
MAT 531: Topology&Geometry, II
Spring 2011

Solutions to Problem Set 4

Problem 1: Chapter 1, #13ad (10pts)

(a) Show that [X,Y ] is a smooth vector field on M for any two smooth vector fields X and Y on M .

(d) Show that [, ] satisfies the Jacobi identity, i.e.

[
[X,Y ], Z

]
+
[
[Y, Z], X

]
+
[
[Z,X], Y

]
= 0

for all smooth vector fields on X, Y , and Z on M .

(a) First, we need to see that for every p∈M the map

[X,Y ]p : C
∞(M) −→ R, [X,Y ]p(f) = Xp(Y f)− Yp(Xf),

is well-defined and is an element of TpM , i.e. it is bilinear, satisfies the product rule, and its value
depends only on the germ of f at p. Since X, Y , and f are smooth, Y f and Xf are smooth
functions on M by Proposition 1.43. Since Xp and Yp are linear functionals on C∞(M),

Xp(Y f), Yp(Xf) ∈ R =⇒ [X,Y ]p(f) ∈ R,

i.e. the map [X,Y ]p is well-defined. Since it is a composition of linear maps, [X,Y ]p is a linear
map as well. Furthermore, if f, g∈C∞(M),

[X,Y ]p(fg) = Xp

(
Y (fg)

)
− Yp

(
X(fg)

)
= Xp

(
fY (g)+gY (f)

)
− Yp

(
fX(g)+gX(f)

)

=
(
f(p)Xp(Y (g))+Yp(g)Xp(f)+g(p)Xp(Y (f))+Yp(f)Xp(g)

)

−
(
f(p)Yp(X(g))+Xp(g)Yp(f)+g(p)Yp(X(f))+Xp(f)Yp(g)

)

= f(p)
(
Xp(Y (g))−Yp(X(g))

)
+ g(p)

(
Xp(Y (f))−Yp(X(f))

)

= f(p)[X,Y ]p(g) + g(p)[X,Y ]p(g),

i.e. the linear map [X,Y ]p satisfies the product rule. Finally, if U is a neighborhood of p in M and
f |U =g|U , then

(Xf)|U = (Xg)|U and (Y f)|U = (Y g)|U ,

since for all q∈U the real numbers Xqf and Xqg depend only on the germs of f and g at q. Since
the values of Xp and Yp on C∞(M) depend only on the germs of functions at q, we conclude that

Yp(Xf) = Yp(Xg) and Xp(Y f) = Xp(Y g) =⇒ [X,Y ]pf = [X,Y ]pg,

i.e. the value of [X,Y ]p on f ∈C∞(M) depends only on the germ of f at p. Thus, [X,Y ] is a vector
field on M .

If X, Y , and f are smooth, then Xf and Y f are smooth functions on M by Proposition 1.43. By
Proposition 1.43 again, Y (Xf) and X(Y f) are also smooth functions on M . It follows that the
function [X,Y ]f is smooth for every smooth function f on M . Thus, [X,Y ] is a smooth vector



field on M by Proposition 1.43.

(d) We need to show that LHS of the identity is the zero map, i.e. the function obtained by applying
LHS to any smooth function f on M is zero. The first summand gives:

[
[X,Y ], Z

]
f = [X,Y ](Zf)− Z

(
[X,Y ]f

)
=

(
X(Y (Zf))−Y (X(Zf))

)
− Z

(
X(Y f)−Y (Xf)

)

= X
(
Y (Zf)

)
− Y

(
X(Zf)

)
− Z

(
X(Y f)

)
+ Z

(
Y (Xf)

)
.

Permuting X, Y , and Z cyclicly, we then obtain
[
[Y, Z], X

]
f = Y

(
Z(Xf)

)
− Z

(
Y (Xf)

)
−X

(
Y (Zf)

)
+X

(
Z(Y f)

)
and[

[Z,X], Y
]
f = Z

(
X(Y f)

)
−X

(
Z(Y f)

)
− Y

(
Z(Xf)

)
+ Y

(
X(Zf)

)
.

The three expressions add up to zero.

Problem 2: Chapter 1, #22 (5pts)

Let γ(t) be an integral curve for a vector field X on M . Show that if γ′(t)=0 for some t, then γ

is a constant map.

Suppose γ : (a, b)−→M , γ′(t0)=0 for some t0 ∈ (a, b), and γ(t0)= p. Since γ is an integral curve
for X,

X(p) = X
(
γ(t0)

)
= γ′(t0) = 0.

Let β : (a, b)−→M be the curve defined by β(t)=p for all t∈(a, b). Then,

β(t0) = p and β′(t) = 0 = X(p) = X
(
β(t)

)
∀ t ∈ (a, b).

We also have
γ(t0) = p and γ′(t) = X

(
γ(t)

)
∀ t ∈ (a, b).

By the uniqueness theorem for first-order ODEs, or Theorem 1.48, β=γ, i.e. γ is a constant map.

Problem 3: Chapter 1, #17 (5pts)

Show that any smooth vector field on a compact manifold is complete.

Suppose M is a compact m-manifold, X is a smooth vector field on M , and γ : (a, b)−→M is a
maximal integral curve for X. Thus, a<0 and b>0. We need to show that (a, b)=R.

Suppose b∈R. Choose a sequence tn∈(a, b) converging to b. Since M is a compact, a subsequence
converges to a point p∈M . By (3) of Theorem 1.48, there exists ǫ∈(0, |a|) and a neighborhood U
of p in M such that the flow

(−ǫ, ǫ)×U −→M, (t, q) −→ Xt(q),

is well-defined. Choose tn∈(a, b) such that b−tn<ǫ and γ(tn)∈U . Let

β : (−ǫ, ǫ) −→M
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be the integral curve for X such that β(0)=γ(tn). Define

α : (a, tn+ǫ) −→M by α(t) =

{
γ(t), if t∈(a, b);

β(t−tn), if t∈(tn−ǫ, tn+ǫ).

Let γ̃(t)=γ(t+tn) for t∈(−ǫ, b−tn). Since

γ̃(0) = β(0), γ̃′(t) = X(γ̃(t)), and β′(t) = X(β(t)),

γ̃=β on (−ǫ, b−tn) by the uniqueness of integral curves. Thus, α is well-defined. Furthermore,

α′(t) =

{
γ′(t), if t∈(a, b)

β′(t−tn), if t∈(tn−ǫ, tn+ǫ)
=

{
X(γ(t)), if t∈(a, b)

X(β(t−tn)), if t∈(tn−ǫ, tn+ǫ)
= X(α(t)),

i.e. α is an integral curve for X. Since tn+ǫ>b and α|(a,b)=γ, we conclude that α is an integral
curve for X extending γ. Thus, γ is not maximal unless b=∞. The proof that a=−∞ is similar
(or apply the conclusion to the vector field −X).

Problem 4 (5pts)

Let V be the vector field on R
3 given by

V (x, y, z) = y
∂

∂x
− x

∂

∂y
+

∂

∂z
.

Explicitly describe and sketch the flow of V .

The integral curves for this vector fields are the solutions of the system

x′(t) = y(t), y′(t) = −x(t), z′(t) = 1.

The first pair of equations is independent of the third; its solutions are

(
x(t), y(t)

)
= (x0+iy0)e

−it ∈ C.

The corresponding curve goes around a circle centered at the origin clockwise at the unit angular
speed. The solution of the third equation is z(t)=z0+t. Thus, the flow for X is given by

Xt : R
3 −→ R

3=C×R, Xt

(
x, y, z) =

(
(x+iy)e−it, z+t

)
,

i.e. the flow rotates clockwise around the vertical axis at the unit angular speed and climbs up at
the unit angular speed (the vertical axis itself simply moves up).
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Problem 5 (10pts)

Suppose X and Y are smooth vector fields on a manifold M . Show that for every p ∈ M and

f ∈C∞(M),

lim
s,t−→0

f
(
Y−s(X−t

(
Ys(Xt(p)))

))
− f(p)

s t
= [X,Y ]pf ∈ R.

Do not forget to explain why the limit exists.

Note: This means that the extent to which the flows {Xt} of X and {Ys} of Y do not commute
(i.e. the rate of change in the “difference” between Ys◦Xt and Xt◦Ys) is measured by [X,Y ].

By (d) of Theorem 1.48, we can choose a neighborhood U of p and ǫ>0 such that the maps

(−ǫ, ǫ)×U −→M, (z, q) −→ Xz(q), (−ǫ, ǫ)2×U −→M, (w, z, q) −→ Yw(Xz(q)),

(−ǫ, ǫ)3×U −→M, (v, w, z, q) −→ Xv

(
Yw(Xz(q))

)
, and

(−ǫ, ǫ)4×U −→M, (u, v, w, z, q) −→ Yu
(
Xv

(
Yw(Xz(q))

))
,

are defined and smooth. Define

K : (−ǫ, ǫ)4 −→ R and H : (−ǫ, ǫ)2−→ R by

K(u, v, w, z) = f
(
Yu

(
Xv(Yw(Xz(p)))

))
− f(p) and H(s, t) = K(−s,−t, s, t).

Since K is a composition of smooth functions, K is smooth. Since H is a composition of smooth
functions, H is smooth. Furthermore,

X0 = Y0 = idX , Y−s ◦ Ys = idDomsY , X−t ◦Xt = idDomtX =⇒ H(s, 0) = H(0, t) = 0

for all s and t. Thus1, the limit in the statement of the problem exists and equals to the mixed
second partial derivative of H:

lim
s,t−→0

f
(
Y−s(X−t

(
Ys(Xt(p)))

))
− f(p)

s t
= lim

s,t−→0

H(s, t)−H(0, 0)

s t
=
∂2H

∂s ∂t

∣∣∣
(0,0)

.

1this follows, for example, from Lemma 3.5 in Lecture Notes applied twice
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On the other hand, by the Chain Rule,

∂2H

∂s ∂t

∣∣∣
(0,0)

=
∂2K

∂u∂v

∣∣∣
(0,0,0,0)

−
∂2K

∂u∂z

∣∣∣
(0,0,0,0)

−
∂2K

∂v ∂w

∣∣∣
(0,0,0,0)

+
∂2K

∂w ∂z

∣∣∣
(0,0,0,0)

.

Note that

∂2K

∂u∂v

∣∣∣
(0,0,0,0)

=
∂

∂v

(
∂

∂u
f(Yu(Xv(p)))

∣∣∣
u=0

)∣∣∣
v=0

=
∂

∂v

(
dXv(p)f

(
∂

∂u
Yu(Xv(p))

∣∣∣
u=0

))∣∣∣
v=0

=
∂

∂v

(
dXv(p)f(Y )

)∣∣∣
v=0

=
∂

∂v

(
{Y f}

(
Xv(p)

))∣∣∣
v=0

= dp{Y f}(X) = Xp(Y f).

Similarly,

∂2K

∂u∂z

∣∣∣
(0,0,0,0)

= Xp(Y f),
∂2K

∂v ∂w

∣∣∣
(0,0,0,0)

= Yp(Xf),
∂2K

∂w ∂z

∣∣∣
(0,0,0,0)

= Xp(Y f).

Putting these together, we conclude that

lim
s,t−→0

f
(
Y−s(X−t

(
Ys(Xt(p)))

))
− f(p)

s t
=
∂2H

∂s ∂t

∣∣∣
(0,0)

= Xp(Y f)− Yp(Xf) = [X,Y ]pf.

Problem 6 (10pts)

Let U and V be the vector fields on R
3 given by

U(x, y, z) =
∂

∂x
and V (x, y, z) = F (x, y, z)

∂

∂y
+G(x, y, z)

∂

∂z
,

where F and G are smooth functions on R
3. Show that there exists a proper2 foliation of R3 by

2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the

tangent spaces of these submanifolds if and only if

F (x, y, z) = f(y, z) eh(x,y,z) and G(x, y, z) = g(y, z) eh(x,y,z)

for some f, g∈C∞(R2) and h∈C∞(R3) such that (f, g) does not vanish on R
2.

If at every point of R
3 the vector fields U and V span the tangent space of a 2-dimensional

submanifold, then their span is two-dimensional, i.e. (F,G) does not vanish. If this is the case, by
Frobenius Theorem there exists an integral submanifold for the distribution D⊂TR3 spanned by
U and V through every point of R3 if and only if the vector field

[U, V ] = Fx
∂

∂y
+Gx

∂

∂z

lies in the span of U and V over C∞(R3). This is the case if and only if there exists λ∈C∞(R3)
such that

[U, V ] = λV ⇐⇒ Fx = λF, Gx = λG

⇐⇒ F (x, y, z) = f(y, z)eh(x,y,z), G(x, y, z) = g(y, z)eh(x,y,z),

2in the sense of Definition 10.4 in Lecture Notes
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where h∈C∞(R3) is such that hx=λ and f, g∈C∞(R2) are such that (f, g) does not vanish on R
2

(so that V does not vanish).

If the above is the case, the maximal connected integral submanifolds for the distribution D spanned
by U and V partition R

3. We will show that all such submanifolds are embedded. Since eh does
not vanish, D is spanned by the vector fields

U(x, y, z) =
∂

∂x
and W (x, y, z) = f(y, z)

∂

∂y
+ g(y, z)

∂

∂z
.

Let γ : (a, b)−→R
2 be a maximal integral curve for the vector field

W̃ (y, z) = f(y, z)
∂

∂y
+ g(y, z)

∂

∂z
.

Since (f, g) does not vanish on R
2 and γ′(t)=W̃ (γ(t)) γ is a maximal connected integral subman-

ifold for the distribution D̃ on R
2 spanned by W̃ . Furthermore,

ψ=id×γ : R×(a, b) −→ R
3=R×R

2

is a maximal connected integral submanifold for D and every maximal connected submanifold for
D has this form. It is an integral submanifold for D because

dψ
∣∣
(s,t)

∂

∂s
=

∂

∂s
× 0 = U

(
ψ(s, t)

)
,

dψ
∣∣
(s,t)

∂

∂t
=

(
0, γ′(t)

)
=

(
0, W̃ (γ(t))

)
=W

(
ψ(s, t)

)
,

if (s, t) are the standard coordinates on R× (a, b). Since the maximal integral curves γ for W
partition R

2, the images of the maps id×γ partition R
3. Thus, each map id×γ must be a maximal

connected submanifold for D. In the following paragraph, we show that every integral curve γ
for W̃ must be embedded in R

2. This implies that every maximal connected integral submanifold
id×γ for D is embedded in R

3.

Suppose γ : (a, b)−→R
2 is a maximal integral curve for W̃ and t0∈(a, b). By Proposition 1.53, we

can choose a coordinate chart

ϕ=(x1, x2) :
(
U , γ(t0)

)
−→ (R2, 0)

and a neighborhood (c, d) of t0 in (a, b) such that

[−2, 2]×[−2, 2] ⊂ ϕ(U), W |U =
∂

∂x1

∣∣∣
U

, and γ|(c,d) : (c, d) −→ ϕ−1
(
0×(−2, 2)

)
(1)

is a diffeomorphism. The middle condition implies that

Im γ ∩ ϕ−1
(
(−2, 2)×(−2, 2)

)

is a union of horizontal slices ϕ−1
(
(−2, 2)×y

)
with y∈Sγ , where Sγ is a subset of (−2, 2). To show

that γ is an embedding, we show that there exists ǫ>0 such that

Sγ ∩ (−ǫ, ǫ) = {0}.3

3In such a case, if (c′, d′)⊂(c, d) is a basis element around t0∈(a, b), then

γ
(

(c′, d′)
)

=
(

γ(c′), γ(d′)
)

×0 = γ
(

(c′, d′)
)

∩
(

(γ(c′), γ(d′))×(−ǫ, ǫ)
)

,
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Suppose not, i.e. there exists a sequence tk∈(a, b) converging to either a or b such that γ(tk)=0×yk
with yk ∈ Sγ converging to 0 ∈ R. By taking a subsequence and by symmetry, it is sufficient to
assume that tk−→b and yk∈R

+. We can then choose t1, t2 ∈ (t0, b) with t1<t2 so that

ϕ(γ(t1)) = 0×y1, ϕ(γ(t2)) = 0×y2 s.t.

0 < y2 < y1 < 2, (t0, t1) ∩ γ
−1

(
ϕ−1(0×(0, y1))

)
= ∅, (t1, t2) ∩ γ

−1
(
ϕ−1(0×(0, y1))

)
= ∅.

In other words, t1∈ (t0, b) is the smallest number so that ϕ(γ(t1))∈0×(0, 2) and t2∈ (t1, b) is the
smallest number so that ϕ(γ(t2))∈0×(0, y1).

γ(t1)y1

γ(t2)y2γ(t′
2
)

γ(t′
1
)

γ(t0)

γ

−2 2

By the middle condition in eq1,

t′1 ≡ γ−1
(
ϕ−1(1×y1)

)
∈ (t1, t2), t′2 ≡ γ−1

(
ϕ−1((−1)×y2)

)
∈ (t′1, t2),

i.e. the flow is to the right in each slice as indicated in the diagram.

Since γ is an integral curve, it has no self-intersections. Thus,

C ≡ γ
(
(t0, t1)

)
∪ ϕ−1

(
0×[0, y1]

)

is a simple closed curve in R
2 since

(t0, t1) ∩ γ
−1

(
ϕ−1(0×(0, y1))

)
= ∅.

Let ℓ be the straight line segment between ϕ(γ(t′1)) and ϕ(γ(t′2)) in R
2. Since the curve ϕ−1(ℓ)

intersects the simple closed curve C exactly once, one of its endpoints, i.e. γ(t′1) or γ(t
′
2), must lie

inside of C and the other outside. Thus, the curve γ((t′1, t
′
2)) must intersect C at least once. Since

γ
(
(t′1, t

′

2)
)
∩ ϕ−1

(
0×[0, y1]

)
⊂ γ

(
(t1, t2)

)
∩ ϕ−1

(
0×[0, y1]

)
= ∅

and γ((t′1, t
′
2))∩C 6= ∅, we conclude that

γ
(
(t′1, t

′

2)
)
∩ γ

(
(t0, t1)

)
6= ∅.

However, this is impossible as well, since t1<t
′
1 and an integral curve cannot intersect itself.

Remark: The above argument implies that if D is any distribution on R
2, every connected integral

submanifold for D is embedded. This is not the case for other manifolds, including R
3 and T 2 (see

Chapter 1, #21, p51).

i.e. γ takes open subsets of (a, b) to sets in Im γ that are open with respect to the topology Im γ inherits as a
subspace of R2. So, γ is an embedding.
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