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Solutions to Problem Set 5

Problem 1 (5pts)

Let V be a vector space of dimension n and Ω∈ΛnV ∗ a nonzero element. Show that the homomorphism

V −→ Λn−1V ∗, v −→ ivΩ,

where iv is the contraction map, is an isomorphism.

Let {vi} be a basis for V and {v∗i } the dual basis for V ∗, i.e. v∗i (vj)=δij . Then, for some C∈R−0

Ω = C v∗1∧. . .∧v∗n =⇒ ivkΩ = (−1)k−1C v∗1∧. . .∧v∗k−1∧v∗k+1∧. . .∧v∗n.

Thus, the above homomorphism is surjective (since every basis element is in the image) and therefore
an isomorphism (since the dimensions are the same).

Problem 2 (10pts)

Suppose M is a smooth n-manifold.
(a) Let Ω be a nowhere-zero n-form on M . Show that for every p ∈M there exists a smooth chart
(x1, . . . , xn) : U−→Rn near p such that

Ω|U = dx1 ∧ . . . ∧ dxn.

(b) Let α be a closed nowhere-zero (n−1)-form on M . Show that for every p∈M there exists a smooth
chart (x1, . . . , xn) : U−→Rn near p such that

α|U = dx2 ∧ dx3 ∧ . . . ∧ dxn.

(a) Let ϕ=(y1, . . . , yn) : V −→Rn be a smooth chart near p. Since ΛnT ∗pM is one-dimensional, there
exists f ∈C∞(V ) such that

α|V = f dy1 ∧ . . . ∧ dyn.

Let F ∈C∞(V ) be a function such that ∂
∂y1

F =f , e.g.

F
(
ϕ−1(y1, . . . , yn)

)
=

∫ y1

0
f
(
ϕ−1(t, y2, . . . , yn)

)
dt.

Define smooth functions

(x1, . . . , xn) : V −→Rn by xi =

{
F, if i=1;

yi, if i≥2;

=⇒ dxi =

{∑j=n
j=1

(
∂
∂yj

F
)
dyj , if i=1

dyi, if i≥2
=

{
fdy1 +

∑j=n
j=2

(
∂
∂yj

F
)
dyj , if i=1;

dyi, if i≥2;

=⇒ dx1 ∧ dx2 ∧ . . . ∧ dxn = f dy1 ∧ . . . ∧ dyn = α|V ,



as needed. It remains to check that (x1, . . . , xn) restricts to a smooth chart near p. Since

dpx1 ∧ . . . ∧ dpxn = Ωp ∈ ΛtopT ∗pM

and Ωp 6=0, {dpx1, . . . ,dpxn} is basis for T ∗pM . Thus, by Corollary 1.30b, there exists U⊂V such that
(x1, . . . , xn) : U−→Rn is a smooth chart.

(b) Let (y1, . . . , yn) : V −→Rn be a smooth chart near p. By Problem 2,

α|V = iX
(
dy1∧. . .∧dyn

)
for a unique vector field X on M . This vector field is smooth because the (n−1)-form α is smooth.
Since αp 6=0, Xp 6=0. Thus, by Proposition 1.53, there exists a smooth chart around p

ψ=(z1, . . . , zn) : W −→Rn s.t. W ⊂ V, ∂

∂z1
= X|W .

Then, for some f ∈C∞(W )

dy1∧. . .∧dyn = f dz1∧. . .∧dzn

=⇒ α|W = iX
(
dy1∧. . .∧dyn

)
= i∂/∂z1

(
f dz1∧. . .∧dzn

)
= f dz2∧. . .∧dzn

dα|W = d
(
f dz2∧. . .∧dzn

)
=

(
∂

∂z1
f

)
dz1∧dz2∧. . .∧dzn.

Since dα=0, ∂
∂z1

f=0. Let F ∈C∞(W ) be given by

F
(
ψ−1(z1, z2, . . . , zn)

)
=

∫ z2

0
f
(
ψ−1(z1, t, z3, . . . , zn)

)
dt =⇒ ∂

∂z2
F = f.

Define smooth functions

(x1, . . . , xn) : W −→Rn by xi =

{
F, if i=2;

zi, if i 6=2;

=⇒ dxi =

{∑j=n
j=1

(
∂
∂zj
F
)
dzj , if i=2

dzi, if i 6=2
=

{(
∂
∂z1

F
)
dz1 + fdz2 +

∑j=n
j=3

(
∂
∂zj
F
)
dzj , if i=2;

dzi, if i 6=2.

Since ∂
∂z1

f=0,(
∂

∂z1
F

)(
ψ−1(z1, z2, . . . , zn)

)
=

∂

∂z1

∫ z2

0
f
(
ψ−1(z1, t, z3, . . . , zn)

)
dt

=

∫ z2

0

(
∂

∂z1
f
(
ψ−1(z1, t, z3, . . . , zn)

))
dt =

∫ z2

0
0 dt = 0

=⇒ dx2 ∧ dx3 ∧ . . . ∧ dxn = f dz2 ∧ . . . ∧ dzn = α|W ,

as needed. It remains to check that (x1, . . . , xn) restricts to a smooth chart near p. Note that

dpx1∧ dpx2∧. . .∧dpxn = dpz1∧
(
f dpz2 ∧ . . . ∧ dpzn

)
= f dpz1 ∧. . .∧dpzn ∈ ΛtopT ∗pM.

Since αp 6= 0 and thus f(p) 6= 0, {dpx1, . . . ,dpxn} is basis for T ∗pM . Therefore, by Corollary 1.30b,
there exists U⊂V such that (x1, . . . , xn) : U−→Rn is a smooth chart.
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Problem 3 (5pts)

Let M be a smooth manifold and X,Y ∈ Γ(M ;TM) smooth vector fields on M . Show that the Lie
derivative satisfies

L[X,Y ] = [LX , LY ] ≡ LX ◦ LY − LY ◦ LX

as homomorphisms on Γ(M ;TM) and Ek(M).

If f ∈C∞(M)=E0(M), by 2.25a and the definition of [X,Y ]

L[X,Y ]f = [X,Y ]f = X(Y f)− Y (Xf) = LX(LY f)− LY (LXf) = [LX , LY ]f.

If Z∈Γ(M ;TM), by 2.25b and 1.45cd

L[X,Y ]Z =
[
[X,Y ], Z

]
= −

[
Z, [X,Y ]

]
=
[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
= LX(LY Z)−LY (LXZ) = [LX , LY ]Z.

If α∈Ek and Z1, . . . , Zk∈Γ(M ;TM), by 2.25e and the two identifies above

{L[X,Y ]α
}

(Z1, . . . , Zk) = L[X,Y ]

(
α(Z1, . . . , Zk)

)
−

i=k∑
i=1

α
(
Z1, . . . , Zi−1, L[X,Y ]Z,Zi+1, . . . , Zk

)
= [LX , LY ]

(
α(Z1, . . . , Zk)

)
−

i=k∑
i=1

α
(
Z1, . . . , Zi−1, [LX , LY ]Z,Zi+1, . . . , Zk

)
.

Using 2.25e again gives

LX
(
LY
(
α(Z1, . . . , Zk)

))
= LX

(
{LY α}(Z1, . . . , Zk) +

i=k∑
i=1

α(Z1, . . . , Zi−1, LY Z,Zi+1, . . . , Zk)

)

=
{
LX(LY α)

}
(Z1, . . . , Zk) +

i=k∑
i=1

{LY α}
(
Z1, . . . , Zi−1, LXZ,Zi+1, . . . , Zk

)
+

i=k∑
i=1

(
{LXα}

(
Z1, . . . , Zi−1, LY Z,Zi+1, . . . , Zk

))
+ α(Z1, . . . , Zi−1, LX(LY Z), Zi+1, . . . , Zk)

+
∑
i 6=j

α
(
Z1, . . . , Zi−1, LY Z,Zi+1, . . . , LXZj−1, LXZj , LXZj+1, . . . , Zk

)
.

Interchanging X and Y above and taking the difference of the two expressions gives

[LX , LY ]
(
α(Z1, . . . , Zk)

)
=
{

[LX , LY ]α
}

(Z1, . . . , Zk) +

i=k∑
i=1

α(Z1, . . . , Zi−1, [LX , LY ]Z,Zi+1, . . . , Zk).

Combining this with the first expression above involving α gives

{L[X,Y ]α
}

(Z1, . . . , Zk) =
{

[LX , LY ]α}(Z1, . . . , Zk).

Since this holds for all smooth vector fields Z1, . . . , Zk on M , it follows that L[X,Y ]α = [LX , LY ]α.
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Problem 4 (10pts)

Let α be a k-form on a smooth manifold M and X0, X1, . . . , Xk smooth vector fields on M . Show
directly from the definitions that

dα(X0, X1, . . . , Xk) =
i=k∑
i=0

(−1)iXi

(
α(X0, . . . , X̂i, . . . , Xk)

)
+
∑
i<j

(−1)i+jα
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

Since dα is a (k+1)-form, the value of LHS of this identity at any p∈M depends only on the values
of X0, X1, . . . , Xk at p. We next show that RHS of this identity is also linear over C∞(M) in each of

the inputs. If RHS
(1)
α and RHS

(2)
α denote the two terms on RHS and f ∈C∞(M),

RHS(1)
α (fX0, X1, . . . , Xk) = (−1)0(fX0)α(X1, . . . , Xk) +

i=k∑
i=1

(−1)iXi

(
α(fX0, X1, . . . , X̂i, . . . , Xk)

)
= fX0

(
α(X1, . . . , Xk)

)
+

i=k∑
i=1

(−1)iXi

(
fα(X0, . . . , X̂i, . . . , Xk)

)
=

i=k∑
i=1

(−1)iXi(f)α(X0, . . . , X̂i, . . . , Xk) + f

i=k∑
i=0

(−1)iXi

(
α(X0, . . . , X̂i, . . . , Xk)

)
;

RHS(2)
α (fX0, X1, . . . , Xk) =

i=k∑
i=1

(−1)iα
(
[fX0, Xi], X1, . . . , X̂i, . . . , Xk

)
+
∑

1≤i<j
(−1)i+jα

(
[Xi, Xj ], fX0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
=

i=k∑
i=1

(−1)iα
(
f [X0, Xi]−Xi(f)X0, X1, . . . , X̂i, . . . , Xk

)
+ f

∑
1≤i<j

(−1)i+jα
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
= −

i=k∑
i=1

(−1)iXi(f)α
(
X0, . . . , X̂i, . . . , Xk

)
+ f

∑
i<j

(−1)i+jα
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

Thus, summing the two terms on RHS together, we obtain

RHSα(fX0, X1, . . . , Xk) = fRHSα(X0, X1, . . . , Xk).

Since RHS of the identity is alternating, it follows that

RHSα(f0X0, . . . , fkXk) = f0 . . . fkRHSα(X0, . . . , Xk)

for all f0, . . . , fk ∈C∞(M). So, the value of RHSα at a point p∈M depends only on X0|p, . . . , Xk|p.
Since both sides are alternating in the inputs, it is sufficient to check the identity for

α = fdxI ≡ fdxi1 ∧ . . . ∧ dxik , i1<i2<. . .<ik, Xl =
∂

∂xjl
, j0<j1<. . .<jk.
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In this case,

[Xi, Xj ] = 0, dα =
i=m∑
i=1

∂f

∂xi
dxi ∧ dxI .

RHS reduces to

l=k∑
l=0

(−1)lXl

(
α(X0, . . . , X̂l, . . . , Xk)

)
=

l=k∑
l=0

(−1)l
∂

∂xjl

(
fdxI

(
∂

∂xj0
, . . . ,

∂̂

∂xjl
, . . . ,

∂

∂xjk

))

=

l=k∑
l=0

(−1)l
(
∂f

∂xjl

)
δI,(j0,...,ĵl,...,jk) .

LHS becomes

dα

(
∂

∂xj0
, . . . ,

∂

∂xjk

)
=

i=m∑
i=1

l=k∑
l=0

(−1)l
∂f

∂xi
dxi

(
∂

∂xjl

)
dxI

(
∂

∂xj0
, . . . ,

∂̂

∂xjl
, . . . ,

∂

∂xjk

)

=

l=p∑
l=0

(−1)l
(
∂f

∂xjl

)
δI,(j0,...,ĵl,...,jk) .

So the identity holds in this case.

Problem 5 (5pts)

Let V −→M be a smooth vector bundle of rank k and W ⊂ V a smooth subbundle of V of rank k′.
Show that

Ann(W ) ≡
{
α∈V ∗p : α(w)=0 ∀w∈W, p∈M

}
is a smooth subbundle of V ∗ of rank k−k′.

For each p ∈ M , Ann(W )p ≡ Ann(Wp) is a linear subspace of V ∗p of dimension k−k′; so we only
need to show that Ann(W ) ⊂ V ∗ is an embedded submanifold. Let r : V ∗ −→W ∗ be the bundle
homomorphism induced by the restriction map on each fiber:

r(α) = α|Wp ∈W ∗p = Hom(Wp,R) ∀ α∈V ∗p ≡Hom(Vp,R), p∈M.

The restriction of r to each fiber V ∗p is clearly linear. The map r is also smooth and its differential is
surjective at every point (see below). Thus, by the Implicit Function Theorem,

Ann(W ) ≡ r−1
(
s0(M)

)
⊂ V ∗ ,

where s0(M)⊂W ∗ is the zero section, is a smooth embedded submanifold, as required (for this, it
would be suffice that

Ts0(p)W
∗ = Im dαr + Ts0(p)

(
s0(M)

)
∀α∈Ann(W )p ,

and in turn this condition holds if dαr is onto for all α∈Ann(W )⊂V ∗).

If hV =(πV , h1, . . . , hk) : V |U −→U×Rk is a trivialization of V such that

hW ≡
(
πV , h1, . . . , hk′

)
: W |U −→ U×Rk′ = U×Rk′×0 ⊂ U×Rk,
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then

h∗V : V ∗|U −→ U×Rk, α −→
(
p, α(h−1(p, e1)), . . . , α(h−1(p, ek))

)
∀ α∈V ∗p , p∈U,

h∗W : W ∗|U −→ U×Rk′ , α −→
(
p, α(h−1(p, e1)), . . . , α(h−1(p, ek′))

)
∀ α∈W ∗p , p∈U,

are trivializations for V ∗ and W ∗, and

h∗W ◦r◦(h∗V )−1 : U×Rk −→ U×Rk′ = U×Rk′×0 ⊂ U×Rk

is the projection map. Thus, r is smooth and is a submersion. In fact,

hAnn(W ) : Ann(W )|U −→ U×Rk−k′ = U×0× Rk
′⊂ U×Rk,

α −→
(
p, α(h−1(p, ek′+1)), . . . , α(h−1(p, ek))

)
∀ α∈Ann(W )p, p∈U,

is a trivialization for the subbundle Ann(W )⊂V . However, W ∗ is not a subbundle of V ∗ in a canonical
way (it is the orthogonal complement of Ann(W ), but this depends on the choice of the metric on the
fibers).

Problem 6 (10pts)

Suppose M is a 3-manifold, α is a nowhere-zero one-form on M , and p∈M . Show that

(a) if there exists an embedded 2-dimensional submanifold P ⊂M such that p∈P and α|TP =0, then
(α ∧ dα)|p = 0;

(b) if there exists a neighborhood U of p in M such that (α∧dα)|U = 0, then there exists an embedded
2-dimensional submanifold P ⊂M such that p∈P and α|TP =0.

Note: If the top form α∧ dα on M is nowhere-zero, α is called a contact form. In this case, it has no
integrable submanifolds at all.

(a) Suppose P ⊂M is an embedded two-dimensional submanifold such that p∈P and

i∗α = α|TP = 0,

where i : P −→M is the inclusion map. Then,

(dα)p|TpP = (i∗dα)p = (di∗α)p = d0 = 0.

Since αp and dα|p vanish on the codimension-one subspace TpP of TpM , it follows that their wedge
product vanishes on TpM , i.e. (α ∧ dα)p = 0.

(b) We first note if V is any vector space of dimension n, α∈V , α 6=0, γ∈Λn−1V , and α∧γ = 0, then
γ = α∧β for some β∈Λn−2V . This can be seen by an argument similar to the solution of Problem 3.1

In turn, this statement implies that if M is a smooth manifold, α∈E1(M), α 6=0, γ∈En−1(M), and
α ∧ γ = 0, then γ = α ∧ β for some β∈En−2(M) (one needs to make sure that β can be chosen to be
smooth).

1The statement is actually true for any form γ∈ΛkV ; see Chapter 2, #15, p80.
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Since αq 6=0 for all q∈M ,
Rα ≡

{
cαq∈T ∗qM : c∈R, q∈M

}
is a subbundle of T ∗M of rank 1. Any section α̃ of this subbundle is of the form α̃= fα for some
f ∈C∞(M); for such α̃,

dα̃ = df ∧ α+ fdα.

If U is a neighborhood of p in M such that (α ∧ dα)|U = 0, dα|U = α|U ∧ β for some β ∈E1(U) by
the previous paragraph and thus

dα̃ ∈ Γ
(
U ;Rα ∧ T ∗U

)
⊂ Γ

(
U ; Λ2T ∗U

)
= E2(U) ∀α̃ ∈ Γ(U ;Rα) ⊂ E1(U).

So, by the differential-form version of Frobenius Theorem (Warner’s 2.32, stated in terms of vector
bundles in class), for every p∈U there exists a 2-dimensional embedded submanifold P ⊂U⊂M such
that p∈P and α|TP =0.

Problem 7 (10pts)

A two-form ω on a smooth manifold M is called symplectic if ω is closed (i.e. dω=0) and everywhere
nondegenerate2. Suppose ω is a symplectic form on M .
(a) Show that the dimension of M is even and the map

TM −→ T ∗M, X −→ iXω,

is a vector-bundle isomorphism (iXω is the contraction w.r.t. X, i.e. the dual of X∧).
(b) If H : M −→R is a smooth map, let XH ∈Γ(M ;TM) be the preimage of dH under this isomor-
phism. Assume that XH is a complete vector field, so that the flow

ϕ : R×M −→M, (t, p) −→ ϕt(p),

is globally defined. Show that for every t∈R, the time-t flow ϕt : M −→M is a symplectomorphism,
i.e. ϕ∗tω=ω.
Note: In such a situation, H is called a Hamiltonian and ϕt a Hamiltonian symplectomorphism.

(a) If p∈M , ωp is a nondegenerate bilinear anti-symmetric form on TpM . Thus, it is a standard fact
in linear algebra that the dimension of TpM is even. In fact, one can choose a basis {v1, . . . , vn} for
TpM so that the matrix for ωp with respect to this basis is

J 0 . . . 0

0 J
...

...
. . .

...
0 . . . 0 J

 where J =

(
0 −1
1 0

)
.

Since ω is smooth, the map
TM −→ T ∗M, X −→ iXω, (1)

2This means that ωp ∈Λ2T ∗pM is nondegenerate for every p∈M , i.e. for every v∈TpM such that v 6= 0 there exists
w∈TpM such that ωp(v, w) 6=0.
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is smooth. If X∈TpM , then iXωp∈T ∗pM , i.e. eq1 is a bundle map (commutes with the projections to
the base). If X1, X2, Y ∈TpM and a, b∈R, then{

iaX1+bX2ω
}

(Y ) ≡ ω
(
aX1+bX2, Y

)
= aω(X1, Y ) + b ω(X2, Y ) = a{iX1ω}(Y ) + b{iX2ω}(Y )

=⇒ iaX1+bX2ω = a{iX1ω}+ b{iX2ω} ∈ T ∗pM ∀X1, X2∈TpM, a, b∈R.

Thus, eq1 is a bundle homomorphism (i.e. linear on every fiber). Finally, since ωp is nondegenerate,
if X∈TpM−{0}, then there exists Y ∈TpM such that

{iXω}(Y ) = ω(X,Y ) 6= 0 =⇒ iXω 6= 0 ∈ T ∗pM.

Thus, the bundle homomorphism eq1 is injective and therefore a bundle isomorphism (since the two
bundles have the same rank).

(b) We need to show that ϕ∗tω=ω for all t, i.e. for all t∈R and p∈M

lim
s−→0

{ϕ∗t+sω}p − {ϕ∗tω}p
s

=
d

ds

(
{ϕ∗t+sω}p

)∣∣∣
s=0

=
d

ds

(
{ϕ∗sω}p

)∣∣∣
s=t

= 0.

Since ϕt+s=ϕt◦ϕs by (h) of Theorem 1.48,

lim
s−→0

{ϕ∗t+sω}p − {ϕ∗tω}p
s

= lim
s−→0

{
ϕ∗s{ϕ∗tω}

}
p
− {ϕ∗tω}p

s

= lim
s−→0

ϕ∗s{ϕ∗tω}ϕs(p) − {ϕ∗tω}p
s

=
(
LXH

(ϕ∗tω)
)
p
.

Since dω=0, by (d) of Proposition 2.25 and (b) of Proposition 2.23

LXH
(ϕ∗tω) =

{
iXH
◦ d + d ◦ iXH

}
(ϕ∗tω) = iXH

ϕ∗tdω + d ◦ iXH
ϕ∗tω = 0 + d

(
ϕ∗t
{
idϕtXH

ω
})
.

Since ϕt is the flow for the vector field XH ,

dpϕtXH = dpϕt

(
d

ds
ϕs(p)

∣∣∣
s=0

)
=

d

ds

(
ϕt◦ϕs(p)

)∣∣∣
s=0

=
d

ds
ϕt+s(p)

∣∣∣
s=0

= XH

(
ϕt(p)

)
=⇒ idϕtXH

ω = iXH
ω = dH,

by definition of XH . We conclude that

d

ds

(
{ϕ∗sω}p

)∣∣∣
s=t

= d
(
ϕ∗tdH) = ϕ∗td

2H = 0,

i.e. ϕ∗tω=ω.
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