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Solutions to Problem Set 5
Problem 1 (5pts)
Let V' be a vector space of dimension n and Q€ A™V* a nonzero element. Show that the homomorphism
V — AV, v —> 0,0,

where i, is the contraction map, is an isomorphism.

Let {v;} be a basis for V' and {v}} the dual basis for V*, i.e. v} (v;) =d;;. Then, for some C € R—0
Q=CuviA...AU — i, Q= (=D)FTLC VI AL AVE_ AVEL AL LA

Thus, the above homomorphism is surjective (since every basis element is in the image) and therefore
an isomorphism (since the dimensions are the same).

Problem 2 (10pts)

Suppose M is a smooth n-manifold.
(a) Let Q be a nowhere-zero n-form on M. Show that for every p € M there exists a smooth chart
(x1,...,2p): U—R" near p such that

Q]U:d:cl/\.../\d:vn.

(b) Let a be a closed nowhere-zero (n—1)-form on M. Show that for every pe M there exists a smooth
chart (x1,...,x,): U—R" near p such that

04|U:d:172/\da:3/\.../\da;n.

(a) Let o=(y1,...,yn): V—>R" be a smooth chart near p. Since A"T;M is one-dimensional, there
exists f€C>(V) such that
aly = fdyi A ... Adyy.

Let FF'eC*°(V) be a function such that %F:f, e.g.

Y1
F(gofl(yl,...,yn)) :/0 f(gofl(t,yg,...,yn)) dt.

Define smooth functions
F, ifi=1;

T1y--.,Tn): V—>R" b T; =

(= ) oo {yz if i >2;

. da; — =1 (a—ij)dy], ifi=1 _ fdyr+ 250 (&ij)dy], it i=1;
dy;, it i>2 dy;, if i >2;

= dzy Adza AL Adey, = fdyr AL A dy, = aly,



as needed. It remains to check that (z1,...,z,) restricts to a smooth chart near p. Since
dpzi AL AN, =) € AtOPTI;‘M

and Q,#0, {dpx1,...,dpx,} is basis for Ty M. Thus, by Corollary 1.30b, there exists U CV such that
(21,...,2n): U—R" is a smooth chart.

(b) Let (y1,...,yn): V—>R"™ be a smooth chart near p. By Problem 2,
aly =ix (dyl/\. . ./\dyn)

for a unique vector field X on M. This vector field is smooth because the (n—1)-form « is smooth.
Since ay, #0, X, #0. Thus, by Proposition 1.53, there exists a smooth chart around p

3}
v=(21,...,2n): W—R" s.t. wcV, £:X|W.
1

Then, for some feC>(W)

dyiA. . Ady, = fdziA. .. Adz,
— aly = iX(dyl/\. ) ./\dyn) =19/02 (fdzl/\. ) ./\dzn) = fdzA... Adz,

dalw = d(fdzz/\. . ./\dzn) = <6(Zf)dz1/\d22/\. .. Adzy,.
1

Since da=0, 82 f=0. Let FeC>(W) be given by

22 b
F(w_l(zl,ZQ,...,zn)) :/ f(w_l(zl,t, 23,...,zn)) dt - 8722F = f.
0
Define smooth functions
F, iti=2;
(X1, @p): W—R" by ri=4 1 Z ’
zi, it i#£2;
e dm— p ! (35 F)dzj, i i=2 _ (32 F)dzy + fdzy + Y22 5 (2 F)dz, ifi=2
dzz, if §£2 dzl, if i£2.
9 r_
Since 7= f=0,
iF (¢ (21, 22 zn)) = 8/ZQf(w 1(21 t,23,... zn)) dt
aZI Y Y Y a J ? 9
22
t,23,...,2p)) | dt = 0dt =0
- [ (s et m) Jae= |
= dea Adzs A ... Adey, = fdza AL Adz, = alw,
as needed. It remains to check that (x1,...,x,) restricts to a smooth chart near p. Note that

dpzi A dpzaA. . Adpzy, = dpzi A (f dpza AL A dpzn) = fdpz1 A Adp2y € AtC’pT;M.

Since ap # 0 and thus f(p) # 0, {dpx1,...,dpz,} is basis for Ty M. Therefore, by Corollary 1.30b,
there exists U CV such that (x1,...,2z,): U—R" is a smooth chart.



Problem 3 (5pts)

Let M be a smooth manifold and X,Y € I'(M;TM) smooth vector fields on M. Show that the Lie

derivative satisfies
Lixy)=[Lx,Ly]|=LxoLy —LyolLx

as homomorphisms on T'(M;TM) and E*(M).
If feC>(M)=E"(M), by 2.25a and the definition of [X,Y]
Lixy)f = [X,Y]f =X(Yf) =Y (X[f) = Lx(Lyf) — Ly (Lx f) = [Lx, Ly] /.
If ZeT(M;TM), by 2.25b and 1.45¢d
Lixy1Z = [[X,Y],Z] = —[2,[X,Y]] = [X,[Y, Z]]+]Y,[Z,X]] = Lx(LyZ)—Ly(Lx Z) = [Lx, Ly]Z.

If ac E¥ and Z,..., 72, €T(M;TM), by 2.25¢ and the two identifies above

i=k
{Lixyia}(Z1,. ... Zk) = Lixy)(a(Z1, ..., Zk)) — Za(Zh s Zia, LixyyZ, Ziva, - -+, Zi)

=1
i=k
= [Lx,Ly)(a(Z1,.... Z)) = > a(Zv,.... Zi—1, |[Lx,Ly)Z, Zit, ..., Z).
i=1
Using 2.25e again gives
i=k
Lx(Ly(a(Z1,...,2))) = Lx ({Lya}(zl,...,zk) +> alZy,.... Zi, Ly Z, ZZ-+1,...,Z,€)>
=1
= {Lx(Lya)}(Z1,.... 2 +Z{Lya} Ziy.. s Zia, LxZ, Zisa,. .., Z)
+Z {Lxa}(Z1,....Zi-1, Ly Z, ZZH,...,Zk)) +a(Zy,..., Zi1, Lx(Ly Z), Zis1, . ., Z,)
+Z (Z1y.. s Zia, Ly Z, Zisa, .o, Lx Zj1, Lx Zj, Lx Zjg1s - - -, Zi).

i#]
Interchanging X and Y above and taking the difference of the two expressions gives

i=k
[Lx,Ly](Oé(Zl, .. ,Zk)) = {[Lx,Ly]Oé}(Zl, .. .,Zk) + Za(Zl, ey Zi 1, [Lx,Ly}Z, Zitl,-. .,Zk).
=1

Combining this with the first expression above involving a gives
{Lixyia} (2., Zy) = {[Lx, Ly]a}(Z1, ..., Zy).

Since this holds for all smooth vector fields Z1,. .., Z) on M, it follows that Lix yja = [Lx, Ly]a



Problem 4 (10pts)

Let o be a k-form on a smooth manifold M and Xg, X1,..., X smooth vector fields on M. Show
directly from the definitions that
do(Xo, X1,..., X3) :Z(—l)ZX-( (X0 s Xy s Xp))

+Z D a([Xi, Xj), Xoy -y Xiy oo Xy vy X3).
1<j

Since da is a (k+1)-form, the value of LHS of this identity at any p€ M depends only on the values
of Xo, X1,..., X at p. We next show that RHS of this identity is also linear over C*°(M) in each of

the inputs. If RHSYY and RHSY denote the two terms on RHS and feC>(M),

i=k
RHS (f X0, X1,.. ., X)) = (—1)°(f Xo)a( X1, .., Xp) + > (=1 Xi(a(f X0, X1,..., Xi, ..., Xp))
=1
= fXQ(Oé(Xl,... ,Xk)) —i—Z(—l)ZXi(fa(Xo,.. . 7Xi7~- ,Xk))
=1
i=k ' - i=k ) .
= Z(—l)lXi(f)a(Xm vy Xy X)) + fZ(_l)lXi(a(X& X X))
=1 j—
RHSD (fX0, X1,..., Xp) = > _(-V'a([fXo, Xi], X1,..., X;, ..., Xp)
=1
+ 3 ()M a([X0 X5, F X0y Xa o, X, Xa)
1<i<y
= Z(_l)za(f[XmXi]_Xi(f)XOaXla---aXiw~-7Xk)
=1
+f 3 ()™Ma((Xi, Xj], Xo, -, X X Xp)
1<i<y
:_Z a(Xo, .o Xoy o Xi) + Y (DM a([X5, X)) Xo, - X X X,

1<j

Thus, summing the two terms on RHS together, we obtain

RHS,(fXo, X1,...,Xr) = fRHS. (X0, X1, ..., Xk).
Since RHS of the identity is alternating, it follows that

RHS.(foXo, .-, [xXk) = fo-.. f[tRHS. (X0, ..., Xk)

for all fo,..., f e C>°(M). So, the value of RHS, at a point p € M depends only on Xolp, ..., Xg|p.
Since both sides are alternating in the inputs, it is sufficient to check the identity for

o . a . .
a:fdeEfdxil/\.../\dxik, 1 <1p<...<t, Xl:aT’ Jo<n<...<Jkg-
V)



In this case,

[XuX]]—O, dazzajdmz/\dxl
i=1 ¢
RHS reduces to
1=k Ik .
(_1)le a(X()?”.,Xl?.”’Xk) = (_1)l <fdx‘[< yeeey gy >>
lzg ( ) =0 8le a$j0 ale (%zjk
1=k
B =0 0z, L,(Jose-sdtre-dk)

LHS becomes

9 0 L of 0 0 9 0
da<axj0’”"axjk> - (_1) a$id$i <asz>dxl<axjo’.”’8"%'1’.”’856]'1@)

I
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So the identity holds in this case.
Problem 5 (5pts)

Let V. — M be a smooth vector bundle of rank k and W CV a smooth subbundle of V of rank k'.
Show that
Ann(W) = {aGV;)*: a(w)=0YweW, pe M}

is a smooth subbundle of V* of rank k—kK .

For each p € M, Ann(W), = Ann(W,) is a linear subspace of V" of dimension k—£’; so we only
need to show that Ann(W) C V* is an embedded submanifold. Let r: V* — W* be the bundle
homomorphism induced by the restriction map on each fiber:

r(a) = alw, € W, = Hom(W),R) V aeV,y=Hom(V,,R), pe M.

The restriction of 7 to each fiber V' is clearly linear. The map 7 is also smooth and its differential is
surjective at every point (see below). Thus, by the Implicit Function Theorem,

Ann(W) =r ! (so(M)) C V*,

where so(M) C W* is the zero section, is a smooth embedded submanifold, as required (for this, it
would be suffice that

ToomW* = Imdar + Ty, () (50(M)) VaeAmn(W),,
and in turn this condition holds if d,r is onto for all «€ Ann(W)C V™).
If hy =(mv,hi,....h): Vg — U xRF is a trivialization of V such that

hw = (tv,his. .. hy): Wy — UxRF = UxRF x0 c UxRF,

!



then
R V¥ — UxRF, o — (p,a(hil(p, e1)),...,a(h ™ (p, ek))) VaeV), pel,
hyy: Wy — UxRY, o — (p,a(h (p.e1)),...,a(h " (pew))) Y acW;, pel,
are trivializations for V* and W*, and
* *\—1, k K _ K k
hijyoro(hy)  : UxRY — UxR" = UxR" x0 C UxR
is the projection map. Thus, r is smooth and is a submersion. In fact,

hannw): Ann(W)|y — UxRFF = Ux0x R¥ ¢ UxRF,
a— (pv a(h_l(pv ek”-i-l))a s ’Oz(h_l(p’ ek))) v aeAnn(W)pv peU,

is a trivialization for the subbundle Ann(WW)C V. However, W* is not a subbundle of V* in a canonical
way (it is the orthogonal complement of Ann(W), but this depends on the choice of the metric on the
fibers).

Problem 6 (10pts)

Suppose M is a 3-manifold, o is a nowhere-zero one-form on M, and p€ M. Show that

(a) if there exists an embedded 2-dimensional submanifold P C M such that p€ P and o|7p =0, then
(a A da)l, = 0;

(b) if there exists a neighborhood U of p in M such that (e« Ada)|y = 0, then there exists an embedded
2-dimensional submanifold PC M such that p€ P and «|pp=0.

Note: If the top form a Ada on M is nowhere-zero, o is called a contact form. In this case, it has no
integrable submanifolds at all.

(a) Suppose P C M is an embedded two-dimensional submanifold such that p€ P and
i*a=alrp =0,
where i: P— M is the inclusion map. Then,
(da)plr,p = (i"da), = (di*a), = d0 = 0.

Since «;, and daf, vanish on the codimension-one subspace T}, P of T, M, it follows that their wedge
product vanishes on T,M, i.e. (a A da), = 0.

(b) We first note if V is any vector space of dimension n, a €V, a#0, y€ A" 'V, and a Ay = 0, then
v = aAf for some B€ A"~2V. This can be seen by an argument similar to the solution of Problem 3.1
In turn, this statement implies that if M is a smooth manifold, o € E*(M), a#0, y€ E""1(M), and
a Ay =0, then v = a A j for some f€ E"2(M) (one needs to make sure that 3 can be chosen to be
smooth).

!The statement is actually true for any form ’yEAkV; see Chapter 2, #15, p80.



Since ay #0 for all g€ M,
Ra = {caqET;M: ceR, qGM}
is a subbundle of T*M of rank 1. Any section & of this subbundle is of the form & = fa for some
feC>(M); for such &,
da=df ANa+ fdo.

If U is a neighborhood of p in M such that (a A da)|y = 0, dajy = a|y A B for some 3 € EY(U) by
the previous paragraph and thus

da € I (U;Ra AT*U) C T(U; A*T*U) = E*(U)  Va € T(U;Ra) C E1(U).

So, by the differential-form version of Frobenius Theorem (Warner’s 2.32, stated in terms of vector
bundles in class), for every p€ U there exists a 2-dimensional embedded submanifold P CU C M such
that pe P and a|rp=0.

Problem 7 (10pts)

A two-form w on a smooth manifold M is called symplectic if w is closed (i.e. dw=0) and everywhere
nondegenerate®. Suppose w is a symplectic form on M.
(a) Show that the dimension of M is even and the map

TM — T*M, X —ixw,

is a vector-bundle isomorphism (ixw is the contraction w.r.t. X, i.e. the dual of XN).
(b) If H: M — R is a smooth map, let X € T'(M;TM) be the preimage of dH under this isomor-
phism. Assume that Xy is a complete vector field, so that the flow

o:RxM — M, (t,p) — wi(p),

s globally defined. Show that for every t € R, the time-t flow ¢r: M — M is a symplectomorphism,
e piw=w.
Note: In such a situation, H is called a Hamiltonian and ¢ a Hamiltonian symplectomorphism.

(a) If pe M, wy, is a nondegenerate bilinear anti-symmetric form on 7M. Thus, it is a standard fact
in linear algebra that the dimension of T, M is even. In fact, one can choose a basis {vi,...,v,} for
T,M so that the matrix for w, with respect to this basis is

J 0 0
0o J 0 -1
. where J = < 1 0 >
0 0o J
Since w is smooth, the map
TM — T*M, X —ixw, (1)

2This means that w, € AQT;M is nondegenerate for every p € M, i.e. for every v € T, M such that v #0 there exists
w €T, M such that wy(v, w)#0.



is smooth. If X €T, M, then ixw, €T M, i.e. eql is a bundle map (commutes with the projections to
the base). If X1, X5, Y €T, M and a,b€eR, then

{iaX1+bX2w}(Y) = w(aX1+bX2, Y) =aw(X1,Y)+bw(Xe,Y) =a{ix,w}(Y) + b{ix,w}(Y)
— iaXl—l—ngW = a{inw} + b{iX2w} € T;M vV X1, X9 GTpM, a,beR.

Thus, eql is a bundle homomorphism (i.e. linear on every fiber). Finally, since w, is nondegenerate,
if X € T,M —{0}, then there exists Y € T, M such that

{ixw}Y)=w(X,Y)#0 = ixw#0e T, M.

Thus, the bundle homomorphism eql is injective and therefore a bundle isomorphism (since the two
bundles have the same rank).

(b) We need to show that pfw=w for all ¢, i.e. for all teR and pe M

lim {‘P;tk-s-sw}p - {‘P?w}p

s—0 S

= S ({eth)|_ = S(tetwl)| _ =0

Since @15 =props by (h) of Theorem 1.48,

lim {pfiswlp — {piwlp — lim {@s{%w}}p —{piwlyp

s—0 S s—0 S
L peeiwle. ) — {eiwly .
= Shi% s = (LXH (‘ptw))p'

Since dw=0, by (d) of Proposition 2.25 and (b) of Proposition 2.23

LXH(SO?W) = {iXHO d+do iXH}(QOIW) = iXH‘P;Skdw +do iXH‘P;:kw =0+ d((/):{idsotXHw})'

Since ¢, is the flow for the vector field Xy,

5:0> = %(soto«ps(p))

— id%XHw:iXHw:dH,

d
= &‘Pt+s(p)

= Xu (pt(p))

s=0

d
d,o; X =d — g
ot X1 pSDt(dS@ (p) -

by definition of Xp. We conclude that

d, . . )
7 Uwiwly) L:t — d(pfdH) = ¢fd>H = 0,

ie. pjw=w.



