MAT 531: Topology\&Geometry, II
 Spring 2011

Problem Set 4
Due on March, 3/03, in class

1. Chapter 1, \#13ad (p51)
2. Chapter 1, \#22 (p51). Hint: this is 2-3 lines
3. Chapter 1, \#17 (p51). Hint: only slightly longer
4. Let V be the vector field on \mathbb{R}^{3} given by

$$
V(x, y, z)=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z} .
$$

Explicitly describe and sketch the flow of V. Hint: an easy MAT 303/305 problem
5. Suppose X and Y are smooth vector fields on a manifold M. Show that for every $p \in M$ and $f \in C^{\infty}(M)$,

$$
\lim _{s, t \longrightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=[X, Y]_{p} f \in \mathbb{R} .
$$

Do not forget to explain why the limit exists.
Note: This means that the extent to which the flows $\left\{X_{t}\right\}$ of X and $\left\{Y_{s}\right\}$ of Y do not commute (i.e. the rate of change in the "difference" between $Y_{s} \circ X_{t}$ and $X_{t} \circ Y_{s}$) is measured by $[X, Y]$.
6. Let U and V be the vector fields on \mathbb{R}^{3} given by

$$
U(x, y, z)=\frac{\partial}{\partial x} \quad \text { and } \quad V(x, y, z)=F(x, y, z) \frac{\partial}{\partial y}+G(x, y, z) \frac{\partial}{\partial z}
$$

where F and G are smooth functions on \mathbb{R}^{3}. Show that there exists a proper ${ }^{1}$ foliation of \mathbb{R}^{3} by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the tangent spaces of these submanifolds if and only if

$$
F(x, y, z)=f(y, z) e^{h(x, y, z)} \quad \text { and } \quad G(x, y, z)=g(y, z) e^{h(x, y, z)}
$$

for some $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that (f, g) does not vanish on \mathbb{R}^{2}.

[^0]
[^0]: ${ }^{1}$ in the sense of Definition 10.4 in Lecture Notes

