MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 5

Problem 1 (5pts)

Let V be a vector space of dimension n and $\Omega \in \Lambda^{n} V^{*}$ a nonzero element. Show that the homomorphism

$$
V \longrightarrow \Lambda^{n-1} V^{*}, \quad v \longrightarrow i_{v} \Omega
$$

where i_{v} is the contraction map, is an isomorphism.
Let $\left\{v_{i}\right\}$ be a basis for V and $\left\{v_{i}^{*}\right\}$ the dual basis for V^{*}, i.e. $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$. Then, for some $C \in \mathbb{R}-0$

$$
\Omega=C v_{1}^{*} \wedge \ldots \wedge v_{n}^{*} \quad \Longrightarrow \quad i_{v_{k}} \Omega=(-1)^{k-1} C v_{1}^{*} \wedge \ldots \wedge v_{k-1}^{*} \wedge v_{k+1}^{*} \wedge \ldots \wedge v_{n}^{*}
$$

Thus, the above homomorphism is surjective (since every basis element is in the image) and therefore an isomorphism (since the dimensions are the same).

Problem 2 (10pts)

Suppose M is a smooth n-manifold.
(a) Let Ω be a nowhere-zero n-form on M. Show that for every $p \in M$ there exists a smooth chart $\left(x_{1}, \ldots, x_{n}\right): U \longrightarrow \mathbb{R}^{n}$ near p such that

$$
\left.\Omega\right|_{U}=\mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{n}
$$

(b) Let α be a closed nowhere-zero ($n-1$)-form on M. Show that for every $p \in M$ there exists a smooth $\operatorname{chart}\left(x_{1}, \ldots, x_{n}\right): U \longrightarrow \mathbb{R}^{n}$ near p such that

$$
\left.\alpha\right|_{U}=\mathrm{d} x_{2} \wedge \mathrm{~d} x_{3} \wedge \ldots \wedge \mathrm{~d} x_{n}
$$

(a) Let $\varphi=\left(y_{1}, \ldots, y_{n}\right): V \longrightarrow \mathbb{R}^{n}$ be a smooth chart near p. Since $\Lambda^{n} T_{p}^{*} M$ is one-dimensional, there exists $f \in C^{\infty}(V)$ such that

$$
\left.\alpha\right|_{V}=f \mathrm{~d} y_{1} \wedge \ldots \wedge \mathrm{~d} y_{n}
$$

Let $F \in C^{\infty}(V)$ be a function such that $\frac{\partial}{\partial y_{1}} F=f$, e.g.

$$
F\left(\varphi^{-1}\left(y_{1}, \ldots, y_{n}\right)\right)=\int_{0}^{y_{1}} f\left(\varphi^{-1}\left(t, y_{2}, \ldots, y_{n}\right)\right) \mathrm{d} t
$$

Define smooth functions

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right): V \longrightarrow \mathbb{R}^{n} \quad \text { by } \quad x_{i}= \begin{cases}F, & \text { if } i=1 ; \\
y_{i}, & \text { if } i \geq 2\end{cases} \\
\Longrightarrow \quad \mathrm{d} x_{i}=\left\{\begin{array}{ll}
\sum_{j=1}^{j=n}\left(\frac{\partial}{\partial y_{j}} F\right) \mathrm{d} y_{j}, & \text { if } i=1 \\
\mathrm{~d} y_{i}, & \text { if } i \geq 2
\end{array}= \begin{cases}f \mathrm{~d} y_{1}+\sum_{j=2}^{j=n}\left(\frac{\partial}{\partial y_{j}} F\right) \mathrm{d} y_{j}, & \text { if } i=1 ; \\
\mathrm{d} y_{i},\end{cases} \right. \\
\Longrightarrow \quad \text { if } i \geq 2
\end{gathered}
$$

as needed. It remains to check that $\left(x_{1}, \ldots, x_{n}\right)$ restricts to a smooth chart near p. Since

$$
\mathrm{d}_{p} x_{1} \wedge \ldots \wedge \mathrm{~d}_{p} x_{n}=\Omega_{p} \in \Lambda^{\mathrm{top}} T_{p}^{*} M
$$

and $\Omega_{p} \neq 0,\left\{\mathrm{~d}_{p} x_{1}, \ldots, \mathrm{~d}_{p} x_{n}\right\}$ is basis for $T_{p}^{*} M$. Thus, by Corollary 1.30 b , there exists $U \subset V$ such that $\left(x_{1}, \ldots, x_{n}\right): U \longrightarrow \mathbb{R}^{n}$ is a smooth chart.
(b) Let $\left(y_{1}, \ldots, y_{n}\right): V \longrightarrow \mathbb{R}^{n}$ be a smooth chart near p. By Problem 2,

$$
\left.\alpha\right|_{V}=i_{X}\left(\mathrm{~d} y_{1} \wedge \ldots \wedge \mathrm{~d} y_{n}\right)
$$

for a unique vector field X on M. This vector field is smooth because the ($n-1$)-form α is smooth. Since $\alpha_{p} \neq 0, X_{p} \neq 0$. Thus, by Proposition 1.53 , there exists a smooth chart around p

$$
\psi=\left(z_{1}, \ldots, z_{n}\right): W \longrightarrow \mathbb{R}^{n} \quad \text { s.t. } \quad W \subset V, \quad \frac{\partial}{\partial z_{1}}=\left.X\right|_{W} .
$$

Then, for some $f \in C^{\infty}(W)$

$$
\begin{gathered}
\mathrm{d} y_{1} \wedge \ldots \wedge \mathrm{~d} y_{n}=f \mathrm{~d} z_{1} \wedge \ldots \wedge \mathrm{~d} z_{n} \\
\left.\Longrightarrow \quad \alpha\right|_{W}=i_{X}\left(\mathrm{~d} y_{1} \wedge \ldots \wedge \mathrm{~d} y_{n}\right)=i_{\partial / \partial z_{1}}\left(f \mathrm{~d} z_{1} \wedge \ldots \wedge \mathrm{~d} z_{n}\right)=f \mathrm{~d} z_{2} \wedge \ldots \wedge \mathrm{~d} z_{n} \\
\left.\mathrm{~d} \alpha\right|_{W}=\mathrm{d}\left(f \mathrm{~d} z_{2} \wedge \ldots \wedge \mathrm{~d} z_{n}\right)=\left(\frac{\partial}{\partial z_{1}} f\right) \mathrm{d} z_{1} \wedge \mathrm{~d} z_{2} \wedge \ldots \wedge \mathrm{~d} z_{n}
\end{gathered}
$$

Since $\mathrm{d} \alpha=0, \frac{\partial}{\partial z_{1}} f=0$. Let $F \in C^{\infty}(W)$ be given by

$$
F\left(\psi^{-1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right)=\int_{0}^{z_{2}} f\left(\psi^{-1}\left(z_{1}, t, z_{3}, \ldots, z_{n}\right)\right) \mathrm{d} t \quad \Longrightarrow \quad \frac{\partial}{\partial z_{2}} F=f
$$

Define smooth functions

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right): W \longrightarrow \mathbb{R}^{n} \quad \text { by } \quad x_{i}= \begin{cases}F, & \text { if } i=2 ; \\
z_{i}, & \text { if } i \neq 2 ;\end{cases} \\
\Longrightarrow \quad \mathrm{d} x_{i}=\left\{\begin{array}{ll}
\sum_{j=1}^{j=n}\left(\frac{\partial}{\partial z_{j}} F\right) \mathrm{d} z_{j}, & \text { if } i=2 \\
\mathrm{~d} z_{i}, & \text { if } i \neq 2
\end{array}= \begin{cases}\left(\frac{\partial}{\partial z_{1}} F\right) \mathrm{d} z_{1}+f \mathrm{~d} z_{2}+\sum_{j=3}^{j=n}\left(\frac{\partial}{\partial z_{j}} F\right) \mathrm{d} z_{j}, & \text { if } i=2 ; \\
\mathrm{d} z_{i}, & \text { if } i \neq 2 .\end{cases} \right.
\end{gathered}
$$

Since $\frac{\partial}{\partial z_{1}} f=0$,

$$
\begin{aligned}
&\left(\frac{\partial}{\partial z_{1}} F\right)\left(\psi^{-1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right)=\frac{\partial}{\partial z_{1}} \int_{0}^{z_{2}} f\left(\psi^{-1}\left(z_{1}, t, z_{3}, \ldots, z_{n}\right)\right) \mathrm{d} t \\
&=\int_{0}^{z_{2}}\left(\frac{\partial}{\partial z_{1}} f\left(\psi^{-1}\left(z_{1}, t, z_{3}, \ldots, z_{n}\right)\right)\right) \mathrm{d} t=\int_{0}^{z_{2}} 0 \mathrm{~d} t=0 \\
& \Longrightarrow \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3} \wedge \ldots \wedge \mathrm{~d} x_{n}=f \mathrm{~d} z_{2} \wedge \ldots \wedge \mathrm{~d} z_{n}=\left.\alpha\right|_{W}
\end{aligned}
$$

as needed. It remains to check that $\left(x_{1}, \ldots, x_{n}\right)$ restricts to a smooth chart near p. Note that

$$
\mathrm{d}_{p} x_{1} \wedge \mathrm{~d}_{p} x_{2} \wedge \ldots \wedge \mathrm{~d}_{p} x_{n}=\mathrm{d}_{p} z_{1} \wedge\left(f \mathrm{~d}_{p} z_{2} \wedge \ldots \wedge \mathrm{~d}_{p} z_{n}\right)=f \mathrm{~d}_{p} z_{1} \wedge \ldots \wedge \mathrm{~d}_{p} z_{n} \in \Lambda^{\mathrm{top}} T_{p}^{*} M .
$$

Since $\alpha_{p} \neq 0$ and thus $f(p) \neq 0,\left\{\mathrm{~d}_{p} x_{1}, \ldots, \mathrm{~d}_{p} x_{n}\right\}$ is basis for $T_{p}^{*} M$. Therefore, by Corollary 1.30b, there exists $U \subset V$ such that $\left(x_{1}, \ldots, x_{n}\right): U \longrightarrow \mathbb{R}^{n}$ is a smooth chart.

Problem 3 (5pts)

Let M be a smooth manifold and $X, Y \in \Gamma(M ; T M)$ smooth vector fields on M. Show that the Lie derivative satisfies

$$
L_{[X, Y]}=\left[L_{X}, L_{Y}\right] \equiv L_{X} \circ L_{Y}-L_{Y} \circ L_{X}
$$

as homomorphisms on $\Gamma(M ; T M)$ and $E^{k}(M)$.
If $f \in C^{\infty}(M)=E^{0}(M)$, by 2.25a and the definition of $[X, Y]$

$$
L_{[X, Y]} f=[X, Y] f=X(Y f)-Y(X f)=L_{X}\left(L_{Y} f\right)-L_{Y}\left(L_{X} f\right)=\left[L_{X}, L_{Y}\right] f
$$

If $Z \in \Gamma(M ; T M)$, by 2.25 b and 1.45 cd

$$
L_{[X, Y]} Z=[[X, Y], Z]=-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]]=L_{X}\left(L_{Y} Z\right)-L_{Y}\left(L_{X} Z\right)=\left[L_{X}, L_{Y}\right] Z .
$$

If $\alpha \in E^{k}$ and $Z_{1}, \ldots, Z_{k} \in \Gamma(M ; T M)$, by 2.25e and the two identifies above

$$
\begin{aligned}
\left\{L_{[X, Y]} \alpha\right\}\left(Z_{1}, \ldots, Z_{k}\right) & =L_{[X, Y]}\left(\alpha\left(Z_{1}, \ldots, Z_{k}\right)\right)-\sum_{i=1}^{i=k} \alpha\left(Z_{1}, \ldots, Z_{i-1}, L_{[X, Y]} Z, Z_{i+1}, \ldots, Z_{k}\right) \\
& =\left[L_{X}, L_{Y}\right]\left(\alpha\left(Z_{1}, \ldots, Z_{k}\right)\right)-\sum_{i=1}^{i=k} \alpha\left(Z_{1}, \ldots, Z_{i-1},\left[L_{X}, L_{Y}\right] Z, Z_{i+1}, \ldots, Z_{k}\right)
\end{aligned}
$$

Using 2.25e again gives

$$
\begin{aligned}
& L_{X}\left(L_{Y}\left(\alpha\left(Z_{1}, \ldots, Z_{k}\right)\right)\right)=L_{X}\left(\left\{L_{Y} \alpha\right\}\left(Z_{1}, \ldots, Z_{k}\right)+\sum_{i=1}^{i=k} \alpha\left(Z_{1}, \ldots, Z_{i-1}, L_{Y} Z, Z_{i+1}, \ldots, Z_{k}\right)\right) \\
&=\left\{L_{X}\left(L_{Y} \alpha\right)\right\}\left(Z_{1}, \ldots, Z_{k}\right)+\sum_{i=1}^{i=k}\left\{L_{Y} \alpha\right\}\left(Z_{1}, \ldots, Z_{i-1}, L_{X} Z, Z_{i+1}, \ldots, Z_{k}\right) \\
&+\sum_{i=1}^{i=k}\left(\left\{L_{X} \alpha\right\}\left(Z_{1}, \ldots, Z_{i-1}, L_{Y} Z, Z_{i+1}, \ldots, Z_{k}\right)\right)+\alpha\left(Z_{1}, \ldots, Z_{i-1}, L_{X}\left(L_{Y} Z\right), Z_{i+1}, \ldots, Z_{k}\right) \\
&+\sum_{i \neq j} \alpha\left(Z_{1}, \ldots, Z_{i-1}, L_{Y} Z, Z_{i+1}, \ldots, L_{X} Z_{j-1}, L_{X} Z_{j}, L_{X} Z_{j+1}, \ldots, Z_{k}\right)
\end{aligned}
$$

Interchanging X and Y above and taking the difference of the two expressions gives

$$
\left[L_{X}, L_{Y}\right]\left(\alpha\left(Z_{1}, \ldots, Z_{k}\right)\right)=\left\{\left[L_{X}, L_{Y}\right] \alpha\right\}\left(Z_{1}, \ldots, Z_{k}\right)+\sum_{i=1}^{i=k} \alpha\left(Z_{1}, \ldots, Z_{i-1},\left[L_{X}, L_{Y}\right] Z, Z_{i+1}, \ldots, Z_{k}\right)
$$

Combining this with the first expression above involving α gives

$$
\left\{L_{[X, Y]} \alpha\right\}\left(Z_{1}, \ldots, Z_{k}\right)=\left\{\left[L_{X}, L_{Y}\right] \alpha\right\}\left(Z_{1}, \ldots, Z_{k}\right)
$$

Since this holds for all smooth vector fields Z_{1}, \ldots, Z_{k} on M, it follows that $L_{[X, Y]} \alpha=\left[L_{X}, L_{Y}\right] \alpha$.

Problem 4 (10pts)

Let α be a k-form on a smooth manifold M and $X_{0}, X_{1}, \ldots, X_{k}$ smooth vector fields on M. Show directly from the definitions that

$$
\begin{aligned}
\mathrm{d} \alpha\left(X_{0}, X_{1}, \ldots, X_{k}\right)= & \sum_{i=0}^{i=k}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k}\right) .
\end{aligned}
$$

Since $\mathrm{d} \alpha$ is a $(k+1)$-form, the value of LHS of this identity at any $p \in M$ depends only on the values of $X_{0}, X_{1}, \ldots, X_{k}$ at p. We next show that RHS of this identity is also linear over $C^{\infty}(M)$ in each of the inputs. If $\mathrm{RHS}_{\alpha}^{(1)}$ and $\mathrm{RHS}_{\alpha}^{(2)}$ denote the two terms on RHS and $f \in C^{\infty}(M)$,

$$
\begin{aligned}
& \operatorname{RHS}_{\alpha}^{(1)}\left(f X_{0}, X_{1}, \ldots, X_{k}\right)=(-1)^{0}\left(f X_{0}\right) \alpha\left(X_{1}, \ldots, X_{k}\right)+\sum_{i=1}^{i=k}(-1)^{i} X_{i}\left(\alpha\left(f X_{0}, X_{1}, \ldots, \widehat{X}_{i}, \ldots, X_{k}\right)\right) \\
& =f X_{0}\left(\alpha\left(X_{1}, \ldots, X_{k}\right)\right)+\sum_{i=1}^{i=k}(-1)^{i} X_{i}\left(f \alpha\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{k}\right)\right) \\
& =\sum_{i=1}^{i=k}(-1)^{i} X_{i}(f) \alpha\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{k}\right)+f \sum_{i=0}^{i=k}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right)\right) ; \\
& \operatorname{RHS}_{\alpha}^{(2)}\left(f X_{0}, X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{i=k}(-1)^{i} \alpha\left(\left[f X_{0}, X_{i}\right], X_{1}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right) \\
& +\sum_{1 \leq i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], f X_{0}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k}\right) \\
& =\sum_{i=1}^{i=k}(-1)^{i} \alpha\left(f\left[X_{0}, X_{i}\right]-X_{i}(f) X_{0}, X_{1}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right) \\
& +f \sum_{1 \leq i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k}\right) \\
& =-\sum_{i=1}^{i=k}(-1)^{i} X_{i}(f) \alpha\left(X_{0}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right)+f \sum_{i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k}\right) .
\end{aligned}
$$

Thus, summing the two terms on RHS together, we obtain

$$
\operatorname{RHS}_{\alpha}\left(f X_{0}, X_{1}, \ldots, X_{k}\right)=f \operatorname{RHS}_{\alpha}\left(X_{0}, X_{1}, \ldots, X_{k}\right) .
$$

Since RHS of the identity is alternating, it follows that

$$
\operatorname{RHS}_{\alpha}\left(f_{0} X_{0}, \ldots, f_{k} X_{k}\right)=f_{0} \ldots f_{k} \operatorname{RHS}_{\alpha}\left(X_{0}, \ldots, X_{k}\right)
$$

for all $f_{0}, \ldots, f_{k} \in C^{\infty}(M)$. So, the value of RHS_{α} at a point $p \in M$ depends only on $\left.X_{0}\right|_{p}, \ldots,\left.X_{k}\right|_{p}$. Since both sides are alternating in the inputs, it is sufficient to check the identity for

$$
\alpha=f \mathrm{~d} x_{I} \equiv f \mathrm{~d} x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}, \quad i_{1}<i_{2}<\ldots<i_{k}, \quad X_{l}=\frac{\partial}{\partial x_{j_{l}}}, \quad j_{0}<j_{1}<\ldots<j_{k} .
$$

In this case,

$$
\left[X_{i}, X_{j}\right]=0, \quad \mathrm{~d} \alpha=\sum_{i=1}^{i=m} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{I}
$$

RHS reduces to

$$
\begin{aligned}
\sum_{l=0}^{l=k}(-1)^{l} X_{l}\left(\alpha\left(X_{0}, \ldots, \widehat{X_{l}}, \ldots, X_{k}\right)\right) & =\sum_{l=0}^{l=k}(-1)^{l} \frac{\partial}{\partial x_{j_{l}}}\left(f \mathrm{~d} x_{I}\left(\frac{\partial}{\partial x_{j_{0}}}, \ldots, \frac{\widehat{\partial}}{\partial x_{j_{l}}}, \ldots, \frac{\partial}{\partial x_{j_{k}}}\right)\right) \\
& =\sum_{l=0}^{l=k}(-1)^{l}\left(\frac{\partial f}{\partial x_{j_{l}}}\right) \delta_{I,\left(j_{0}, \ldots, \hat{j}_{l}, \ldots, j_{k}\right)}
\end{aligned}
$$

LHS becomes

$$
\begin{aligned}
\mathrm{d} \alpha\left(\frac{\partial}{\partial x_{j_{0}}}, \ldots, \frac{\partial}{\partial x_{j_{k}}}\right) & =\sum_{i=1}^{i=m} \sum_{l=0}^{l=k}(-1)^{l} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}\left(\frac{\partial}{\partial x_{j_{l}}}\right) \mathrm{d} x_{I}\left(\frac{\partial}{\partial x_{j_{0}}}, \ldots, \frac{\widehat{\partial}}{\partial x_{j_{l}}}, \ldots, \frac{\partial}{\partial x_{j_{k}}}\right) \\
& =\sum_{l=0}^{l=p}(-1)^{l}\left(\frac{\partial f}{\partial x_{j_{l}}}\right) \delta_{I,\left(j_{0}, \ldots, \widehat{j}_{l}, \ldots, j_{k}\right)}
\end{aligned}
$$

So the identity holds in this case.

Problem 5 (5pts)

Let $V \longrightarrow M$ be a smooth vector bundle of rank k and $W \subset V$ a smooth subbundle of V of rank k^{\prime}. Show that

$$
\operatorname{Ann}(W) \equiv\left\{\alpha \in V_{p}^{*}: \alpha(w)=0 \forall w \in W, p \in M\right\}
$$

is a smooth subbundle of V^{*} of rank $k-k^{\prime}$.
For each $p \in M, \operatorname{Ann}(W)_{p} \equiv \operatorname{Ann}\left(W_{p}\right)$ is a linear subspace of V_{p}^{*} of dimension $k-k^{\prime}$; so we only need to show that $\operatorname{Ann}(W) \subset V^{*}$ is an embedded submanifold. Let $r: V^{*} \longrightarrow W^{*}$ be the bundle homomorphism induced by the restriction map on each fiber:

$$
r(\alpha)=\left.\alpha\right|_{W_{p}} \in W_{p}^{*}=\operatorname{Hom}\left(W_{p}, \mathbb{R}\right) \quad \forall \alpha \in V_{p}^{*} \equiv \operatorname{Hom}\left(V_{p}, \mathbb{R}\right), p \in M
$$

The restriction of r to each fiber V_{p}^{*} is clearly linear. The map r is also smooth and its differential is surjective at every point (see below). Thus, by the Implicit Function Theorem,

$$
\operatorname{Ann}(W) \equiv r^{-1}\left(s_{0}(M)\right) \subset V^{*}
$$

where $s_{0}(M) \subset W^{*}$ is the zero section, is a smooth embedded submanifold, as required (for this, it would be suffice that

$$
T_{s_{0}(p)} W^{*}=\operatorname{Imd}_{\alpha} r+T_{s_{0}(p)}\left(s_{0}(M)\right) \quad \forall \alpha \in \operatorname{Ann}(W)_{p}
$$

and in turn this condition holds if $\mathrm{d}_{\alpha} r$ is onto for all $\left.\alpha \in \operatorname{Ann}(W) \subset V^{*}\right)$.
If $h_{V}=\left(\pi_{V}, h_{1}, \ldots, h_{k}\right):\left.V\right|_{U} \longrightarrow U \times \mathbb{R}^{k}$ is a trivialization of V such that

$$
h_{W} \equiv\left(\pi_{V}, h_{1}, \ldots, h_{k^{\prime}}\right):\left.W\right|_{U} \longrightarrow U \times \mathbb{R}^{k^{\prime}}=U \times \mathbb{R}^{k^{\prime}} \times 0 \subset U \times \mathbb{R}^{k}
$$

then

$$
\begin{array}{rll}
h_{V}^{*}:\left.V^{*}\right|_{U} \longrightarrow U \times \mathbb{R}^{k}, & \alpha \longrightarrow\left(p, \alpha\left(h^{-1}\left(p, e_{1}\right)\right), \ldots, \alpha\left(h^{-1}\left(p, e_{k}\right)\right)\right) & \forall \alpha \in V_{p}^{*}, p \in U, \\
h_{W}^{*}:\left.W^{*}\right|_{U} \longrightarrow U \times \mathbb{R}^{k^{\prime}}, & \alpha \longrightarrow\left(p, \alpha\left(h^{-1}\left(p, e_{1}\right)\right), \ldots, \alpha\left(h^{-1}\left(p, e_{k^{\prime}}\right)\right)\right) & \forall \alpha \in W_{p}^{*}, p \in U,
\end{array}
$$

are trivializations for V^{*} and W^{*}, and

$$
h_{W}^{*} \circ r \circ\left(h_{V}^{*}\right)^{-1}: U \times \mathbb{R}^{k} \longrightarrow U \times \mathbb{R}^{k^{\prime}}=U \times \mathbb{R}^{k^{\prime}} \times 0 \subset U \times \mathbb{R}^{k}
$$

is the projection map. Thus, r is smooth and is a submersion. In fact,

$$
\begin{gathered}
\quad h_{\operatorname{Ann}(W)}:\left.\operatorname{Ann}(W)\right|_{U} \longrightarrow U \times \mathbb{R}^{k-k^{\prime}}=U \times 0 \times \mathbb{R}^{k^{\prime}} \subset U \times \mathbb{R}^{k}, \\
\alpha \longrightarrow\left(p, \alpha\left(h^{-1}\left(p, e_{k^{\prime}+1}\right)\right), \ldots, \alpha\left(h^{-1}\left(p, e_{k}\right)\right)\right) \quad \forall \alpha \in \operatorname{Ann}(W)_{p}, p \in U,
\end{gathered}
$$

is a trivialization for the subbundle $\operatorname{Ann}(W) \subset V$. However, W^{*} is not a subbundle of V^{*} in a canonical way (it is the orthogonal complement of $\operatorname{Ann}(W)$, but this depends on the choice of the metric on the fibers).

Problem 6 (10pts)

Suppose M is a 3-manifold, α is a nowhere-zero one-form on M, and $p \in M$. Show that
(a) if there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\left.\alpha\right|_{T P}=0$, then $\left.(\alpha \wedge \mathrm{d} \alpha)\right|_{p}=0$;
(b) if there exists a neighborhood U of p in M such that $\left.(\alpha \wedge \mathrm{d} \alpha)\right|_{U}=0$, then there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\left.\alpha\right|_{T P}=0$.

Note: If the top form $\alpha \wedge \mathrm{d} \alpha$ on M is nowhere-zero, α is called a contact form. In this case, it has no integrable submanifolds at all.
(a) Suppose $P \subset M$ is an embedded two-dimensional submanifold such that $p \in P$ and

$$
i^{*} \alpha=\left.\alpha\right|_{T P}=0,
$$

where $i: P \longrightarrow M$ is the inclusion map. Then,

$$
\left.(\mathrm{d} \alpha)_{p}\right|_{T_{p} P}=\left(i^{*} \mathrm{~d} \alpha\right)_{p}=\left(\mathrm{d} i^{*} \alpha\right)_{p}=\mathrm{d} 0=0 .
$$

Since α_{p} and $\left.\mathrm{d} \alpha\right|_{p}$ vanish on the codimension-one subspace $T_{p} P$ of $T_{p} M$, it follows that their wedge product vanishes on $T_{p} M$, i.e. $(\alpha \wedge \mathrm{d} \alpha)_{p}=0$.
(b) We first note if V is any vector space of dimension $n, \alpha \in V, \alpha \neq 0, \gamma \in \Lambda^{n-1} V$, and $\alpha \wedge \gamma=0$, then $\gamma=\alpha \wedge \beta$ for some $\beta \in \Lambda^{n-2} V$. This can be seen by an argument similar to the solution of Problem 3. ${ }^{1}$ In turn, this statement implies that if M is a smooth manifold, $\alpha \in E^{1}(M), \alpha \neq 0, \gamma \in E^{n-1}(M)$, and $\alpha \wedge \gamma=0$, then $\gamma=\alpha \wedge \beta$ for some $\beta \in E^{n-2}(M)$ (one needs to make sure that β can be chosen to be smooth).

[^0]Since $\alpha_{q} \neq 0$ for all $q \in M$,

$$
\mathbb{R} \alpha \equiv\left\{c \alpha_{q} \in T_{q}^{*} M: c \in \mathbb{R}, q \in M\right\}
$$

is a subbundle of $T^{*} M$ of rank 1 . Any section $\tilde{\alpha}$ of this subbundle is of the form $\tilde{\alpha}=f \alpha$ for some $f \in C^{\infty}(M)$; for such $\tilde{\alpha}$,

$$
\mathrm{d} \tilde{\alpha}=\mathrm{d} f \wedge \alpha+f \mathrm{~d} \alpha
$$

If U is a neighborhood of p in M such that $\left.(\alpha \wedge \mathrm{d} \alpha)\right|_{U}=0,\left.\mathrm{~d} \alpha\right|_{U}=\left.\alpha\right|_{U} \wedge \beta$ for some $\beta \in E^{1}(U)$ by the previous paragraph and thus

$$
\mathrm{d} \tilde{\alpha} \in \Gamma\left(U ; \mathbb{R} \alpha \wedge T^{*} U\right) \subset \Gamma\left(U ; \Lambda^{2} T^{*} U\right)=E^{2}(U) \quad \forall \tilde{\alpha} \in \Gamma(U ; \mathbb{R} \alpha) \subset E_{1}(U)
$$

So, by the differential-form version of Frobenius Theorem (Warner's 2.32, stated in terms of vector bundles in class), for every $p \in U$ there exists a 2-dimensional embedded submanifold $P \subset U \subset M$ such that $p \in P$ and $\left.\alpha\right|_{T P}=0$.

Problem 7 (10pts)

A two-form ω on a smooth manifold M is called symplectic if ω is closed (i.e. $\mathrm{d} \omega=0$) and everywhere nondegenerate ${ }^{2}$. Suppose ω is a symplectic form on M.
(a) Show that the dimension of M is even and the map

$$
T M \longrightarrow T^{*} M, \quad X \longrightarrow i_{X} \omega,
$$

is a vector-bundle isomorphism ($i_{X} \omega$ is the contraction w.r.t. X, i.e. the dual of $X \wedge$).
(b) If $H: M \longrightarrow \mathbb{R}$ is a smooth map, let $X_{H} \in \Gamma(M ; T M)$ be the preimage of $\mathrm{d} H$ under this isomorphism. Assume that X_{H} is a complete vector field, so that the flow

$$
\varphi: \mathbb{R} \times M \longrightarrow M, \quad(t, p) \longrightarrow \varphi_{t}(p),
$$

is globally defined. Show that for every $t \in \mathbb{R}$, the time-t flow $\varphi_{t}: M \longrightarrow M$ is a symplectomorphism, i.e. $\varphi_{t}^{*} \omega=\omega$.

Note: In such a situation, H is called a Hamiltonian and φ_{t} a Hamiltonian symplectomorphism.
(a) If $p \in M, \omega_{p}$ is a nondegenerate bilinear anti-symmetric form on $T_{p} M$. Thus, it is a standard fact in linear algebra that the dimension of $T_{p} M$ is even. In fact, one can choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for $T_{p} M$ so that the matrix for ω_{p} with respect to this basis is

$$
\left(\begin{array}{cccc}
J & 0 & \ldots & 0 \\
0 & J & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & J
\end{array}\right) \quad \text { where } \quad J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Since ω is smooth, the map

$$
\begin{equation*}
T M \longrightarrow T^{*} M, \quad X \longrightarrow i_{X} \omega, \tag{1}
\end{equation*}
$$

[^1]is smooth. If $X \in T_{p} M$, then $i_{X} \omega_{p} \in T_{p}^{*} M$, i.e. eq1 is a bundle map (commutes with the projections to the base). If $X_{1}, X_{2}, Y \in T_{p} M$ and $a, b \in \mathbb{R}$, then
\[

$$
\begin{gathered}
\left\{i_{a X_{1}+b X_{2}} \omega\right\}(Y) \equiv \omega\left(a X_{1}+b X_{2}, Y\right)=a \omega\left(X_{1}, Y\right)+b \omega\left(X_{2}, Y\right)=a\left\{i_{X_{1}} \omega\right\}(Y)+b\left\{i_{X_{2}} \omega\right\}(Y) \\
\Longrightarrow \quad i_{a X_{1}+b X_{2}} \omega=a\left\{i_{X_{1}} \omega\right\}+b\left\{i_{X_{2}} \omega\right\} \in T_{p}^{*} M \quad \forall X_{1}, X_{2} \in T_{p} M, a, b \in \mathbb{R}
\end{gathered}
$$
\]

Thus, eq1 is a bundle homomorphism (i.e. linear on every fiber). Finally, since ω_{p} is nondegenerate, if $X \in T_{p} M-\{0\}$, then there exists $Y \in T_{p} M$ such that

$$
\left\{i_{X} \omega\right\}(Y)=\omega(X, Y) \neq 0 \quad \Longrightarrow \quad i_{X} \omega \neq 0 \in T_{p}^{*} M
$$

Thus, the bundle homomorphism eq1 is injective and therefore a bundle isomorphism (since the two bundles have the same rank).
(b) We need to show that $\varphi_{t}^{*} \omega=\omega$ for all t, i.e. for all $t \in \mathbb{R}$ and $p \in M$

$$
\lim _{s \longrightarrow 0} \frac{\left\{\varphi_{t+s}^{*} \omega\right\}_{p}-\left\{\varphi_{t}^{*} \omega\right\}_{p}}{s}=\left.\frac{\mathrm{d}}{\mathrm{~d} s}\left(\left\{\varphi_{t+s}^{*} \omega\right\}_{p}\right)\right|_{s=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} s}\left(\left\{\varphi_{s}^{*} \omega\right\}_{p}\right)\right|_{s=t}=0
$$

Since $\varphi_{t+s}=\varphi_{t} \circ \varphi_{s}$ by (h) of Theorem 1.48,

$$
\begin{aligned}
\lim _{s \longrightarrow 0} \frac{\left\{\varphi_{t+s}^{*} \omega\right\}_{p}-\left\{\varphi_{t}^{*} \omega\right\}_{p}}{s} & =\lim _{s \longrightarrow 0} \frac{\left\{\varphi_{s}^{*}\left\{\varphi_{t}^{*} \omega\right\}\right\}_{p}-\left\{\varphi_{t}^{*} \omega\right\}_{p}}{s} \\
& =\lim _{s \longrightarrow 0} \frac{\varphi_{s}^{*}\left\{\varphi_{t}^{*} \omega\right\}_{\varphi_{s}(p)}-\left\{\varphi_{t}^{*} \omega\right\}_{p}}{s}=\left(L_{X_{H}}\left(\varphi_{t}^{*} \omega\right)\right)_{p}
\end{aligned}
$$

Since $\mathrm{d} \omega=0$, by (d) of Proposition 2.25 and (b) of Proposition 2.23

$$
L_{X_{H}}\left(\varphi_{t}^{*} \omega\right)=\left\{i_{X_{H}} \circ \mathrm{~d}+\mathrm{d} \circ i_{X_{H}}\right\}\left(\varphi_{t}^{*} \omega\right)=i_{X_{H}} \varphi_{t}^{*} \mathrm{~d} \omega+\mathrm{d} \circ i_{X_{H}} \varphi_{t}^{*} \omega=0+\mathrm{d}\left(\varphi_{t}^{*}\left\{i_{\mathrm{d} \varphi_{t} X_{H}} \omega\right\}\right)
$$

Since φ_{t} is the flow for the vector field X_{H},

$$
\begin{gathered}
\mathrm{d}_{p} \varphi_{t} X_{H}=\mathrm{d}_{p} \varphi_{t}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} s} \varphi_{s}(p)\right|_{s=0}\right)= \\
\left.\Longrightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} s}\left(\varphi_{t} \circ \varphi_{s}(p)\right)\right|_{s=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \varphi_{t+s}(p)\right|_{s=0}=X_{H}\left(\varphi_{t}(p)\right) \\
\Longrightarrow \quad i_{\mathrm{d} \varphi_{t} X_{H}} \omega=i_{X_{H}} \omega=\mathrm{d} H
\end{gathered}
$$

by definition of X_{H}. We conclude that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}\left(\left\{\varphi_{s}^{*} \omega\right\}_{p}\right)\right|_{s=t}=\mathrm{d}\left(\varphi_{t}^{*} \mathrm{~d} H\right)=\varphi_{t}^{*} \mathrm{~d}^{2} H=0
$$

i.e. $\varphi_{t}^{*} \omega=\omega$.

[^0]: ${ }^{1}$ The statement is actually true for any form $\gamma \in \Lambda^{k} V$; see Chapter $2, \# 15, \mathrm{p} 80$.

[^1]: ${ }^{2}$ This means that $\omega_{p} \in \Lambda^{2} T_{p}^{*} M$ is nondegenerate for every $p \in M$, i.e. for every $v \in T_{p} M$ such that $v \neq 0$ there exists $w \in T_{p} M$ such that $\omega_{p}(v, w) \neq 0$.

