those generated by (−1, 1), (1,−1), and (−1,−1).
The covering spaces corresponding to the first two groups are RPn×Sn and Sn×RPn; neither is
orientable. Thus, the covering space corresponding to the third subgroup is

(Sn×Sn)/G = (Sn×Sn)/Z2, (−1) · (x×y) = da(x, y) ≡ (−x)×(−y),

must be orientable (this is called the diagonal Z2-action on Sn×Sn). This can also be seen directly.
If α is the volume form on Sn as above, then β≡π∗

1α∧π
∗
2α is a volume form on Sn×Sn. Furthermore,

d∗aβ = d∗aπ
∗
1α ∧ d∗aπ

∗
2α = (π1◦ da)

∗α ∧ (π2◦ da)
∗α = (a ◦ π1)

∗α ∧ (a ◦ π2)
∗α

= π∗
1a

∗α ∧ π∗
2a

∗α = π∗
1

(

(−1)n+1α
)

∧ π∗
2

(

(−1)n+1α
)

= π∗
1α ∧ π∗

2α = β.

Thus, β ∈ Etop(Sn×Sn)Z2 is a volume form on Sn×Sn preserved by the diagonal Z2-action and
therefore induces a volume/orientation form on the corresponding quotient.

Problem 7 (10pts)

(a) Show that every diffeomorphism f : Sn −→ Sn that has no fixed points is smoothly homotopic to
the antipodal map (x is a fixed point of f if f(x)=x).
(b) Show that if π : Sn −→M is a covering projection onto a smooth manifold M and |π1(M)| 6= 2,
then M is orientable.

(a) Define

F : I×Sn −→ Sn by F (t, x) =
(1−t)f(x) + t(−x)

|(1−t)f(x) + t(−x)|
.

This map is well-defined, since

|(1−t)f(x) + t(−x)| = 0 =⇒ (1−t)f(x) = tx =⇒ |1−t| = |t|

=⇒ t = 1/2 =⇒ f(x) = x.

However, f has no fixed points. The map F is smooth, since it is smooth as a map into R
n+1 and its

image lies in Sn, which is an embedded submanifold of Rn+1.

(b) The group π1(M) acts on Sn properly discontinuously by diffeomorphisms and M = Sn/π1(M).
Since Sn is compact, π1(M) is a finite group. Let

β =
1

|π1(M)|

∑

g∈π1(M)

g∗α ∈ En(Sn)π1(M),
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where α is the standard volume form on Sn, as in Problem 6. If g∈π1(M) is orientation-preserving,
then g∗α= fgα for a smooth positive-valued function fg on Sn. Thus, if g : Sn−→Sn is orientation-
preserving for all g, then β is a nowhere-vanishing top form on Sn preserved by π1(M) and thus
induces an orientation on M ; see Problem 6b.

By the previous paragraph, it is sufficient to show that every element of π1(M) is orientation-preserving
if |π1(M)| 6= 2. If g ∈ π1(M) is not the identity, g has no fixed points and thus homotopic to the
antipodal map by part (a). Then,

g∗ = a∗ = (−1)n+1 : Hn
deR(S

n) −→ Hn
deR(S

n)

by Problems 2 and 6. In particular, if n is odd, then all elements of π1(M) act by orientation-preserving
diffeomorphisms (no matter what π1(M) is). Suppose n is even. We will show that π1(M) contains
at most 2 elements. Suppose g1, g2∈π1(M) are different from the identity. Since π1(M) acts without
fixed points,

g∗k = a∗ = (−1)n+1 = −1: Hn
deR(S

n) −→ Hn
deR(S

n) k = 1, 2;

=⇒ g1g2 = 1 6= a∗ : Hn
deR(S

n) −→ Hn
deR(S

n).

Thus, g1g2 is not homotopic to a and must then have a fixed point by part (a). Since π1(M) acts
without fixed points, it follows that g1g2=id. Since this holds for any pair of elements of π1(M)−id,
it follows that π1(M) contains at most 2 elements.

Problem 8 (10pts)

(a) Show that if X is a smooth nowhere-vanishing vector field on a compact manifold M , then the
flow Xt : M−→M of X has no fixed points for some t∈R.
(b) Show that Sn admits a nowhere vanishing vector field if and only if n is odd.
(c) Show that the tangent bundle of Sn is not trivial if n≥1 is even.
Note: In fact, TSn is trivial if and only if n=1, 3, 7.

(a) Suppose not, i.e. there exists a sequence tk∈R
∗ converging to 0 and a sequence pk∈M such that

Xtk(pk)= pk for all k∈Z
+. Since M is compact, after passing to a subsequence we can assume that

pk converges to some p∗ ∈M . If Xp∗ 6= 0, there exists t∗ ∈ R
∗ such that Xt∗(p

∗) 6= p∗. Since M is
Hausdorff, there exist disjoint open neighborhoods U and V of p∗ and Xt∗(p

∗), respectively. By (d)
and (h) of Theorem 1.48, there exist a neighborhood U ′ of p∗ in U and ǫ>0 such that

Xt(p) ∈ V ∀ p ∈ U ′, t ∈ (t∗−ǫ, t∗+ǫ).

Since (tk, pk) converges to (0, p∗), there exist k,N ∈Z
+ such that

pk ∈ U ′ and Ntk ∈ (t∗−ǫ, t∗+ǫ) =⇒ XNtk(pk) ∈ V =⇒ XNtk(pk) 6= pk ∈ U ′ ⊂ U.

However, this is impossible, since XNtk(pk)=XN
tk
(pk)=pk because Xtk(pk)=pk.

(b) If X is a nowhere-vanishing vector field on Sn, by part (a) there exists t ∈ R such that the
diffeomorphism Xt : S

n−→Sn has no fixed points. Thus, by part (a) of Problem 7, Xt is homotopic
to the antipodal map a and

X∗
t = a∗ = (−1)n+1 : Hn

deR(S
n) −→ Hn

deR(S
n)
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by Problems 2 and 6. On the other hand, s−→Xst is a homotopy from X0=id to Xt. Thus,

X∗
t = id∗ = id: Hn

deR(S
n) −→ Hn

deR(S
n).

It follows that 1=(−1)n+1, i.e. n is odd.

On the other hand, if n=2k+1 is odd, let

X
(

x1, x2, . . . , x2k+1, x2k+2

)

=

k+1
∑

i=1

(

− x2i
∂

∂x2i−1
+ x2i−1

∂

∂x2i

)

.

This is a vector field on R
2k+2 (it corresponds to rotations in k+1 coordinate 2-planes) that does not

vanish on R
2k+2−0⊃S2k+1. We show

X|S2k+1 ∈ Γ
(

S2k+1;TS2k+1
)

⊂ Γ
(

S2k+1;TR2k+2|S2k+1

)

.

Since S2k+1 is defined by f(x)≡|x|2=1 and dxf 6=0 for all x∈S2k+1, it is sufficient to show that X
lies in the kernel of dxf :

df = 2
2k+2
∑

i=1

xidxi =⇒ df(X) = 2
k+1
∑

i=1

(

− x2ix2i−1 + x2i−1x2i
)

= 0.

Thus, X|S2k+1 is a nowhere-vanishing vector field on S2k+1.

(c) If TSn is isomorphic to Sn×R
n, Sn admits a nowhere-vanishing vector field X (in fact, n vector

fields that are linearly independent at every point of Sn). By part (b), if this is the case, then n is
odd. In other words, if n≥1 is even, the vector bundle TSn−→Sn is not trivial.

Problem 9 (5pts)

Suppose M is a compact oriented 3-manifold with boundary and ∂M = T 2 = S1×S1. Let

π1, π2 : T
2 −→ S1

be the two projection maps. Show that it is impossible to extend both (as opposed to at least one of)
α1≡π∗

1dθ and α2≡π∗
2dθ to closed forms on M .

Suppose β1 and β2 are closed one-forms on M such that α1 = β1|∂M and α2 = β2|∂M . Then,

d(β1 ∧ β2) = dβ1 ∧ β + (−1)1β1 ∧ dβ2 = 0 + 0 = 0.

Thus, by the second version of Stokes’ Theorem, Theorem 4.9,
∫

∂M

β1 ∧ β2 =

∫

M

d(β1∧ β2) =

∫

M

0 = 0.

On the other hand,
∫

∂M

β1 ∧ β2 =

∫

∂M

α1 ∧ α2 =

∫

S1×S1

π∗
1dθ ∧ π∗

2dθ =

∫

S1

dθ ·

∫

S1

dθ = 2π · 2π 6= 0.

This is a contradiction.
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