MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 3

Problem 1: Chapter 1, \#5 (10pts)
If (M, \mathcal{F}) is a smooth n-manifold, let

$$
T M=\bigsqcup_{m \in M} T_{m} M \quad \text { and } \quad \pi: T M \longrightarrow M, \quad \pi(v)=m \quad \text { if } v \in T_{m} M
$$

If $(\mathcal{U}, \varphi) \in \mathcal{F}$ and $\varphi=\left(x_{1}, \ldots, x_{n}\right)$, define

$$
\tilde{\varphi}: \pi^{-1}(\mathcal{U}) \longrightarrow \mathbb{R}^{2 n} \quad \text { by } \quad \tilde{\varphi}(v)=\left(\varphi(\pi(v)), v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) .
$$

Show that
(a) for all $(\mathcal{U}, \varphi),(V, \psi) \in \mathcal{F}, \tilde{\psi} \circ \tilde{\varphi}^{-1}$ is smooth;
(b) the collection

$$
\mathcal{B} \equiv\left\{\tilde{\varphi}^{-1}(W): W \subset \mathbb{R}^{2 n} \text { open, }(\mathcal{U}, \varphi) \in \mathcal{F}\right\}
$$

is basis for a topology on TM in which TM is a topological 2n-manifold;
(c) the collection

$$
\tilde{\mathcal{F}}_{0}=\left\{\left(\pi^{-1}(\mathcal{U}), \tilde{\varphi}\right):(\mathcal{U}, \varphi) \in \mathcal{F}\right\}
$$

induces a differentiable structure $\tilde{\mathcal{F}}$ on $T M$.
(a) Suppose $\varphi=\left(x_{1}, \ldots, x_{n}\right)$ and $\psi=\left(y_{1}, \ldots, y_{n}\right)$. By 1.20b, with i replaced by j,

$$
v\left(y_{i}\right)=\left\{\left.\sum_{j=1}^{n} v\left(x_{j}\right) \frac{\partial}{\partial x_{j}}\right|_{m}\right\}\left(y_{i}\right)=\sum_{j=1}^{n}\left(\frac{\partial y_{i}}{\partial x_{j}}\right) v\left(x_{j}\right) .
$$

Thus, the overlap map

$$
\begin{gathered}
\tilde{\psi} \circ \tilde{\varphi}^{-1}: \tilde{\varphi}\left(\pi^{-1}(\mathcal{U}) \cap \pi^{-1}(V)\right) \longrightarrow \tilde{\psi}\left(\pi^{-1}(\mathcal{U}) \cap \pi^{-1}(V)\right) \\
\mathbb{R}^{2 n}-\tilde{\psi} \circ \tilde{\varphi}^{-1} \\
\pi^{-1}(\mathcal{U} \cap V)
\end{gathered}
$$

is given by

$$
\tilde{\psi} \circ \tilde{\varphi}^{-1}: \varphi(\mathcal{U} \cap V) \times \mathbb{R}^{n} \longrightarrow \psi(\mathcal{U} \cap V) \times \mathbb{R}^{n}, \quad \tilde{\psi} \circ \tilde{\varphi}^{-1}(p, w)=\left(\psi \circ \varphi^{-1}(p),\left.\mathcal{J}\left(\psi \circ \varphi^{-1}\right)\right|_{p} w\right),
$$

where

$$
\left.\mathcal{J}\left(\psi \circ \varphi^{-1}\right)\right|_{p}=\left.\left(\frac{\partial y_{i}}{\partial x_{j}}\right)_{i, j=1, \ldots, n}\right|_{p}
$$

is the Jacobian (the matrix of partial derivatives) of $\psi \circ \varphi^{-1}$ at p. Since $(\mathcal{U}, \varphi),(V, \psi) \in \mathcal{F}$, the maps

$$
\psi \circ \varphi^{-1}: \varphi(\mathcal{U} \cap V) \longrightarrow \mathbb{R}^{n} \quad \text { and } \quad \mathcal{J}\left(\psi \circ \varphi^{-1}\right): \varphi(\mathcal{U} \cap V) \longrightarrow \operatorname{Mat}_{n} \mathbb{R}=\mathbb{R}^{n^{2}}
$$

are smooth. Since the multiplication map is smooth, so is the map

$$
\varphi(\mathcal{U} \cap V) \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n},\left.\quad(p, w) \longrightarrow \mathcal{J}\left(\psi \circ \varphi^{-1}\right)\right|_{p} w
$$

Since both "coordinate" functions of the overlap map $\tilde{\psi} \circ \tilde{\varphi}^{-1}$ are smooth, the map $\tilde{\psi} \circ \tilde{\varphi}^{-1}$ itself is smooth as well.
(b-i) We begin by showing that \mathcal{B} covers $T M$. Since \mathcal{F} is a differentiable structure on M,

$$
T M=\pi^{-1}(M)=\pi^{-1}\left(\bigcup_{(\mathcal{U}, \varphi) \in \mathcal{F}} \mathcal{U}\right)=\bigcup_{(\mathcal{U}, \varphi) \in \mathcal{F}} \pi^{-1}(\mathcal{U})=\bigcup_{(\mathcal{U}, \varphi)} \tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \subset \bigcup_{V \in \mathcal{B}} V .
$$

Furthermore, if $(\mathcal{U}, \varphi),(V, \psi) \in \mathcal{F}$ and W, W^{\prime} are open subsets of $\mathbb{R}^{2 n}$, then

$$
\begin{aligned}
\tilde{\varphi}^{-1}(W) \cap \tilde{\psi}^{-1}\left(W^{\prime}\right) & =\tilde{\varphi}^{-1}(W) \cap \tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \cap \tilde{\psi}^{-1}\left(W^{\prime}\right)=\tilde{\varphi}^{-1}(W) \cap \tilde{\varphi}^{-1}\left(\tilde{\varphi}\left(\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \cap \tilde{\psi}^{-1}\left(W^{\prime}\right)\right)\right) \\
& =\tilde{\varphi}^{-1}\left(W \cap \tilde{\varphi}\left(\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \cap \tilde{\psi}^{-1}\left(W^{\prime}\right)\right)\right)=\tilde{\varphi}^{-1}\left(W \cap \tilde{\varphi}\left(\tilde{\psi}^{-1}\left(W^{\prime}\right)\right) \in \mathcal{B},\right.
\end{aligned}
$$

since $\tilde{\varphi}\left(\tilde{\psi}^{-1}\left(W^{\prime}\right)\right) \subset \mathbb{R}^{2 n}$ is open (because by part (a), $\tilde{\psi} \circ \tilde{\varphi}^{-1}$ is smooth and thus continuous). We conclude that \mathcal{B} is a basis for a topology on $T M$.
(b-ii) We next show that $T M$ is Hausdorff in this topology. Suppose $v, w \in T M$ and $v \neq w$. If $\pi(v)=\pi(w)$, choose $(\mathcal{U}, \varphi) \in \mathcal{F}$ such that $\pi(v) \in \mathcal{U}$. Since the map $\tilde{\varphi}$ is injective, $\tilde{\varphi}(v) \neq \tilde{\varphi}(w) \in \mathbb{R}^{2 n}$. If V and W are disjoint open subsets of $\mathbb{R}^{2 n}$ (which is Hausdorff) containing $\tilde{\varphi}(v)$ and $\tilde{\varphi}(w)$, respectively, then

$$
\tilde{\varphi}^{-1}(V), \tilde{\varphi}^{-1}(W) \in \mathcal{B}
$$

are disjoint open subsets of $T M$ containing v and w, respectively. On the other hand, suppose $\pi(v) \neq \pi(w)$. Since M is Hausdorff, there exist disjoint open subsets V and W of M containing $\pi(v)$ and $\pi(w)$. Note that since \mathcal{F} is maximal with respect to the smooth-overlap condition, if $(\mathcal{U}, \varphi) \in \mathcal{F}$, then $\left(\mathcal{U}^{\prime},\left.\varphi\right|_{\mathcal{U}^{\prime}}\right) \in \mathcal{F}$ for every open subset $\mathcal{U}^{\prime} \subset \mathcal{U}$. Thus, there exist $\left(V^{\prime}, \varphi\right),\left(W^{\prime}, \psi\right) \in \mathcal{F}$ such that

$$
\pi(v) \in V^{\prime} \subset V, \quad \pi(w) \in W^{\prime} \subset W \quad \Longrightarrow \quad v \in \pi^{-1}\left(V^{\prime}\right)=\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right), \quad w \in \pi^{-1}\left(W^{\prime}\right)=\tilde{\psi}^{-1}\left(\mathbb{R}^{2 n}\right)
$$

Thus, $\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right), \tilde{\psi}^{-1}\left(\mathbb{R}^{2 n}\right) \in \mathcal{B}$ are are disjoint open subsets of $T M$ containing v and w, respectively.
(b-iii) If $(\mathcal{U}, \varphi) \in \mathcal{F}$, the map

$$
\tilde{\varphi}: \pi^{-1}(\mathcal{U})=\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \longrightarrow \varphi(\mathcal{U}) \times \mathbb{R}^{n}
$$

is continuous, as $\tilde{\varphi}^{-1}(W) \in \mathcal{B}$ for all $W \subset \mathbb{R}^{n}$ open. Furthermore, if $W \subset \mathbb{R}^{2 n}$ is open, then

$$
\tilde{\varphi}\left(\tilde{\varphi}^{-1}(W)\right)=W \cap\left(\varphi(\mathcal{U}) \times \mathbb{R}^{n}\right)
$$

is open in $\mathbb{R}^{2 n}$. Combining this with (b-i), it follows that $\tilde{\varphi}$ takes basis elements for the topology on $\pi^{-1}(\mathcal{U}) \subset T M$ to open subsets of $\mathbb{R}^{2 n}$. Thus, the map

$$
\tilde{\varphi}: \pi^{-1}(\mathcal{U}) \longrightarrow \varphi(\mathcal{U}) \times \mathbb{R}^{n}
$$

is continuous, open, and bijective, i.e. a homeomorphism. Since $\left\{\pi^{-1}(\mathcal{U})\right\}_{(\mathcal{U}, \varphi) \in \mathcal{F}}$ is a cover of $T M$, it follows that $\{(\mathcal{U}, \tilde{\varphi})\}_{(\mathcal{U}, \varphi) \in \mathcal{F}}$ is a collection of charts covering $T M$ and $T M$ is locally Euclidean of dimension $2 n$.
(b-iv) It remains to show that the topology on $T M$ has a countable basis. Since M has a countable basis, there exists a countable subcollection $\mathcal{F}_{0}=\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i \in \mathbb{Z}}$ of \mathcal{F} such that the collection $\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{Z}}$ covers M. Then, the collection $\left\{\pi^{-1}\left(\mathcal{U}_{i}\right)\right\}_{i \in \mathbb{Z}}$ is a countable open cover of $T M$ and $\pi^{-1}\left(\mathcal{U}_{i}\right)$ is second-countable (being homeomorphic to subset of $\mathbb{R}^{2 n}$). Thus, $T M$ is second-countable as well.
(c) We need to show that the collection

$$
\tilde{\mathcal{F}}_{0}=\left\{\left(\pi^{-1}(\mathcal{U}), \tilde{\varphi}\right):(\mathcal{U}, \varphi) \in \mathcal{F}\right\}
$$

is a collection of charts on $T M$ covering $T M$ and the overlap maps are smooth. Each of the maps

$$
\tilde{\varphi}: \pi^{-1}(\mathcal{U})=\tilde{\varphi}^{-1}\left(\mathbb{R}^{2 n}\right) \longrightarrow \pi^{-1}(\mathcal{U}) \times \mathbb{R}^{n}
$$

is a chart on M by (b-iii). The overlap maps, $\tilde{\psi}^{-1} \circ \tilde{\varphi}$, are smooth by part (a). Finally, $\left\{\pi^{-1}(\mathcal{U})\right\}_{(\mathcal{U}, \varphi) \in \mathcal{F}}$ is a cover of $T M$, since $\{\mathcal{U}\}_{(\mathcal{U}, \varphi) \in \mathcal{F}}$ is a cover of M.

Problem 2 (5pts)

Show that the tangent bundle TM of a smooth n-manifold is a real vector bundle of rank n over M. What is its transition data?

Let $\left\{\left(\mathcal{U}_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$ be the smooth structure on M. By Problem 1, TM is a smooth manifold with smooth structure given by the collection $\left\{\left(\pi^{-1}\left(\mathcal{U}_{\alpha}\right), \tilde{\varphi}_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$. If $\alpha \in \mathcal{A}$ and $\varphi_{\alpha}=\left(x_{1}, \ldots, x_{n}\right)$, we define a trivialization of $T M$ over \mathcal{U}_{α} by

$$
h_{\alpha}:\left.T M\right|_{\mathcal{U}_{\alpha}} \equiv \pi^{-1}\left(\mathcal{U}_{\alpha}\right) \longrightarrow \mathcal{U}_{\alpha} \times \mathbb{R}^{n}, \quad h_{\alpha}(v)=\left(\pi(v), v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) .
$$

This map is smooth, since the induced map between the charts

$$
\left\{\varphi_{\alpha} \times \mathrm{id}\right\} \circ h_{\alpha} \circ \tilde{\varphi}_{\alpha}^{-1}: \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \times \mathbb{R}^{n} \longrightarrow \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \times \mathbb{R}^{n}
$$

is the identity (and thus smooth). Furthermore, $\pi_{1} \circ h_{\alpha}=\left.\pi\right|_{T M \mid \mathcal{U}_{\alpha}}$ and the restriction of h_{α} to each fiber of π is an isomorphism of vector spaces. Thus, $\pi: T M \longrightarrow M$ is a real vector bundle of rank n, with trivializations $\left\{\left(\pi^{-1}\left(\mathcal{U}_{\alpha}\right), \tilde{\varphi}_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$. By Problem 2(a), the corresponding overlap maps are given by

$$
h_{\alpha} \circ h_{\beta}^{-1}(m, v)=\left(m, g_{\alpha \beta}(m) v\right),
$$

where the transition map

$$
g_{\alpha \beta}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \longrightarrow \mathrm{GL}_{n} \mathbb{R}
$$

is given by

$$
g_{\alpha \beta}(m)=\left.\mathcal{J}\left(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}\right)\right|_{\varphi_{\beta}(m)}
$$

Problem 3 (5pts)

Show that the tangent bundle $T S^{1}$ of S^{1}, defined as in 1.25 (119), is isomorphic to the trivial real line bundle over S^{1}.

By Lemma 8.5 in Lecture Notes, it is sufficient to show that the vector bundle $\pi: T S^{1} \longrightarrow S^{1}$ admits a nowhere-zero section s or vector field, i.e. a smooth family of choices of $v_{m} \in T_{m} S^{1}$ for each $m \in M$. Such a section is given by

$$
s(m)=\left.\frac{\partial}{\partial \theta}\right|_{m}
$$

where θ is the angle "coordinate". Formally, let

$$
\psi: \mathbb{R} \longrightarrow S^{1} \subset \mathbb{C}, \quad \psi(\theta)=e^{i \theta}
$$

be the standard covering projection. Then, we define the section s of $T S^{1}$ by

$$
s(\psi(\theta))=\left.d \psi\right|_{\theta} \frac{\partial}{\partial \theta}
$$

This section is well-defined, i.e. depends only on $\psi(\theta)$ and not θ. To see this, define

$$
h: \mathbb{R} \longrightarrow \mathbb{R} \quad \text { by } \quad h(\theta)=\theta+2 \pi
$$

If $\psi(\theta)=\psi\left(\theta^{\prime}\right)$, then $\theta^{\prime}=h^{m}(\theta)$ for some $m \in \mathbb{Z}$. On the other hand,

$$
\begin{gathered}
\left.d h\right|_{\theta} \frac{\partial}{\partial \theta}=\left.\frac{\partial}{\partial \theta} \Longrightarrow d h^{m}\right|_{\theta} \frac{\partial}{\partial \theta}=\frac{\partial}{\partial \theta} \\
\left.\Longrightarrow \quad d \psi\right|_{\theta} \frac{\partial}{\partial \theta}=\left.d\left(\psi \circ h^{m}\right)\right|_{\theta} \frac{\partial}{\partial \theta}=\left.\left.d \psi\right|_{h^{m}(\theta)} \circ d h^{m}\right|_{\theta} \frac{\partial}{\partial \theta}=\left.d \psi\right|_{\theta^{\prime}} \frac{\partial}{\partial \theta} .
\end{gathered}
$$

Furthermore, the restriction of ψ to each interval $(\theta-\pi, \theta+\pi)$ is the inverse map for a coordinate patch (\mathcal{U}, φ). Then,

$$
\begin{aligned}
\tilde{\varphi}(s(\psi(\theta))) \equiv(\varphi(\pi(s(\psi(\theta)))),\{s(\psi(\theta))\}(\varphi)) & =\left(\varphi(\psi(\theta)),\left\{\left.d \psi\right|_{\theta} \frac{\partial}{\partial \theta}\right\}(\varphi)\right) \\
& =\left(\theta, \frac{\partial}{\partial \theta}(\varphi \circ \psi)\right)=\left(\theta, \frac{\partial}{\partial \theta}(\mathrm{id})\right)=(\theta, 1)
\end{aligned}
$$

Thus, the section s is smooth and never zero.

Remark: If we view S^{1} as the circle of radius 1 in $\mathbb{R}^{2}, s(m)$ is the unit vector tangent to S^{1} at m and pointing counterclockwise.

Problem 4 (5pts)

Suppose that $f: X \longrightarrow M$ is a smooth map and $\pi: V \longrightarrow M$ is a smooth vector bundle. The pullback of V by $f, \pi_{1}: f^{*} V \longrightarrow X$, is the vector bundle defined by taking

$$
f^{*} V=\{(x, v) \in X \times V: f(x)=\pi(v)\} \subset X \times V
$$

In particular, $f^{*} V$ is supposed to be a smooth manifold. Show that $f^{*} V$ is in fact a smooth submanifold of $X \times V$.

Apply PS2-5 with $(Y, g)=(V, \pi)$. The condition on the differentials there holds because

$$
\mathrm{d}_{v} \pi: T_{v} V \longrightarrow T_{\pi(v)} V
$$

is surjective for all $v \in V$, since on a trivialization of V the map π is the projection on the first component.

Problem 5 (10pts)

Show that the tautological line bundle $\gamma_{n} \longrightarrow \mathbb{C} P^{n}$ is indeed a complex line bundle (describe its trivializations). What is its transition data? Why is it non-trivial for $n \geq 1$? (not isomorphic to $\mathbb{C} P^{n} \times \mathbb{C} \longrightarrow \mathbb{C} P^{n}$ as line bundle over $\left.\mathbb{C} P^{n}\right)$
(a) The topological space γ_{n} is Hausdorff and second-countable, being a subspace of such a space. The vector space structures in the fibers of the projection map

$$
\pi: \gamma_{n} \longrightarrow \mathbb{C} P^{n}, \quad \pi(\ell, v)=\ell
$$

are induced from the vector space structures on the fibers of

$$
\pi_{1}: \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \longrightarrow \mathbb{C} P^{n}
$$

Below we construct a differentiable structure on γ_{n} along with trivializations of γ_{n} over each of the open sets

$$
\begin{equation*}
\mathcal{U}_{i}=\left\{\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}: X_{i} \neq 0\right\} \tag{1}
\end{equation*}
$$

with $i=0,1, \ldots, n$.

For each $i=0,1, \ldots, n$, define

$$
h_{i}:\left.\gamma_{n}\right|_{\mathcal{U}_{i}} \equiv \pi^{-1}\left(\mathcal{U}_{i}\right) \longrightarrow \mathcal{U}_{i} \times \mathbb{C} \quad \text { by } \quad h_{i}\left(\ell,\left(c_{0}, \ldots, c_{n}\right)\right)=\left(\ell, c_{i}\right)
$$

This map is continuous, being a projection map. The inverse map, which is given by

$$
h_{i}^{-1}\left(\left[X_{0}, \ldots, X_{n}\right], c\right)=\left(\left[X_{0}, \ldots, X_{n}\right],\left(c X_{0} / X_{i}, \ldots, c X_{n} / X_{i}\right)\right) \in \gamma_{n}
$$

is also continuous; it is well-defined because $X_{i} \neq 0$ on \mathcal{U}_{i}. Thus, h_{i} is a homeomorphism. Furthermore, $\pi_{1} \circ h_{i}=\left.\pi\right|_{\gamma_{n} \mid \mathcal{U}_{i}}$ and the restriction of h_{i} to each fiber of π is a vector-space isomorphism. If $i, j=0,1, \ldots, n$, the corresponding overlap map

$$
h_{i} \circ h_{j}^{-1}:\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \times \mathbb{C} \longrightarrow\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \times \mathbb{C}
$$

is given by

$$
\begin{align*}
h_{i} \circ h_{j}^{-1}\left(\left[X_{0}, \ldots, X_{n}\right], c\right) & =h_{i}\left(\left[X_{0}, \ldots, X_{n}\right],\left(c X_{0} / X_{j}, \ldots, c X_{n} / X_{j}\right)\right) \tag{2}\\
& =\left(\left[X_{0}, \ldots, X_{n}\right], c X_{i} / X_{j}\right)=\left(\left[X_{0}, \ldots, X_{n}\right],\left(X_{i} / X_{j}\right) c\right)
\end{align*}
$$

Since all overlap maps are smooth, the collection $\left\{\left(\gamma_{n} \mid \mathcal{U}_{i}, h_{i}\right)\right\}_{i=0,1, \ldots, n}$ induces a differentiable structure on γ_{n} such that the projection map π is smooth, as this is the case on the trivializations over \mathcal{U}_{i}. We conclude that

$$
\pi: \gamma_{n} \longrightarrow \mathbb{C} P^{n}
$$

is a smooth complex line bundle, with trivializations $\left\{\left(\mathcal{U}_{i}, h_{i}\right)\right\}_{i=0,1, \ldots, n}$. By (2), the corresponding overlap maps are given by

$$
h_{i} \circ h_{j}^{-1}(\ell, c)=\left(\ell, g_{i j}\left(\left[X_{0}, \ldots, X_{n}\right]\right) c\right)
$$

where the transition map

$$
g_{i j}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad g_{i j}\left(\left[X_{0}, \ldots, X_{n}\right]\right)=X_{i} / X_{j}
$$

(b) In order to show that $\gamma_{n} \longrightarrow \mathbb{C} P^{n}$ is not isomorphic to the trivial line bundle over $\mathbb{C} P^{n}$, it is sufficient to show that the complements of the zero sections in the total spaces of the two line bundles are not homotopy-equivalent. In the case of the trivial line bundle, the complement is $\mathbb{C} P^{n} \times \mathbb{C}^{*} ;$ it is homotopy-equivalent to $\mathbb{C} P^{n} \times S^{1}$. Since

$$
\pi_{1}\left(\mathbb{C} P^{n} \times S^{1}\right)=\pi_{1}\left(\mathbb{C} P^{n}\right) \times \pi_{1}\left(S^{1}\right)=\pi_{1}\left(\mathbb{C} P^{n}\right) \times \mathbb{Z}
$$

$\mathbb{C} P^{n} \times S^{1}$ is not simply connected (you can in fact show that $\pi_{1}\left(\mathbb{C} P^{n}\right)=0$, but this is irrelevant here). On the other hand,

$$
\gamma_{n}-s_{0}\left(\mathbb{C} P^{n}\right)=\left\{(\ell, v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1}: v \in \ell-0\right\}
$$

is homotopy-equivalent to the sphere (circle) bundle of γ_{n},

$$
S\left(\gamma_{n}\right)=\left\{(\ell, v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1}: v \in \ell,|v|=1\right\}=\left\{(\ell, v) \in \mathbb{C} P^{n} \times S^{2 n+1}: \ell=q(v)\right\}
$$

where $q: S^{2 n+1} \longrightarrow \mathbb{C} P^{n}$ is the restriction of the quotient projection map $\mathbb{C}^{n+1}-0 \longrightarrow \mathbb{C} P^{n}$. Since $S\left(\gamma_{n}\right)$ is a compact space, $S^{2 n+1}$ is Hausdorff, and the projection $\pi_{2}: S\left(\gamma_{n}\right) \longrightarrow S^{2 n+1}$ is a continuous bijection, it follows that π_{2} is a homeomorphism. Thus, $\gamma_{n}-s_{0}\left(\mathbb{C} P^{n}\right)$ is simply connected (since $S^{2 n+1}$ is for $n \geq 1$).

Problem 6 (10pts)

Suppose $k<n$. Show that the map

$$
\iota: \mathbb{C} P^{k} \longrightarrow \mathbb{C} P^{n}, \quad\left[X_{0}, \ldots, X_{k}\right] \longrightarrow[X_{0}, \ldots, X_{k}, \underbrace{0, \ldots, 0}_{n-k}]
$$

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the charts that determine the complex structures on $\mathbb{C} P^{k}$ and $\left.\mathbb{C} P^{n}\right)$. Show that the normal bundle to the immersion, \mathcal{N}_{ι}, is isomorphic to

$$
(n-k) \gamma_{k}^{*} \equiv \underbrace{\gamma_{k}^{*} \oplus \ldots \oplus \gamma_{k}^{*}}_{n-k},
$$

where $\gamma_{k} \longrightarrow \mathbb{C} P^{k}$ is the tautological line bundle (isomorphic as complex line bundles).
For each $i=0,1, \ldots, n$ and $j=0,1, \ldots, k$, let

$$
\begin{gathered}
\mathcal{U}_{i}=\left\{\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}: X_{i} \neq 0\right\}, \quad \mathcal{U}_{j}^{\prime}=\left\{\left[X_{0}, \ldots, X_{k}\right] \in \mathbb{C} P^{k}: X_{j} \neq 0\right\}, \\
\varphi_{i}: \mathcal{U}_{i} \longrightarrow \mathbb{C}^{n}, \quad \varphi_{i}\left(\left[X_{0}, \ldots, X_{n}\right]\right)=\left(X_{0} / X_{i}, \ldots, X_{i-1} / X_{i}, X_{i+1} / X_{i}, \ldots, X_{n} / X_{i}\right), \\
\varphi_{j}^{\prime}: \mathcal{U}_{j}^{\prime} \longrightarrow \mathbb{C}^{k}, \quad \varphi_{j}^{\prime}\left(\left[X_{0}, \ldots, X_{k}\right]\right)=\left(X_{0} / X_{j}, \ldots, X_{j-1} / X_{j}, X_{j+1} / X_{j}, \ldots, X_{k} / X_{j}\right) .
\end{gathered}
$$

The collections

$$
\mathcal{F}_{0} \equiv\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i=0,1, \ldots, n} \quad \text { and } \quad \mathcal{F}_{0}^{\prime} \equiv\left\{\left(\mathcal{U}_{j}^{\prime}, \varphi_{j}^{\prime}\right)\right\}_{j=0,1, \ldots, k}
$$

of charts determine smooth and complex structures on $\mathbb{C} P^{n}$ and $\mathbb{C} P^{k}$; see Problem 3 on PS1. We will show that the maps on the charts induced by ι,

$$
\varphi_{i} \circ \iota \circ \varphi_{j}^{\prime-1}: \varphi_{j}^{\prime}\left(\mathcal{U}_{j}^{\prime} \cap \iota^{-1}\left(\mathcal{U}_{i}\right)\right) \longrightarrow \varphi_{i}\left(\mathcal{U}_{i}\right) \subset \mathbb{C}^{n}
$$

are smooth embeddings that are holomorphic. Since $\iota\left(\mathcal{U}_{j}^{\prime}\right) \subset \mathcal{U}_{j}$, it is sufficient to consider the case $i=j$. In this case,

$$
\varphi_{j} \circ \iota \circ \varphi_{j}^{\prime-1}: \mathbb{C}^{k} \longrightarrow \mathbb{C}^{n}, \quad\left(z_{1}, \ldots, z_{k}\right) \longrightarrow\left(z_{1}, \ldots, z_{k}, 0, \ldots, 0\right)
$$

Thus, $\varphi_{j} \circ \iota \circ \varphi_{j}^{\prime-1}$ is the holomorphic embedding of \mathbb{C}^{k} into \mathbb{C}^{n} as $\mathbb{C}^{k} \times 0$.
It is immediate that the map ι is injective. Since the maps $\varphi_{j} \circ \iota \circ \varphi_{j}^{\prime-1}$ are holomorphic embeddings, it follows that so is ι. We can thus identify $\mathbb{C} P^{k}$ with its image in $\mathbb{C} P^{n}$ under ι. Then,

$$
\mathcal{N}_{\iota}=\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} / T \mathbb{C} P^{k}
$$

We will show that \mathcal{N}_{ι} is isomorphic to $(n-k) \gamma_{k}^{*}$ as complex vector bundles over $\mathbb{C} P^{k}$ in four different ways.
(i: use exact sequence) We begin by showing that there exists a short exact sequence of vector bundles

$$
\begin{equation*}
0 \longrightarrow \mathbb{C} P^{n} \times \mathbb{C} \xrightarrow{f}(n+1) \gamma_{n}^{*} \xrightarrow{h} T \mathbb{C} P^{n} \longrightarrow 0 . \tag{3}
\end{equation*}
$$

First, we construct the bundle map $f=\left(f_{0}, \ldots, f_{n}\right)$. If $\ell \in \mathbb{C} P^{n}$ and $\lambda \in \mathbb{C}$, we define

$$
\begin{equation*}
f_{i}(\ell, \lambda) \in \gamma_{n}^{*} \quad \text { by } \quad\left\{f_{i}(\ell, \lambda)\right\}\left(c_{0}, \ldots, c_{n}\right)=\left.\lambda c_{i} \quad \forall\left(c_{0}, \ldots, c_{n}\right) \in \gamma_{n}\right|_{\ell} . \tag{4}
\end{equation*}
$$

It is immediate that the map f_{i} is linear and f is injective, i.e. the sequence (3) is exact at the first (nonzero) position. Each map f_{i} is smooth because the map

$$
\mathbb{C} P^{n} \times \mathbb{C} \oplus \gamma_{n}=\mathbb{C} \times \gamma_{n} \longrightarrow \mathbb{C}, \quad(\lambda, c) \longrightarrow\left\{f_{i}(\ell, \lambda)\right\}(c)=\lambda c_{i},
$$

is smooth (it is the restriction of a smooth map on $\mathbb{C} \times \mathbb{C} P^{n} \times \mathbb{C}^{n+1}$ to the submanifold $\mathbb{C} \times \gamma_{n}$).
In order to construct the bundle homomorphism h, it is convenient to introduce the functions

$$
z_{i, j}=\frac{X_{j}}{X_{i}}, \quad j \in\{0, \ldots, n\}
$$

on \mathcal{U}_{i}. Then, the coordinates of φ_{i} are $z_{i, j}$ with $j \neq i$ and

$$
\begin{equation*}
\left(\mathrm{id}, \mathbf{z}_{i}\right) \equiv\left(\mathrm{id}, z_{i, 0}, \ldots, z_{i, n}\right):\left.\mathcal{U}_{i} \longrightarrow \gamma_{n}\right|_{\mathcal{U}_{i}} \subset \mathcal{U}_{i} \times \mathbb{C}^{n+1} \tag{5}
\end{equation*}
$$

is a bundle section of γ_{n} over \mathcal{U}_{i}. We can thus define

$$
\begin{gather*}
h:(n+1) \gamma^{*} \longrightarrow T \mathbb{C} P^{n} \quad \text { by } \\
\left(p_{0}, \ldots, p_{n}\right) \longrightarrow \sum_{j \neq i}\left(p_{j}\left(\ell, \mathbf{z}_{i}(\ell)\right)-z_{i, j} p_{i}\left(\ell, \mathbf{z}_{i}(\ell)\right)\right) \frac{\partial}{\partial z_{i, j}} \quad \forall p_{l} \in \gamma_{\ell}^{*}, \ell \in \mathcal{U}_{i} . \tag{6}
\end{gather*}
$$

This is a smooth map over \mathcal{U}_{i} since the coefficients of the basis vectors in (6) are smooth functions on \mathcal{U}_{i} whenever each p_{i} is a smooth section of γ_{n}^{*}, by definition of the smooth structure in γ_{n}^{*} and because the section of γ_{n} given by (5) is smooth. Suppose $i^{\prime} \neq i$. Then,

$$
z_{i^{\prime}, j^{\prime}}=z_{i, i^{\prime}}^{-1} z_{i, j^{\prime}} \Longrightarrow \frac{\partial}{\partial z_{i, j}}=\sum_{j^{\prime} \neq i^{\prime}} \frac{\partial z_{i^{\prime}, j^{\prime}}}{\partial z_{i, j}} \frac{\partial}{\partial z_{i^{\prime}, j^{\prime}}}= \begin{cases}z_{i, i^{\prime}}^{-1} \frac{\partial}{\partial z_{i^{\prime}, j}}, & \text { if } j \neq i^{\prime} ; \tag{7}\\ -z_{i, i^{\prime}}^{-2}\left(\frac{\partial}{\partial z_{i^{\prime}, i}}+\sum_{j^{\prime} \neq i, i^{\prime}} z_{i, j^{\prime}} \frac{\partial}{\partial z_{i^{\prime}, j^{\prime}}}\right), & \text { if } j=i^{\prime} ;\end{cases}
$$

see Warner 1.20(c). Since each p_{l} is a linear functional, for $j \neq i, i^{\prime}$ the j-th summand in (6) can be written as

$$
\begin{align*}
\left(z_{i^{\prime}, i}^{-1} p_{j}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)-\right. & \left.z_{i^{\prime}, i^{\prime}}^{-2} z_{i^{\prime}, j} p_{i}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)\right) z_{i, i^{\prime}}^{-1} \frac{\partial}{\partial z_{i^{\prime}, j}} \\
& =\left(p_{j}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)-z_{i, j} p_{i}\left(\mathbf{z}_{i^{\prime}}(\ell)\right)\right) \frac{\partial}{\partial z_{i^{\prime}, j}} . \tag{8}
\end{align*}
$$

The remaining, $j=i^{\prime}$, summand in (6) is equal to

$$
\begin{align*}
\left(z_{i^{\prime}, i}^{-1} p_{i^{\prime}}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)\right. & \left.-z_{i^{\prime}, i}^{-2} p_{i}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)\right)\left(-z_{i, i^{\prime}}^{-2}\right)\left(\frac{\partial}{\partial z_{i^{\prime}, i}}+\sum_{j \neq i, i^{\prime}} z_{i, j} \frac{\partial}{\partial z_{i^{\prime}, j}}\right) \\
= & \left(p_{i}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)-z_{i^{\prime}, i} p_{i^{\prime}}\left(\ell, \mathbf{z}_{i^{\prime}}(\ell)\right)\right)\left(\frac{\partial}{\partial z_{i^{\prime}, i}}+\sum_{j \neq i, i^{\prime}} z_{i, j} \frac{\partial}{\partial z_{i^{\prime}, j}}\right) . \tag{9}
\end{align*}
$$

Since $z_{i^{\prime}, i} z_{i, j}=z_{i^{\prime}, j}$, collecting similar terms in (8) and (9), we obtain equation (6) with i replaced by i^{\prime}. Thus, h is a bundle homomorphism defined everywhere over $\mathbb{C} P^{n}$. It is immediate from (6) that this homomorphism is surjective and its composition with f is zero. Since the kernel of h must be one-dimensional, it must then equal the image of f. Thus, the sequence (3) of vector bundles is indeed exact.

If $k \leq n,\left.\gamma_{n}^{*}\right|_{\mathbb{C} P^{k}}=\gamma_{k}^{*}$ under the above embedding $\iota: \mathbb{C} P^{k} \longrightarrow \mathbb{C} P^{n}$. Let

$$
T:(k+1) \gamma_{k}^{*} \longrightarrow(n+1) \gamma_{k}^{*}
$$

be the bundle homomorphism over $\mathbb{C} P^{k}$ including the domain as the first $k+1$ components of the image. By (4) and (6), the top two squares in the diagram

then commute; the rows and columns in this diagram are short exact sequences. By the exactness of the last row in this diagram, $\mathcal{N}_{\iota} \approx(n-k) \gamma_{k}^{*}$.
(ii: construct a vector bundle isomorphism h between the two bundles) First, for each $j=k+1, \ldots, n$, we define a vector bundle homomorphism

$$
\tilde{h}_{j}:\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} \longrightarrow \gamma_{k}^{*}
$$

as follows. Suppose $\ell \in \mathcal{U}_{i}^{\prime}$, with $i=0,1, \ldots, k$, and $v \in T_{\ell} \mathbb{C} P^{n}$. Then, v acts on smooth functions defined on \mathcal{U}_{i} (on complex-valued functions by linear extension). Thus, we can define

$$
\left.\tilde{h}_{j}(v) \in \gamma_{k}^{*}\right|_{\ell} \quad \text { by } \quad\left\{\tilde{h}_{j}(v)\right\}\left(\ell, c_{0}, \ldots, c_{k}\right)=c_{i} \cdot v\left(z_{i, j}\right) \in \mathbb{C}
$$

where $z_{i, j}=X_{j} / X_{i}$ as in (i) above. The maps

$$
\tilde{h}_{j}(v):\left.\gamma_{k}\right|_{\ell} \longrightarrow \mathbb{C} \quad \text { and }\left.\left.\quad T_{\ell} \mathbb{C} P^{n}\right|_{\ell} \longrightarrow \gamma_{k}^{*}\right|_{\ell}, \quad v \longrightarrow \tilde{h}_{j}(v),
$$

are linear (over \mathbb{C}), since for all $\lambda \in \mathbb{C}$

$$
\begin{gathered}
\left\{\tilde{h}_{j}(v)\right\}\left(\lambda \cdot\left(\ell, c_{0}, \ldots, c_{k}\right)\right)=\left\{\tilde{h}_{j}(v)\right\}\left(\ell, \lambda c_{0}, \ldots, \lambda c_{k}\right)=\lambda c_{i} \cdot v\left(z_{i, j}\right) ; \\
\left\{\tilde{h}_{j}(\lambda v)\right\}\left(\ell, c_{0}, \ldots, c_{k}\right)=c_{i} \cdot\{\lambda v\}\left(z_{i, j}\right)=c_{i} \cdot \lambda \cdot v\left(z_{i, j}\right) .
\end{gathered}
$$

If $\ell \in \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{i^{\prime}}^{\prime}$ and $\left(c_{0}, \ldots, c_{k}\right) \in \ell \subset \mathbb{C}^{k+1}$, then $c_{i^{\prime}}=z_{i, i^{\prime}}(\ell) c_{i}, z_{i, j}=z_{i, i^{\prime}} z_{i^{\prime}, j}$, and

$$
c_{i} \cdot v\left(z_{i, j}\right)=c_{i} \cdot v\left(z_{i, i^{\prime}} z_{i^{\prime}, j}\right)=c_{i} \cdot\left(z_{i, i^{\prime}}(\ell) \cdot v\left(z_{i^{\prime}, j}\right)+z_{i^{\prime}, j}(\ell) \cdot v\left(z_{i, i^{\prime}}\right)\right)=c_{i^{\prime}} \cdot v\left(z_{i^{\prime}, j}\right),
$$

since v is a derivation with respect to the evaluation at ℓ and $z_{i^{\prime}, j}(\ell)=0$ for all $\ell \in U_{i^{\prime}}^{\prime} \subset \mathbb{C} P^{k}$ and $j>k$. Thus, the element $\tilde{h}_{j}(v) \in \gamma_{k}^{*} \mid \ell$ does not depend on i and the bundle homomorphism

$$
\tilde{h}_{j}:\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} \longrightarrow \gamma_{k}^{*}
$$

is well-defined over the entire space $\mathbb{C} P^{k}$. If $i=0,1, \ldots, k$ and $l \neq 0,1, \ldots, n$ with $j \neq i$,

$$
\begin{equation*}
\left\{\tilde{h}_{j}\left(\partial / \partial z_{i, l}\right)_{\ell}\right\}\left(c_{0}, \ldots, c_{k}\right)=\left.c_{i} \cdot \frac{\partial}{\partial z_{i, l}}\right|_{\ell}\left(z_{i, j}\right)=c_{i} \delta_{j l} \quad \forall \ell \in \mathcal{U}_{i} \tag{10}
\end{equation*}
$$

Thus, \tilde{h}_{j} takes smooth sections of $\left.T \mathbb{C} P^{n}\right|_{\mathcal{U}_{i}^{\prime}}$ to smooth sections of γ_{k}^{*} a smooth bundle map. Define the map

$$
\tilde{h}:\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} \longrightarrow(n-k) \gamma_{k}^{*} \quad \text { by } \quad \tilde{h}(v)=\left(\tilde{h}_{k+1}(v), \ldots, \tilde{h}_{n}(v)\right) .
$$

By the above, \tilde{h} is a smooth bundle homomorphism. By (10), \tilde{h} is surjective on every fiber and vanishes on $T \mathbb{C} P^{k}$ (which is spanned by the first k coordinate vectors). Thus, \tilde{h} induces a vector bundle isomorphism

$$
h: \mathcal{N}_{\iota}=\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} / T \mathbb{C} P^{k} \longrightarrow(n-k) \gamma_{k}^{*}
$$

So, the two vector bundles are isomorphic.
(iii: compare transition data) We compare the transition data for the two vector bundles, corresponding to trivializations over $\mathcal{U}_{i}^{\prime}=\mathbb{C} P^{k} \cap \mathcal{U}_{i}$. By Problem 5, the transition data for the line bundle $\gamma_{k} \longrightarrow \mathbb{C} P^{k}$ is given by

$$
g_{i j}: \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{k}\right] \longrightarrow X_{i} / X_{j}
$$

Thus, the transition data for the dual line bundle $\gamma_{k}^{*} \longrightarrow \mathbb{C} P^{k}$ is given by

$$
\left(g_{i j}^{*}\right)^{-1}: \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{k}\right] \longrightarrow X_{j} / X_{i}
$$

and for the vector bundle $(n-k) \gamma_{k}^{*} \longrightarrow \mathbb{C} P^{k}$ by

$$
\begin{equation*}
G_{i j}=\left(g_{i j}^{*}\right)^{-1} \mathbb{I}_{n-k}: \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime} \longrightarrow \mathrm{GL}_{n-k} \mathbb{C}, \quad\left[X_{0}, \ldots, X_{k}\right] \longrightarrow\left(X_{j} / X_{i}\right) \mathbb{I}_{n-k} \tag{11}
\end{equation*}
$$

where $\mathbb{I}_{n-k} \in \mathrm{GL}_{n-k} \mathbb{C}$ is the identity matrix; see Section 10 in Lecture Notes. By PS1-3(b), the overlap map between the charts $\left(\mathcal{U}_{i}, \varphi_{i}\right)$ and $\left(\mathcal{U}_{j}, \varphi_{j}\right)$ on $\mathbb{C} P^{n}$ is

$$
\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \longrightarrow \varphi_{i}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right), \quad\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{l}=z_{i, l}=z_{j, l} z_{i, j} \begin{cases}z_{l} / z_{i}, & \text { if } l>i>j ; \tag{12}\\ z_{l} / z_{i+1}, & \text { if } l>j>i\end{cases}
$$

By the complex analogue of Problem 2, the transition data for the vector bundle $T \mathbb{C} P^{n}$ is given by

$$
h_{i j}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{n} \mathbb{C}, \quad h_{i j}(\ell)=\mathcal{J}\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{\varphi_{j}(\ell)}
$$

By (12), the (l, m)-entry of $h_{i j}$ with $i, j \leq k$ and $l, m>k$ is

$$
\begin{equation*}
\left(h_{i j}\left(\left[X_{0}, \ldots, X_{n}\right]\right)\right)_{l m}=\delta_{l m} z_{i, j} \tag{13}
\end{equation*}
$$

The local charts $\left(\mathcal{U}_{i}^{\prime}, \varphi_{i}^{\prime}\right)$ for $\mathbb{C} P^{k}$ are are given by

$$
\mathcal{U}_{i}^{\prime}=\mathcal{U}_{i} \cap \mathbb{C} P^{k} \quad \text { and } \quad \varphi_{i}^{\prime}=\left.\pi \circ \varphi_{i}\right|_{\mathcal{U}_{i}^{\prime}},
$$

where $\pi: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{k}$ is the projection on the first k components. Thus, the upper-left $k \times k$ submatrix of $h_{i j} \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime}$ gives transition data for the subbundle $T \mathbb{C} P^{k}$ of $\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}}$ and the lowerright $(n-k) \times(n-k)$ submatrix of $\left.h_{i j}\right|_{\mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime}}$ gives transition data for the quotient vector bundle

$$
\mathcal{N}_{\iota}=\left.T \mathbb{C} P^{n}\right|_{\mathbb{C} P^{k}} / T \mathbb{C} P^{k} ;
$$

see Section 10 in Lecture Notes. By (13), the data for \mathcal{N}_{ι} is then

$$
H_{i j}: \mathcal{U}_{i}^{\prime} \cap \mathcal{U}_{j}^{\prime} \longrightarrow \mathrm{GL}_{n-k} \mathbb{C}, \quad \ell \longrightarrow z_{i, j}(\ell) \mathbb{I}_{n-k}
$$

Along with (11), this implies that the bundle \mathcal{N}_{ι} and $(n-k) \gamma_{k}^{*}$ are isomorphic.
(iv: identify neighborhoods) We will construct a biholomorphism

$$
f:(n-k) \gamma_{k}^{*} \longrightarrow W
$$

onto a neighborhood W of $\mathbb{C} P^{k}$ in $\mathbb{C} P^{n}$ such that

$$
f\left(0_{\ell}\right)=\ell \quad \forall \ell \in \mathbb{C} P^{k}
$$

where $\left.0_{\ell} \in(n-k) \gamma_{k}^{*}\right|_{\ell}$ is the zero vector. By the general lemma stated below, the existence of such a diffeomorphism implies that $(n-k) \gamma_{k}^{*}$ and \mathcal{N}_{ι} are isomorphic as complex vector bundles. Define

$$
\begin{gathered}
f:(n-k) \gamma_{k}^{*} \longrightarrow \bigcup_{i=0}^{i=k} \mathcal{U}_{i} \subset \mathbb{C} P^{n} \quad \text { by } \\
f\left(\left[X_{0}, \ldots, X_{k}\right], \alpha_{k+1}, \ldots, \alpha_{n}\right)=\left[X_{0}, \ldots, X_{k}, \alpha_{k+1}\left(X_{0}, \ldots, X_{k}\right), \ldots, \alpha_{n}\left(X_{0}, \ldots, X_{k}\right)\right] .
\end{gathered}
$$

Since $\left(X_{0}, \ldots, X_{k}\right)$ is defined up to multiplication by \mathbb{C}^{*}, the map f is well-defined. It is immediate that f is bijective and takes $\left.(n-k) \gamma_{k}^{*}\right|_{\mathcal{U}_{i}^{\prime}}$ to \mathcal{U}_{i}. Holomorphic charts on $\left.(n-k) \gamma_{k}^{*}\right|_{\mathcal{U}_{i}^{\prime}}$ are induced by the charts on $\left.\gamma_{k}\right|_{\mathcal{U}_{i}^{\prime}}$ of Problem 5 and are given by

$$
\begin{gathered}
\tilde{\varphi}_{i}:(n-k) \gamma_{k}^{*} \mid \mathcal{U}_{i} \longrightarrow \mathbb{C}^{k} \times \mathbb{C}^{n-k}, \\
\left(\tilde{\varphi}_{i}\left(\ell, \alpha_{k+1}, \ldots, \alpha_{n}\right)\right)_{l}= \begin{cases}\left(\varphi_{i}(\ell)\right)_{l}, & \text { if } l \leq k ; \\
\alpha_{l}\left(\ell, z_{i, 0}(\ell), \ldots, z_{i, n}(\ell)\right), & \text { if } l>k,\end{cases}
\end{gathered}
$$

where $z_{i, j}=X_{j} / X_{i}$ as in (i) above. The map between these charts induced by f is

$$
\varphi_{i} \circ f \circ \tilde{\varphi}_{i}^{-1}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}
$$

is the identity and thus biholomorphic.
Lemma Suppose M is an embedded submanifold of N and $V \longrightarrow M$ is a vector bundle. If there exists a diffeomorphism between neighborhoods W and W^{\prime} of M in V and in N, respectively,

$$
f: W \longrightarrow W^{\prime} \quad \text { s.t. } \quad f(p)=p \quad \forall p \in M
$$

then V is isomorphic to the normal bundle \mathcal{N} of M in N. If in addition, N is a complex manifold, M is a complex submanifold, $V \longrightarrow M$ is a complex vector bundle, and the linear map

$$
\mathrm{d}_{p} f: T_{p} V / T_{p} M \longrightarrow T_{p} N / T_{p} M
$$

is \mathbb{C}-linear for all $p \in M$, then V and \mathcal{N} are isomorphic as complex vector bundles.
Remark: Recall from Section 8 in Lecture Notes that M can be viewed as the zero section in V.
Proof: Let $V \longrightarrow M$ be a (complex) vector bundle. If $v \in V$, let $\alpha_{v}: I \longrightarrow V$ be the curve $\alpha_{v}(t)=t v \in V$. Then, the map

$$
\left.V \longrightarrow T V\right|_{M} / T M, \quad v \longrightarrow \alpha_{v}^{\prime}(0)+T_{\pi(v)} M,
$$

is an isomorphism of (complex) vector bundles, as this is the case in any trivialization of V. On the other hand, if f is a diffeomorphism that maps the submanifold M of V to the submanifold M of N, then the differential

$$
\left.\mathrm{d} f\right|_{M}:\left.\left.T V\right|_{M} \longrightarrow T N\right|_{M}
$$

is an isomorphism that restricts to the identity on $T M$. Thus, $\left.\mathrm{d} f\right|_{M}$ induces an isomorphism

$$
\begin{equation*}
\left.T V\right|_{M} /\left.T M \longrightarrow T N\right|_{M} / T M=\mathcal{N} \tag{14}
\end{equation*}
$$

of vector bundles over M. If $V, T N$, and $T M$ are complex bundles and $\left.\mathrm{d} f\right|_{M}$ is \mathbb{C}-linear (as is the case if f is a holomorphic map between complex manifolds), then the bundle isomorphism between the quotient bundles above is also \mathbb{C}-linear. Combining (14) with the first isomorphism, we obtain the lemma.

Problem 7 (10pts)

Let $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n} \longrightarrow \mathbb{C} P^{n}$ be the top exterior power of the vector bundle $T \mathbb{C} P^{n}$ taken over \mathbb{C}. Show that $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n}$ is isomorphic to the line bundle

$$
\gamma_{n}^{* \otimes(n+1)} \equiv \underbrace{\gamma_{n}^{*} \otimes \ldots \otimes \gamma_{n}^{*}}_{n+1},
$$

where $\gamma_{n} \longrightarrow \mathbb{C} P^{n}$ is the tautological line bundle (isomorphic as complex line bundles).
We will show that this is the case in three different ways.
(i: use exact sequence) By the short exact sequence (3),

$$
\begin{aligned}
\gamma_{n}^{* \otimes(n+1)} & =\Lambda_{\mathbb{C}}^{n+1}\left((n+1) \gamma_{n}^{*}\right)=\Lambda_{\mathbb{C}}^{\mathrm{top}}\left((n+1) \gamma_{n}^{*}\right) \approx \Lambda_{\mathbb{C}}^{\mathrm{top}}\left(\mathbb{C} P^{n} \times \mathbb{C}\right) \otimes \Lambda_{\mathbb{C}}^{\mathrm{top}} T \mathbb{C} P^{n} \\
& =\Lambda_{\mathbb{C}}^{1}\left(\mathbb{C} P^{n} \times \mathbb{C}\right) \otimes \Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n} \approx \Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n},
\end{aligned}
$$

as claimed.
For approaches (ii) and (iii), let

$$
\begin{gathered}
\mathcal{U}_{i}=\left\{\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}: X_{i} \neq 0\right\}, \quad \varphi_{i}, z_{i, j}: \mathcal{U}_{i} \longrightarrow \mathbb{C}^{n}, \\
z_{i, j}\left(\left[X_{0}, \ldots, X_{n}\right]\right)=\frac{X_{j}}{X_{i}}, \quad \varphi_{i}(\ell)=\left(z_{i, 0}(\ell), \ldots, z_{i, i-1}(\ell), z_{i, i+1}(\ell), \ldots, z_{i, n}(\ell)\right),
\end{gathered}
$$

as before. The collection $\mathcal{F}_{0} \equiv\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i=0,1, \ldots, n}$ of charts determines smooth and complex structures $\mathbb{C} P^{n}$.
(ii: construct a vector bundle isomorphism h between the two bundles) We begin by constructing an alternating linear map

$$
\tilde{h}: n T \mathbb{C} P^{n} \longrightarrow \gamma_{n}^{* \otimes(n+1)}
$$

as follows. Suppose $\ell \in \mathcal{U}_{i}$, with $i=0,1, \ldots, n$, and $v=\left(v_{1}, \ldots, v_{n}\right) \in n T_{\ell} \mathbb{C} P^{n}$. Then, each component v_{m} of v acts on functions defined on \mathcal{U}_{i} (on complex functions by linear extension). Thus, we can define

$$
\tilde{h}(v) \in \gamma_{n}^{* \otimes(n+1)} \mid \ell \quad \text { by } \quad\{\tilde{h}(v)\}\left(\ell, c_{0}, \ldots, c_{n}\right)^{\otimes(n+1)}=(-1)^{i} c_{i}^{n+1} \operatorname{det}\left(A_{i}(v)\right) \in \mathbb{C} \text {, }
$$

$$
\text { where } \quad\left(A_{i}(v)\right)_{j m}= \begin{cases}v_{m}\left(z_{i, j-1}\right), & \text { if } j \leq i ; \\ v_{m}\left(z_{i, j}\right), & \text { if } j>i .\end{cases}
$$

The map

$$
\tilde{h}(v):\left.\gamma_{n}^{\otimes(n+1)}\right|_{\ell} \longrightarrow \mathbb{C}
$$

is linear (over \mathbb{C}), since for all $\lambda \in \mathbb{C}$

$$
\begin{aligned}
\{\tilde{h}(v)\}\left(\lambda \cdot\left(\ell, c_{0}, \ldots, c_{n}\right)\right)^{\otimes(n+1)} & =\{\tilde{h}(v)\}\left(\ell, \lambda c_{0}, \ldots, \lambda c_{n}\right)^{\otimes(n+1)} \\
& =\left(\lambda c_{i}\right)^{n+1} \cdot \operatorname{det}\left(A_{i}(v)\right)=\lambda^{n+1} \cdot\{\tilde{h}(v)\}\left(\ell, c_{0}, \ldots, c_{n}\right)^{\otimes(n+1)} .
\end{aligned}
$$

Since the map $v \longrightarrow A_{i}(v)$ is linear in each component of v (the determinant of a matrix is linear in each column), the map

$$
\left.\left.n T_{\ell} \mathbb{C} P^{n}\right|_{\ell} \longrightarrow \gamma_{n}^{* \otimes(n+1)}\right|_{\ell}, \quad\left(v_{1}, \ldots, v_{n}\right) \longrightarrow \tilde{h}\left(v_{1}, \ldots, v_{n}\right),
$$

is multilinear. If $\ell \in \mathcal{U}_{i} \cap \mathcal{U}_{i^{\prime}}$, then

$$
\begin{aligned}
v_{m}\left(z_{i, i^{\prime}}\right) & =v_{m}\left(z_{i^{\prime}, i}^{-1}\right)=-\left(z_{i, i^{\prime}}(\ell)\right)^{2} v_{m}\left(z_{i^{\prime}, i}\right) \\
v_{m}\left(z_{i, j}\right) & =v_{m}\left(z_{i, i^{\prime}} z_{i^{\prime}, j}\right)=z_{i, i^{\prime}}(\ell) \cdot v_{m}\left(z_{i^{\prime}, j}\right)+z_{i^{\prime}, j}(\ell) \cdot v_{m}\left(z_{i, i^{\prime}}\right)
\end{aligned}
$$

Thus, if $i^{\prime}<i$, then

$$
\begin{align*}
A_{i}(v)_{\left(i^{\prime}+1\right) m} & =-\left(z_{i, i^{\prime}}(\ell)\right)^{2} A_{i^{\prime}}(v)_{i m} ; \\
A_{i}(v)_{j m} & =z_{i, i^{\prime}}(\ell) \cdot\left\{\begin{array}{ll}
A_{i^{\prime}}(v)_{j m}, & \text { if } j \leq i^{\prime} \text { or } j>i \\
A_{i^{\prime}}(v)_{(j-1) m}, & \text { if } i^{\prime}+2 \leq j \leq i
\end{array}+A_{i}(v)_{\left(i^{\prime}+1\right) m} \begin{cases}z_{i^{\prime}, j-1}(\ell), & \text { if } j \leq i ; \\
z_{i^{\prime}, j}(\ell), & \text { if } j>i .\end{cases} \right. \tag{15}
\end{align*}
$$

Since adding a multiple of a row (row $\#\left(i^{\prime}+1\right)$ in this case) to another row does not change the determinant, the last term in (15) has no effect on $\operatorname{det}\left(A_{i}(v)\right.$). Since moving row $\# i$ (in the matrix $A_{i^{\prime}}(v)$) "up" to make it row $\#\left(i^{\prime}+1\right)$ and shifting rows $\#\left(i^{\prime}+1\right)$ through $\#(i-1)$ "down" by 1 (increasing their row number by 1) multiples the determinant by $(-1)^{i-\left(i^{\prime}+1\right)}$, by (15)

$$
\operatorname{det}\left(A_{i}(v)\right)=(-1)^{i+i^{\prime}}\left(z_{i, i^{\prime}}(\ell)\right)^{n+1} \operatorname{det}\left(A_{i^{\prime}}(v)\right)
$$

If in addition $\left(c_{0}, \ldots, c_{n}\right) \in \ell$, then $c_{i^{\prime}}=z_{i, i^{\prime}}(\ell) c_{i}$. Therefore,

$$
(-1)^{i} c_{i}^{n+1} \operatorname{det}\left(A_{i}(v)\right)=(-1)^{i} c_{i}^{n+1} \cdot(-1)^{i+i^{\prime}}\left(z_{i, i^{\prime}}(\ell)\right)^{n+1} \operatorname{det}\left(A_{i^{\prime}}(v)\right)=(-1)^{i^{\prime}} c_{i^{\prime}}^{n+1} \operatorname{det}\left(A_{i^{\prime}}(v)\right)
$$

Thus, the bundle homomorphism

$$
\tilde{h}: n T \mathbb{C} P^{n} \longrightarrow \gamma_{n}^{* \otimes(n+1)}
$$

is well-defined over the entire space $\mathbb{C} P^{n}$. If $i=0,1, \ldots, n$ and $\ell \in \mathcal{U}_{i}$,

$$
A_{i}\left(\left.\frac{\partial}{\partial z_{i, 0}}\right|_{\ell}, \ldots,\left.\frac{\partial}{\partial z_{i, i-1}}\right|_{\ell},\left.\frac{\partial}{\partial z_{i, i+1}}\right|_{\ell}, \ldots,\left.\frac{\partial}{\partial z_{i, n}}\right|_{\ell}\right)=\operatorname{det} \mathbb{I}=1 .
$$

Thus,

$$
\begin{equation*}
\left\{\tilde{h}\left(\left(\partial / \partial z_{i, 0}\right)_{\ell}, \ldots,\left(\partial / \partial z_{i, i-1}\right)_{\ell},\left(\partial / \partial z_{i, i+1}\right)_{\ell}, \ldots\left(\partial / \partial z_{i, n}\right)_{\ell}\right)\right\}\left(\ell, c_{0}, \ldots, c_{n}\right)=(-1)^{i} c_{i}^{n+1} \tag{16}
\end{equation*}
$$

A permutation of the coordinate vectors on LHS above would change RHS by the sign of the permutation; if any two of the inputs on LHS were the same, RHS would be 0 . Thus, \tilde{h} takes smooth sections of $n T \mathbb{C} P^{n}$ to smooth secrions of $\gamma_{n}^{* \otimes(n+1)}$, and so is smooth. By (16), the restriction of \tilde{h} to every fiber is nonzero and thus surjective (because the range is one-dimensional). Since the determinant is an alternating function of the columns, \tilde{h} is an alternating multi-linear map between vector bundles. It follows that \tilde{h} descends to a surjective bundle homomorphism

$$
h: \Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n} \longrightarrow \gamma_{n}^{* \otimes(n+1)} .
$$

Since the domain of h is a line bundle, h must then be a vector-bundle isomorphism. This is precisely the isomorphism of (i).
(iii: compare transition data) We compare the transition data for the two vector bundles, corresponding to trivializations over \mathcal{U}_{i}. Using the trivializations $\left\{h_{i}\right\}$ for $\gamma_{n} \longrightarrow \mathbb{C} P^{n}$ of Problem 5, the transition data for γ_{n} is given by

$$
g_{i j}=z_{j, i}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{n}\right] \longrightarrow X_{i} / X_{j}
$$

Thus, the transition data for the dual line bundle $\gamma_{n}^{*} \longrightarrow \mathbb{C} P^{n}$ is given by

$$
\left(g_{i j}^{*}\right)^{-1}=z_{i, j}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{n}\right] \longrightarrow X_{j} / X_{i}
$$

and for the line bundle $\gamma_{n}^{* \otimes(n+1)} \longrightarrow \mathbb{C} P^{n}$ by

$$
\left(\left(g_{i j}^{*}\right)^{-1}\right)^{n+1}=z_{i, j}^{n+1}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{n}\right] \longrightarrow\left(X_{j} / X_{i}\right)^{n+1}
$$

see Section 10 in Lecture Notes. These transition data correspond to the trivializations $\left(\left(h_{i}^{*}\right)^{-1}\right)^{\otimes(n+1)}$ induced by h_{i}. However, for the present purposes it is convenient to compose each of these trivialization with multiplication by $(-1)^{i}$ (in light of (16), these transition maps correspond to the standard transition maps for $T \mathbb{C} P^{n}$ via the isomorphism of (i) and (ii) above). Then, the transition maps are modified by $(-1)^{i+j}$ and become

$$
\begin{equation*}
G_{i j}=(-1)^{i+j} z_{i, j}^{n+1}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathbb{C}^{*}, \quad\left[X_{0}, \ldots, X_{n}\right] \longrightarrow(-1)^{i+j}\left(X_{j} / X_{i}\right)^{n+1} \tag{17}
\end{equation*}
$$

By PS1-3(b), if $j<i$ the overlap map between coordinate charts $\left(\mathcal{U}_{i}, \varphi_{i}\right)$ and $\left(\mathcal{U}_{j}, \varphi_{j}\right)$ on $\mathbb{C} P^{n}$ is

$$
\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \longrightarrow \varphi_{i}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right), \quad\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{l}= \begin{cases}z_{l} / z_{i}, & \text { if } l \leq j \text { or } l>i \tag{18}\\ 1 / z_{i}, & \text { if } l=j+1 \\ z_{l-1} / z_{i}, & \text { if } j+2 \leq l \leq i\end{cases}
$$

By the complex analogue of Problem 3 on PS2, the transition data for the vector bundle $T \mathbb{C} P^{n}$ is given by

$$
h_{i j}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{n} \mathbb{C}, \quad h_{i j}(\ell)=\mathcal{J}\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{\varphi_{j}(\ell)} .
$$

Since the (complex) rank of the vector bundle $T \mathbb{C} P^{n}$ is n, the transition data for the line bundle $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n}$ is given by the determinant of the transition data for $T \mathbb{C} P^{n}$:

$$
H_{i j}: \mathcal{U}_{i} \cap \mathcal{U}_{j} \longrightarrow \mathrm{GL}_{1} \mathbb{C}=\mathbb{C}^{*}, \quad \ell \longrightarrow \operatorname{det} \mathcal{J}\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{\varphi_{j}(\ell)} ;
$$

see Section 10 in Lecture Notes. By (18), the only entry in the $(j+1)$-st row of $\mathcal{J}\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{\varphi_{j}(\ell)}$ is in the i-th column and equals $-1 / z_{i}^{2}$. Once the $(j+1)$-st row and i-th column are crossed out, we are left with the matrix $\left(1 / z_{i}\right) \mathbb{I}_{n-1}$. Thus,

$$
\begin{aligned}
H_{i j}(\ell)=\operatorname{det}\left(\mathcal{J}\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{\varphi_{j}(\ell)}\right) & =(-1)^{i+j+1}\left(-1 / z_{i}^{2}\right)\left(1 / z_{i}\right)^{n-1} \\
& =(-1)^{i+j}\left(1 / z_{j, i}\right)^{n+1}=(-1)^{i+j} z_{i, j}^{n+1}
\end{aligned}
$$

Since $H_{i j}=H_{j i}^{-1}$, this formula applies to $i<j$ as well. Along with (17), the above expression implies that the line bundles $\Lambda_{\mathbb{C}}^{n} T \mathbb{C} P^{n}$ and $\gamma_{n}^{* \otimes(n+1)}$ are isomorphic.

