MAT 531: Topology& Geometry, 11
Spring 2011

Solutions to Problem Set 4

Problem 1: Chapter 1, #13ad (10pts)

(a) Show that [X, Y] is a smooth vector field on M for any two smooth vector fields X andY on M.
(d) Show that [,] satisfies the Jacobi identity, i.e.

[X,Y],Z] + [[V, 2], X]| + [[2,X],Y] =0

for all smooth vector fields on X, Y, and Z on M.

(a) First, we need to see that for every p€ M the map
(X, Y]p: CF(M) — R, [X,Y]p(f) = X,(YS) = Yp(XS),

is well-defined and is an element of T,,M, i.e. it is bilinear, satisfies the product rule, and its value
depends only on the germ of f at p. Since X, Y, and f are smooth, Y f and X f are smooth
functions on M by Proposition 1.43. Since X, and Y, are linear functionals on C*°(M),

XV YGXHER  —  [XY](f)eR

i.e. the map [X,Y], is well-defined. Since it is a composition of linear maps, [X,Y], is a linear
map as well. Furthermore, if f,g€ C*(M),

(X, Y],(f9) = X, (Y(f9) — Yo (X(f9)) = Xp(fY (9)+9Y (f)) — Y, (X (9)+9X(f))
= (f()Xp(Y (9)+Yp(9) Xp(f)+9(0) Xp (Y () +Y,(f) Xp(9))
— (F(0)Yp(X(9)+X,(9)Yy( P)Yp(X () +Xp(f)Yn(9))
= f(p)(Xp(Y(9))—Yn(X(9))) + 9(p) (Xp(Y ()Y,
= fPIX, Y]p(9) + 9®)[X, Y]p(9),

i.e. the linear map [X, Y], satisfies the product rule. Finally, if U is a neighborhood of p in M and
f]U:g\U, then
XNlv=Xglv  and (Y )lv = Vg)lv,

since for all g€ U the real numbers X, f and X,g depend only on the germs of f and g at ¢q. Since
the values of X, and Y}, on C*°(M) depend only on the germs of functions at g, we conclude that

p(X[f) =Yp(Xg) and Xp(Y[)=Xp(Yg) = [X,V]f=[X, Y]y,

i.e. the value of [X, Y], on feC° (M) depends only on the germ of f at p. Thus, [X,Y] is a vector
field on M.

If X, Y, and f are smooth, then X f and Y f are smooth functions on M by Proposition 1.43. By
Proposition 1.43 again, Y (X f) and X (Y f) are also smooth functions on M. It follows that the
function [X,Y]f is smooth for every smooth function f on M. Thus, [X,Y] is a smooth vector



field on M by Proposition 1.43.

(d) We need to show that LHS of the identity is the zero map, i.e. the function obtained by applying
LHS to any smooth function f on M is zero. The first summand gives:

(X, Y], 2] f = (X, Y(Z]) = Z([X,Y]f) = (X(Y(Zf)-Y(X(2f)) = Z(X(Y [)=Y (X [))
=X(Y(Z)) -Y(X(2f)) - Z(X(Y ) + Z(Y (X /)).

Permuting X, Y, and Z cyclicly, we then obtain

[V, 2], X]f =Y (2(X ) = Z2(V(X)) = X(V(2f)) + X(2(Y))  and
2, X],Y|f=Z(X(Yf)-X(ZY[f)-Y(Z(Xf)+Y(X(Zf)).

The three expressions add up to zero.

Problem 2: Chapter 1, #22 (5pts)

Let ~(t) be an integral curve for a vector field X on M. Show that if 4/ (t)=0 for some t, then ~
18 a constant map.

Suppose v: (a,b) — M, v/ (to) =0 for some tg € (a,b), and ~(tp) =p. Since v is an integral curve
for X,
X(p) = X (v(to)) = '(to) = 0.
Let B: (a,b) — M be the curve defined by §(t)=p for all t€(a,b). Then,
B(ty) =p and B'(t)=0=X(p) =X (B() Vte (a,b).

We also have
vto)=p and (1) = X(v(t) Vi€ (a,b).

By the uniqueness theorem for first-order ODEs, or Theorem 1.48, 5=, i.e. v is a constant map.

Problem 3: Chapter 1, #17 (5pts)

Show that any smooth vector field on a compact manifold is complete.

Suppose M is a compact m-manifold, X is a smooth vector field on M, and ~: (a,b) — M is a
maximal integral curve for X. Thus, a<0 and b>0. We need to show that (a,b)=R.

Suppose beR. Choose a sequence t, € (a,b) converging to b. Since M is a compact, a subsequence
converges to a point p€ M. By (3) of Theorem 1.48, there exists e € (0, |a|) and a neighborhood U
of p in M such that the flow

(—€,6)xU — M, (t,q) — Xi(q),
is well-defined. Choose t, € (a,b) such that b—t, <e and y(t,)€U. Let

B:(—€,€) — M



be the integral curve for X such that 5(0)=+(¢,). Define

) (), if te(a,b);
ailatate) =M by alt)= {B(t—tn), if t€(ty—¢, thte).
Let 7(t) =~(t+ty) for te(—e,b—t,). Since

3(0)=8(0),  F()=X@H(®), and B'(t) =X (B(t)),

4= on (—¢,b—t,) by the uniqueness of integral curves. Thus, « is well-defined. Furthermore,

o(0) = {'y’,(t), if € (a,0) _ {X(y(t)), if € (a,) _ X(a(®),
B'(t—ty), ifte(tn—e, tn+e) X(B(t—tyn)), ifte(tn—e tnte)

i.e. a is an integral curve for X. Since t,+¢e>b and (4 =7, we conclude that « is an integral
curve for X extending . Thus, v is not maximal unless b=o0c. The proof that a =—oc0 is similar
(or apply the conclusion to the vector field —X).

Problem 4 (5pts)

Let V' be the vector field on R? given by

V(x7y7z):y%_x8y 82'

Ezxplicitly describe and sketch the flow of V.

The integral curves for this vector fields are the solutions of the system

PO =yt), YO =—a@), =1

The first pair of equations is independent of the third; its solutions are
(:L‘(t),y(t)) = (zo+iyo)e * € C.

The corresponding curve goes around a circle centered at the origin clockwise at the unit angular
speed. The solution of the third equation is z(t) =zp+t. Thus, the flow for X is given by

X;:R? — R3=CxR, Xt(x,y,z) = ((x—f—iy)e_it,z—i—t),

i.e. the flow rotates clockwise around the vertical axis at the unit angular speed and climbs up at
the unit angular speed (the vertical axis itself simply moves up).
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Problem 5 (10pts)

Suppose X and Y are smooth vector fields on a manifold M. Show that for every p € M and
feC>(M),
lim FY_s(X 4 (Ys(X:(p)))) — [(p)

s,t—0 st

=[X,Y],f €R.

Do not forget to explain why the limit exists.
Note: This means that the extent to which the flows {X;} of X and {Y;} of Y do not commute
(i.e. the rate of change in the “difference” between Y;0X; and X;0Yj) is measured by [X,Y].

By (d) of Theorem 1.48, we can choose a neighborhood U of p and €>0 such that the maps
(eo)xU — M, (2,9) — X:(q),  (—€&*xU— M, (w,z24q) — Yu(X:(q),
(—6,€)*xU — M, (v,w,2,q9) — X, (Yu(X:(q))), and
(—e,e)*xU — M, (u,v,w,zq) — YU(XW (Yw(Xz(q)))),
are defined and smooth. Define
K:(—e,e) —R and H:(—€,¢)>—R by
K(u,v,w,z) = f(Yu(Xv(Yw(Xz(p))))) — f(p) and H(s,t) = K(—s,—t,s,t).

Since K is a composition of smooth functions, K is smooth. Since H is a composition of smooth
functions, H is smooth. Furthermore,

X() ZYE) Zidx, Y_SoYt.;:idDomsy, X_tOXt :idDomtX - H(S,O) :H(O,t) =0

for all s and ¢t. Thus!, the limit in the statement of the problem exists and equals to the mixed
second partial derivative of H:

SO L)) = f0) . His,t) - H0,0) _ 9°H

s,6—30 st $,6—0 st -~ 0s0t10,0)

Lthis follows, for example, from Lemma 3.5 in Lecture Notes applied twice



On the other hand, by the Chain Rule,

O*H _ 82K’ 82K’ PK ’ N K ’
0s0tl00)  Oudvl0000 Oudzl(0,000 Jvowl(0000 Owdzl0000)

Note that
0’K g (0 0 0
oudv (0000 v <8uf(Y“(Xv(p))) u0> v=0 v (dX“(p)f(&LY“(X”(p)) u0>> v=0

=§&%@ﬂﬂmo:§ﬁwﬂ&@ﬂhg:ﬁwwm=&Wﬁ

Similarly,

O’K O’K *K
= X,(Yf), ‘ — Y, (Xf), ‘ -
Oudz ‘(070,0,0) (Y'f) Ov Ow 1(0,0,0,0) »(XF) Ow 02 1(0,0,0,0)
Putting these together, we conclude that

(VX (Ye(Xi(p)) — f(p)  9°H B _
s,llelgo st - 0s0tloo) Xp(V)) = Vp(X]) = X V]S

Xp(Y f).

Problem 6 (10pts)

Let U and V be the vector fields on R given by

Ules)=5r  and Vo) = Flo)s+ Glo )
where F and G are smooth functions on R3. Show that there exists a proper® foliation of R? by
2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the
tangent spaces of these submanifolds if and only if

F(x,y,z) = f(y, 2) eh(@y,2) and G(z,y,2) = g(y, 2) eh(@y,2)

for some f,g€C®(R?) and he C*®(R3) such that (f,g) does not vanish on R2.

If at every point of R? the vector fields U and V span the tangent space of a 2-dimensional
submanifold, then their span is two-dimensional, i.e. (F,G) does not vanish. If this is the case, by
Frobenius Theorem there exists an integral submanifold for the distribution D C TR? spanned by
U and V through every point of R3 if and only if the vector field
0 0

UV]|=F,— +Gy—

U, V] T oy + “ 0z
lies in the span of U and V over C*°(R3). This is the case if and only if there exists A € C*°(R?)
such that

[U, V] =V = F,=)F, G;=MG

= Flz,y2) = fly, )"0, Gla,y, 2) = gly, 2)e" ),

2in the sense of Definition 10.4 in Lecture Notes



where h € C*(R3) is such that h, =\ and f, g€ C°°(R?) are such that (f, g) does not vanish on R?
(so that V' does not vanish).

If the above is the case, the maximal connected integral submanifolds for the distribution D spanned
by U and V partition R3. We will show that all such submanifolds are embedded. Since e” does
not vanish, D is spanned by the vector fields

0

Uz,y,z) = 5

0 0
and W(x7y,z):f(yaz)aiy+g(yaz)a

Let : (a,b) — R? be a maximal integral curve for the vector field

W(y,z) = f(y, Z)aay + 9(y, z)%

Since (f, g) does not vanish on R? and +'(t) :W(V(t)) ~ is a maximal connected integral subman-
ifold for the distribution D on R? spanned by W. Furthermore,

Y=idxy: Rx(a,b) — R3=RxR?

is a maximal connected integral submanifold for D and every maximal connected submanifold for
D has this form. It is an integral submanifold for D because

0 0
dw‘(s,t)% = % X 0= U(d}(s,t)),
0

|, 5 = (0.7/(1) = (0.W((1)) = W (e(s.1)),

if (s,t) are the standard coordinates on R x (a,b). Since the maximal integral curves v for W
partition R?, the images of the maps idx~ partition R3. Thus, each map idx~y must be a maximal
connected submanifold for D. In the following paragraph, we show that every integral curve -y

for W must be embedded in R2. This implies that every maximal connected integral submanifold
id x v for D is embedded in R3.

Suppose v: (a,b) — R? is a maximal integral curve for W and to€(a,b). By Proposition 1.53, we
can choose a coordinate chart

o= (z1,22): (U,~(to)) — (R%,0)
and a neighborhood (¢, d) of ¢y in (a,b) such that

[-2,2]x[-2,2] Cpd), W= aa:gl

is a diffeomorphism. The middle condition implies that

Imy N ((—2,2)x(-2,2))

u’ and  ¥|q): (¢, d) — o1 (Ox(—2,2)) (1)

is a union of horizontal slices ¢~ ((—2,2)xy) with y€.5,, where S, is a subset of (—2,2). To show
that v is an embedding, we show that there exists ¢ >0 such that

S, N (—e€) = {0}.3

3In such a case, if (¢/,d’) C(c,d) is a basis element around to € (a, b), then

(¢, d)) = (v(c),2(d)) x0 =7 ((c,d) 0 ((7(c), v(d)) x (=€, €)),



Suppose not, i.e. there exists a sequence ¢, € (a,b) converging to either a or b such that y(t;) =0xyy,
with y, € Sy converging to 0 € R. By taking a subsequence and by symmetry, it is sufficient to
assume that t;, — b and yp €RT. We can then choose t1,ts € (tg,b) with t; <ts so that

o(v(t1)) = 0xy1, @(y(t2)) = 0xy2 s.t.
0<ya<y1 <2, (to,t1) Ny (e (0x(0,11))) =0, (t1,t2) Ny (o 1 (0x(0,31))) = 0.

In other words, t1 € (to,b) is the smallest number so that ¢(v(¢1)) €0x(0,2) and ¢ € (t1,b) is the
smallest number so that ¢(v(t2)) €0x (0, y).
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By the middle condition in eql,

=7 (Ixy)) € (t,t2),  th=7"" (¢ (=) xy2)) € (t,t2),

i.e. the flow is to the right in each slice as indicated in the diagram.

Since v is an integral curve, it has no self-intersections. Thus,

C =7((to, t1)) U™ (0x[0,21])

is a simple closed curve in R? since

(t07t1) n 7_1 ((P_1<OX (07y1))) = 0.

Let ¢ be the straight line segment between ¢((t;)) and ¢(v(t5)) in R2. Since the curve ¢~ (¢)
intersects the simple closed curve C exactly once, one of its endpoints, i.e. y(t]) or v(#,), must lie
inside of C and the other outside. Thus, the curve ((¢],t,)) must intersect C at least once. Since

7((t1,1)) N~ (0x[0,31]) € v (81, t2)) N~ (0x[0,31]) = 0
and y((t],t5))NC # 0, we conclude that
(81, t5)) Ny ((to, tr)) # 0.
However, this is impossible as well, since ¢; <t} and an integral curve cannot intersect itself.
Remark: The above argument implies that if D is any distribution on R?, every connected integral

submanifold for D is embedded. This is not the case for other manifolds, including R? and 7?2 (see
Chapter 1, #21, p51).

i.e. v takes open subsets of (a,b) to sets in Im~ that are open with respect to the topology Im~ inherits as a
subspace of R2. So, ~ is an embedding.



