MAT 531: Topology\&Geometry, II
 Spring 2011

Solutions to Problem Set 4

Problem 1: Chapter 1, \#13ad (10pts)

(a) Show that $[X, Y]$ is a smooth vector field on M for any two smooth vector fields X and Y on M.
(d) Show that [,] satisfies the Jacobi identity, i.e.

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for all smooth vector fields on X, Y, and Z on M.
(a) First, we need to see that for every $p \in M$ the map

$$
[X, Y]_{p}: C^{\infty}(M) \longrightarrow \mathbb{R}, \quad[X, Y]_{p}(f)=X_{p}(Y f)-Y_{p}(X f)
$$

is well-defined and is an element of $T_{p} M$, i.e. it is bilinear, satisfies the product rule, and its value depends only on the germ of f at p. Since X, Y, and f are smooth, $Y f$ and $X f$ are smooth functions on M by Proposition 1.43. Since X_{p} and Y_{p} are linear functionals on $C^{\infty}(M)$,

$$
X_{p}(Y f), Y_{p}(X f) \in \mathbb{R} \quad \Longrightarrow \quad[X, Y]_{p}(f) \in \mathbb{R}
$$

i.e. the map $[X, Y]_{p}$ is well-defined. Since it is a composition of linear maps, $[X, Y]_{p}$ is a linear map as well. Furthermore, if $f, g \in C^{\infty}(M)$,

$$
\begin{aligned}
{[X, Y]_{p}(f g)=} & X_{p}(Y(f g))-Y_{p}(X(f g))=X_{p}(f Y(g)+g Y(f))-Y_{p}(f X(g)+g X(f)) \\
= & \left(f(p) X_{p}(Y(g))+Y_{p}(g) X_{p}(f)+g(p) X_{p}(Y(f))+Y_{p}(f) X_{p}(g)\right) \\
& \quad-\left(f(p) Y_{p}(X(g))+X_{p}(g) Y_{p}(f)+g(p) Y_{p}(X(f))+X_{p}(f) Y_{p}(g)\right) \\
= & f(p)\left(X_{p}(Y(g))-Y_{p}(X(g))\right)+g(p)\left(X_{p}(Y(f))-Y_{p}(X(f))\right) \\
= & f(p)[X, Y]_{p}(g)+g(p)[X, Y]_{p}(g),
\end{aligned}
$$

i.e. the linear map $[X, Y]_{p}$ satisfies the product rule. Finally, if U is a neighborhood of p in M and $\left.f\right|_{U}=\left.g\right|_{U}$, then

$$
\left.(X f)\right|_{U}=\left.(X g)\right|_{U} \quad \text { and }\left.\quad(Y f)\right|_{U}=\left.(Y g)\right|_{U},
$$

since for all $q \in U$ the real numbers $X_{q} f$ and $X_{q} g$ depend only on the germs of f and g at q. Since the values of X_{p} and Y_{p} on $C^{\infty}(M)$ depend only on the germs of functions at q, we conclude that

$$
Y_{p}(X f)=Y_{p}(X g) \quad \text { and } \quad X_{p}(Y f)=X_{p}(Y g) \quad \Longrightarrow \quad[X, Y]_{p} f=[X, Y]_{p} g
$$

i.e. the value of $[X, Y]_{p}$ on $f \in C^{\infty}(M)$ depends only on the germ of f at p. Thus, $[X, Y]$ is a vector field on M.

If X, Y, and f are smooth, then $X f$ and $Y f$ are smooth functions on M by Proposition 1.43. By Proposition 1.43 again, $Y(X f)$ and $X(Y f)$ are also smooth functions on M. It follows that the function $[X, Y] f$ is smooth for every smooth function f on M. Thus, $[X, Y]$ is a smooth vector
field on M by Proposition 1.43.
(d) We need to show that LHS of the identity is the zero map, i.e. the function obtained by applying LHS to any smooth function f on M is zero. The first summand gives:

$$
\begin{aligned}
{[[X, Y], Z] f } & =[X, Y](Z f)-Z([X, Y] f)=(X(Y(Z f))-Y(X(Z f)))-Z(X(Y f)-Y(X f)) \\
& =X(Y(Z f))-Y(X(Z f))-Z(X(Y f))+Z(Y(X f)) .
\end{aligned}
$$

Permuting X, Y, and Z cyclicly, we then obtain

$$
\begin{aligned}
& {[[Y, Z], X] f=Y(Z(X f))-Z(Y(X f))-X(Y(Z f))+X(Z(Y f)) \quad \text { and }} \\
& {[[Z, X], Y] f=Z(X(Y f))-X(Z(Y f))-Y(Z(X f))+Y(X(Z f))}
\end{aligned}
$$

The three expressions add up to zero.

Problem 2: Chapter 1, \#22 (5pts)

Let $\gamma(t)$ be an integral curve for a vector field X on M. Show that if $\gamma^{\prime}(t)=0$ for some t, then γ is a constant map.

Suppose $\gamma:(a, b) \longrightarrow M, \gamma^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in(a, b)$, and $\gamma\left(t_{0}\right)=p$. Since γ is an integral curve for X,

$$
X(p)=X\left(\gamma\left(t_{0}\right)\right)=\gamma^{\prime}\left(t_{0}\right)=0
$$

Let $\beta:(a, b) \longrightarrow M$ be the curve defined by $\beta(t)=p$ for all $t \in(a, b)$. Then,

$$
\beta\left(t_{0}\right)=p \quad \text { and } \quad \beta^{\prime}(t)=0=X(p)=X(\beta(t)) \quad \forall t \in(a, b) .
$$

We also have

$$
\gamma\left(t_{0}\right)=p \quad \text { and } \quad \gamma^{\prime}(t)=X(\gamma(t)) \quad \forall t \in(a, b)
$$

By the uniqueness theorem for first-order ODEs, or Theorem 1.48, $\beta=\gamma$, i.e. γ is a constant map.

Problem 3: Chapter 1, \#17 (5pts)

Show that any smooth vector field on a compact manifold is complete.
Suppose M is a compact m-manifold, X is a smooth vector field on M, and $\gamma:(a, b) \longrightarrow M$ is a maximal integral curve for X. Thus, $a<0$ and $b>0$. We need to show that $(a, b)=\mathbb{R}$.

Suppose $b \in \mathbb{R}$. Choose a sequence $t_{n} \in(a, b)$ converging to b. Since M is a compact, a subsequence converges to a point $p \in M$. By (3) of Theorem 1.48, there exists $\epsilon \in(0,|a|)$ and a neighborhood U of p in M such that the flow

$$
(-\epsilon, \epsilon) \times U \longrightarrow M, \quad(t, q) \longrightarrow X_{t}(q),
$$

is well-defined. Choose $t_{n} \in(a, b)$ such that $b-t_{n}<\epsilon$ and $\gamma\left(t_{n}\right) \in U$. Let

$$
\beta:(-\epsilon, \epsilon) \longrightarrow M
$$

be the integral curve for X such that $\beta(0)=\gamma\left(t_{n}\right)$. Define

$$
\alpha:\left(a, t_{n}+\epsilon\right) \longrightarrow M \quad \text { by } \quad \alpha(t)= \begin{cases}\gamma(t), & \text { if } t \in(a, b) ; \\ \beta\left(t-t_{n}\right), & \text { if } t \in\left(t_{n}-\epsilon, t_{n}+\epsilon\right) .\end{cases}
$$

Let $\tilde{\gamma}(t)=\gamma\left(t+t_{n}\right)$ for $t \in\left(-\epsilon, b-t_{n}\right)$. Since

$$
\tilde{\gamma}(0)=\beta(0), \quad \tilde{\gamma}^{\prime}(t)=X(\tilde{\gamma}(t)), \quad \text { and } \quad \beta^{\prime}(t)=X(\beta(t)),
$$

$\tilde{\gamma}=\beta$ on $\left(-\epsilon, b-t_{n}\right)$ by the uniqueness of integral curves. Thus, α is well-defined. Furthermore,

$$
\alpha^{\prime}(t)=\left\{\begin{array}{ll}
\gamma^{\prime}(t), & \text { if } t \in(a, b) \\
\beta^{\prime}\left(t-t_{n}\right), & \text { if } t \in\left(t_{n}-\epsilon, t_{n}+\epsilon\right)
\end{array}=\left\{\begin{array}{ll}
X(\gamma(t)), & \text { if } t \in(a, b) \\
X\left(\beta\left(t-t_{n}\right)\right), & \text { if } t \in\left(t_{n}-\epsilon, t_{n}+\epsilon\right)
\end{array}=X(\alpha(t)),\right.\right.
$$

i.e. α is an integral curve for X. Since $t_{n}+\epsilon>b$ and $\left.\alpha\right|_{(a, b)}=\gamma$, we conclude that α is an integral curve for X extending γ. Thus, γ is not maximal unless $b=\infty$. The proof that $a=-\infty$ is similar (or apply the conclusion to the vector field $-X$).

Problem 4 (5pts)

Let V be the vector field on \mathbb{R}^{3} given by

$$
V(x, y, z)=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}
$$

Explicitly describe and sketch the flow of V.
The integral curves for this vector fields are the solutions of the system

$$
x^{\prime}(t)=y(t), \quad y^{\prime}(t)=-x(t), \quad z^{\prime}(t)=1 .
$$

The first pair of equations is independent of the third; its solutions are

$$
(x(t), y(t))=\left(x_{0}+\mathfrak{i} y_{0}\right) e^{-\mathfrak{i} t} \in \mathbb{C} .
$$

The corresponding curve goes around a circle centered at the origin clockwise at the unit angular speed. The solution of the third equation is $z(t)=z_{0}+t$. Thus, the flow for X is given by

$$
X_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}=\mathbb{C} \times \mathbb{R}, \quad X_{t}(x, y, z)=\left((x+\mathfrak{i} y) e^{-\mathfrak{i} t}, z+t\right)
$$

i.e. the flow rotates clockwise around the vertical axis at the unit angular speed and climbs up at the unit angular speed (the vertical axis itself simply moves up).

Problem 5 (10pts)

Suppose X and Y are smooth vector fields on a manifold M. Show that for every $p \in M$ and $f \in C^{\infty}(M)$,

$$
\lim _{s, t \longrightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=[X, Y]_{p} f \in \mathbb{R} .
$$

Do not forget to explain why the limit exists.
Note: This means that the extent to which the flows $\left\{X_{t}\right\}$ of X and $\left\{Y_{s}\right\}$ of Y do not commute (i.e. the rate of change in the "difference" between $Y_{s} \circ X_{t}$ and $X_{t} \circ Y_{s}$) is measured by $[X, Y]$.

By (d) of Theorem 1.48, we can choose a neighborhood U of p and $\epsilon>0$ such that the maps

$$
\begin{gathered}
(-\epsilon, \epsilon) \times U \longrightarrow M, \quad(z, q) \longrightarrow X_{z}(q), \quad(-\epsilon, \epsilon)^{2} \times U \longrightarrow M, \quad(w, z, q) \longrightarrow Y_{w}\left(X_{z}(q)\right), \\
(-\epsilon, \epsilon)^{3} \times U \longrightarrow M, \quad(v, w, z, q) \longrightarrow X_{v}\left(Y_{w}\left(X_{z}(q)\right)\right), \quad \text { and } \\
(-\epsilon, \epsilon)^{4} \times U \longrightarrow M, \quad(u, v, w, z, q) \longrightarrow Y_{u}\left(X_{v}\left(Y_{w}\left(X_{z}(q)\right)\right)\right),
\end{gathered}
$$

are defined and smooth. Define

$$
\begin{gathered}
K:(-\epsilon, \epsilon)^{4} \longrightarrow \mathbb{R} \quad \text { and } \quad H:(-\epsilon, \epsilon)^{2} \longrightarrow \mathbb{R} \quad \text { by } \\
K(u, v, w, z)=f\left(Y_{u}\left(X_{v}\left(Y_{w}\left(X_{z}(p)\right)\right)\right)\right)-f(p) \quad \text { and } \quad H(s, t)=K(-s,-t, s, t) .
\end{gathered}
$$

Since K is a composition of smooth functions, K is smooth. Since H is a composition of smooth functions, H is smooth. Furthermore,

$$
X_{0}=Y_{0}=\operatorname{id}_{X}, \quad Y_{-s} \circ Y_{s}=\operatorname{id}_{\operatorname{Dom}_{s} Y}, \quad X_{-t} \circ X_{t}=\operatorname{id}_{\operatorname{Dom}_{t} X} \quad \Longrightarrow \quad H(s, 0)=H(0, t)=0
$$

for all s and t. Thus ${ }^{1}$, the limit in the statement of the problem exists and equals to the mixed second partial derivative of H :

$$
\lim _{s, t \longrightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=\lim _{s, t \longrightarrow 0} \frac{H(s, t)-H(0,0)}{s t}=\left.\frac{\partial^{2} H}{\partial s \partial t}\right|_{(0,0)} .
$$

[^0]On the other hand, by the Chain Rule,

$$
\left.\frac{\partial^{2} H}{\partial s \partial t}\right|_{(0,0)}=\left.\frac{\partial^{2} K}{\partial u \partial v}\right|_{(0,0,0,0)}-\left.\frac{\partial^{2} K}{\partial u \partial z}\right|_{(0,0,0,0)}-\left.\frac{\partial^{2} K}{\partial v \partial w}\right|_{(0,0,0,0)}+\left.\frac{\partial^{2} K}{\partial w \partial z}\right|_{(0,0,0,0)}
$$

Note that

$$
\begin{aligned}
\left.\frac{\partial^{2} K}{\partial u \partial v}\right|_{(0,0,0,0)} & =\left.\frac{\partial}{\partial v}\left(\left.\frac{\partial}{\partial u} f\left(Y_{u}\left(X_{v}(p)\right)\right)\right|_{u=0}\right)\right|_{v=0}=\left.\frac{\partial}{\partial v}\left(\mathrm{~d}_{X_{v}(p)} f\left(\left.\frac{\partial}{\partial u} Y_{u}\left(X_{v}(p)\right)\right|_{u=0}\right)\right)\right|_{v=0} \\
& =\left.\frac{\partial}{\partial v}\left(\mathrm{~d}_{X_{v}(p)} f(Y)\right)\right|_{v=0}=\left.\frac{\partial}{\partial v}\left(\{Y f\}\left(X_{v}(p)\right)\right)\right|_{v=0}=\mathrm{d}_{p}\{Y f\}(X)=X_{p}(Y f)
\end{aligned}
$$

Similarly,

$$
\left.\frac{\partial^{2} K}{\partial u \partial z}\right|_{(0,0,0,0)}=X_{p}(Y f),\left.\quad \frac{\partial^{2} K}{\partial v \partial w}\right|_{(0,0,0,0)}=Y_{p}(X f),\left.\quad \frac{\partial^{2} K}{\partial w \partial z}\right|_{(0,0,0,0)}=X_{p}(Y f)
$$

Putting these together, we conclude that

$$
\lim _{s, t \rightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=\left.\frac{\partial^{2} H}{\partial s \partial t}\right|_{(0,0)}=X_{p}(Y f)-Y_{p}(X f)=[X, Y]_{p} f .
$$

Problem 6 (10pts)

Let U and V be the vector fields on \mathbb{R}^{3} given by

$$
U(x, y, z)=\frac{\partial}{\partial x} \quad \text { and } \quad V(x, y, z)=F(x, y, z) \frac{\partial}{\partial y}+G(x, y, z) \frac{\partial}{\partial z}
$$

where F and G are smooth functions on \mathbb{R}^{3}. Show that there exists a proper ${ }^{2}$ foliation of \mathbb{R}^{3} by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the tangent spaces of these submanifolds if and only if

$$
F(x, y, z)=f(y, z) e^{h(x, y, z)} \quad \text { and } \quad G(x, y, z)=g(y, z) e^{h(x, y, z)}
$$

for some $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that (f, g) does not vanish on \mathbb{R}^{2}.
If at every point of \mathbb{R}^{3} the vector fields U and V span the tangent space of a 2-dimensional submanifold, then their span is two-dimensional, i.e. (F, G) does not vanish. If this is the case, by Frobenius Theorem there exists an integral submanifold for the distribution $\mathcal{D} \subset T \mathbb{R}^{3}$ spanned by U and V through every point of \mathbb{R}^{3} if and only if the vector field

$$
[U, V]=F_{x} \frac{\partial}{\partial y}+G_{x} \frac{\partial}{\partial z}
$$

lies in the span of U and V over $C^{\infty}\left(\mathbb{R}^{3}\right)$. This is the case if and only if there exists $\lambda \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{aligned}
{[U, V]=\lambda V } & \Longleftrightarrow \quad F_{x}=\lambda F, \quad G_{x}=\lambda G \\
& \Longleftrightarrow \quad F(x, y, z)=f(y, z) e^{h(x, y, z)}, \quad G(x, y, z)=g(y, z) e^{h(x, y, z)}
\end{aligned}
$$

[^1]where $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ is such that $h_{x}=\lambda$ and $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ are such that (f, g) does not vanish on \mathbb{R}^{2} (so that V does not vanish).

If the above is the case, the maximal connected integral submanifolds for the distribution \mathcal{D} spanned by U and V partition \mathbb{R}^{3}. We will show that all such submanifolds are embedded. Since e^{h} does not vanish, \mathcal{D} is spanned by the vector fields

$$
U(x, y, z)=\frac{\partial}{\partial x} \quad \text { and } \quad W(x, y, z)=f(y, z) \frac{\partial}{\partial y}+g(y, z) \frac{\partial}{\partial z} .
$$

Let $\gamma:(a, b) \longrightarrow \mathbb{R}^{2}$ be a maximal integral curve for the vector field

$$
\widetilde{W}(y, z)=f(y, z) \frac{\partial}{\partial y}+g(y, z) \frac{\partial}{\partial z} .
$$

Since (f, g) does not vanish on \mathbb{R}^{2} and $\gamma^{\prime}(t)=\widetilde{W}(\gamma(t)) \gamma$ is a maximal connected integral submanifold for the distribution $\tilde{\mathcal{D}}$ on \mathbb{R}^{2} spanned by \widetilde{W}. Furthermore,

$$
\psi=\operatorname{id} \times \gamma: \mathbb{R} \times(a, b) \longrightarrow \mathbb{R}^{3}=\mathbb{R} \times \mathbb{R}^{2}
$$

is a maximal connected integral submanifold for \mathcal{D} and every maximal connected submanifold for \mathcal{D} has this form. It is an integral submanifold for \mathcal{D} because

$$
\begin{aligned}
& \left.d \psi\right|_{(s, t)} \frac{\partial}{\partial s}=\frac{\partial}{\partial s} \times 0=U(\psi(s, t)) \\
& \left.d \psi\right|_{(s, t)} \frac{\partial}{\partial t}=\left(0, \gamma^{\prime}(t)\right)=(0, \widetilde{W}(\gamma(t)))=W(\psi(s, t))
\end{aligned}
$$

if (s, t) are the standard coordinates on $\mathbb{R} \times(a, b)$. Since the maximal integral curves γ for W partition \mathbb{R}^{2}, the images of the maps id $\times \gamma$ partition \mathbb{R}^{3}. Thus, each map id $\times \gamma$ must be a maximal connected submanifold for \mathcal{D}. In the following paragraph, we show that every integral curve γ for \widetilde{W} must be embedded in \mathbb{R}^{2}. This implies that every maximal connected integral submanifold $\operatorname{id} \times \gamma$ for \mathcal{D} is embedded in \mathbb{R}^{3}.

Suppose $\gamma:(a, b) \longrightarrow \mathbb{R}^{2}$ is a maximal integral curve for \widetilde{W} and $t_{0} \in(a, b)$. By Proposition 1.53, we can choose a coordinate chart

$$
\varphi=\left(x_{1}, x_{2}\right):\left(\mathcal{U}, \gamma\left(t_{0}\right)\right) \longrightarrow\left(\mathbb{R}^{2}, 0\right)
$$

and a neighborhood (c, d) of t_{0} in (a, b) such that

$$
\begin{equation*}
[-2,2] \times[-2,2] \subset \varphi(\mathcal{U}),\left.\quad W\right|_{\mathcal{U}}=\left.\frac{\partial}{\partial x_{1}}\right|_{\mathcal{U}}, \quad \text { and }\left.\quad \gamma\right|_{(c, d)}:(c, d) \longrightarrow \varphi^{-1}(0 \times(-2,2)) \tag{1}
\end{equation*}
$$

is a diffeomorphism. The middle condition implies that

$$
\operatorname{Im} \gamma \cap \varphi^{-1}((-2,2) \times(-2,2))
$$

is a union of horizontal slices $\varphi^{-1}((-2,2) \times y)$ with $y \in S_{\gamma}$, where S_{γ} is a subset of $(-2,2)$. To show that γ is an embedding, we show that there exists $\epsilon>0$ such that

$$
S_{\gamma} \cap(-\epsilon, \epsilon)=\{0\} .^{3}
$$

[^2]Suppose not, i.e. there exists a sequence $t_{k} \in(a, b)$ converging to either a or b such that $\gamma\left(t_{k}\right)=0 \times y_{k}$ with $y_{k} \in S_{\gamma}$ converging to $0 \in \mathbb{R}$. By taking a subsequence and by symmetry, it is sufficient to assume that $t_{k} \longrightarrow b$ and $y_{k} \in \mathbb{R}^{+}$. We can then choose $t_{1}, t_{2} \in\left(t_{0}, b\right)$ with $t_{1}<t_{2}$ so that

$$
\begin{gathered}
\varphi\left(\gamma\left(t_{1}\right)\right)=0 \times y_{1}, \quad \varphi\left(\gamma\left(t_{2}\right)\right)=0 \times y_{2} \quad \text { s.t. } \\
0<y_{2}<y_{1}<2, \quad\left(t_{0}, t_{1}\right) \cap \gamma^{-1}\left(\varphi^{-1}\left(0 \times\left(0, y_{1}\right)\right)\right)=\emptyset, \quad\left(t_{1}, t_{2}\right) \cap \gamma^{-1}\left(\varphi^{-1}\left(0 \times\left(0, y_{1}\right)\right)\right)=\emptyset .
\end{gathered}
$$

In other words, $t_{1} \in\left(t_{0}, b\right)$ is the smallest number so that $\varphi\left(\gamma\left(t_{1}\right)\right) \in 0 \times(0,2)$ and $t_{2} \in\left(t_{1}, b\right)$ is the smallest number so that $\varphi\left(\gamma\left(t_{2}\right)\right) \in 0 \times\left(0, y_{1}\right)$.

By the middle condition in eq1,

$$
t_{1}^{\prime} \equiv \gamma^{-1}\left(\varphi^{-1}\left(1 \times y_{1}\right)\right) \in\left(t_{1}, t_{2}\right), \quad t_{2}^{\prime} \equiv \gamma^{-1}\left(\varphi^{-1}\left((-1) \times y_{2}\right)\right) \in\left(t_{1}^{\prime}, t_{2}\right)
$$

i.e. the flow is to the right in each slice as indicated in the diagram.

Since γ is an integral curve, it has no self-intersections. Thus,

$$
\mathcal{C} \equiv \gamma\left(\left(t_{0}, t_{1}\right)\right) \cup \varphi^{-1}\left(0 \times\left[0, y_{1}\right]\right)
$$

is a simple closed curve in \mathbb{R}^{2} since

$$
\left(t_{0}, t_{1}\right) \cap \gamma^{-1}\left(\varphi^{-1}\left(0 \times\left(0, y_{1}\right)\right)\right)=\emptyset .
$$

Let ℓ be the straight line segment between $\varphi\left(\gamma\left(t_{1}^{\prime}\right)\right)$ and $\varphi\left(\gamma\left(t_{2}^{\prime}\right)\right)$ in \mathbb{R}^{2}. Since the curve $\varphi^{-1}(\ell)$ intersects the simple closed curve \mathcal{C} exactly once, one of its endpoints, i.e. $\gamma\left(t_{1}^{\prime}\right)$ or $\gamma\left(t_{2}^{\prime}\right)$, must lie inside of \mathcal{C} and the other outside. Thus, the curve $\gamma\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)$ must intersect \mathcal{C} at least once. Since

$$
\gamma\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right) \cap \varphi^{-1}\left(0 \times\left[0, y_{1}\right]\right) \subset \gamma\left(\left(t_{1}, t_{2}\right)\right) \cap \varphi^{-1}\left(0 \times\left[0, y_{1}\right]\right)=\emptyset
$$

and $\gamma\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right) \cap \mathcal{C} \neq \emptyset$, we conclude that

$$
\gamma\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right) \cap \gamma\left(\left(t_{0}, t_{1}\right)\right) \neq \emptyset .
$$

However, this is impossible as well, since $t_{1}<t_{1}^{\prime}$ and an integral curve cannot intersect itself.
Remark: The above argument implies that if \mathcal{D} is any distribution on \mathbb{R}^{2}, every connected integral submanifold for \mathcal{D} is embedded. This is not the case for other manifolds, including \mathbb{R}^{3} and T^{2} (see Chapter 1, \#21, p51).

[^3]
[^0]: ${ }^{1}$ this follows, for example, from Lemma 3.5 in Lecture Notes applied twice

[^1]: ${ }^{2}$ in the sense of Definition 10.4 in Lecture Notes

[^2]: ${ }^{3}$ In such a case, if $\left(c^{\prime}, d^{\prime}\right) \subset(c, d)$ is a basis element around $t_{0} \in(a, b)$, then

 $$
 \gamma\left(\left(c^{\prime}, d^{\prime}\right)\right)=\left(\gamma\left(c^{\prime}\right), \gamma\left(d^{\prime}\right)\right) \times 0=\gamma\left(\left(c^{\prime}, d^{\prime}\right)\right) \cap\left(\left(\gamma\left(c^{\prime}\right), \gamma\left(d^{\prime}\right)\right) \times(-\epsilon, \epsilon)\right)
 $$

[^3]: i.e. γ takes open subsets of (a, b) to sets $\operatorname{in} \operatorname{Im} \gamma$ that are open with respect to the topology $\operatorname{Im} \gamma$ inherits as a subspace of \mathbb{R}^{2}. So, γ is an embedding.

