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Spring 2011

Solutions to Problem Set 3

Problem 1: Chapter 1, #5 (10pts)

If (M,F) is a smooth n-manifold, let

TM =
⊔

m∈M

TmM and π : TM −→M, π(v) = m if v ∈ TmM.

If (U , ϕ)∈F and ϕ=(x1, . . . , xn), define

ϕ̃ : π−1(U) −→ R
2n by ϕ̃(v) =

(
ϕ(π(v)), v(x1), . . . , v(xn)

)
.

Show that

(a) for all (U , ϕ), (V, ψ)∈F , ψ̃◦ϕ̃−1 is smooth;

(b) the collection
B ≡

{
ϕ̃−1(W ) :W ⊂R

2n open, (U , ϕ)∈F
}

is basis for a topology on TM in which TM is a topological 2n-manifold;

(c) the collection
F̃0 =

{
(π−1(U), ϕ̃) : (U , ϕ)∈F

}

induces a differentiable structure F̃ on TM .

(a) Suppose ϕ=(x1, . . . , xn) and ψ=(y1, . . . , yn). By 1.20b, with i replaced by j,

v(yi) =

{ n∑

j=1

v(xj)
∂

∂xj

∣
∣
∣
m

}

(yi) =

n∑

j=1

( ∂yi
∂xj

)

v(xj).

Thus, the overlap map

ψ̃◦ϕ̃−1 : ϕ̃
(
π−1(U)∩π−1(V )

)
−→ ψ̃

(
π−1(U)∩π−1(V )

)

R
2n

R
2n

π−1(U ∩ V )

ψ̃◦ϕ̃−1

ϕ̃ ψ̃

is given by

ψ̃◦ϕ̃−1 : ϕ
(
U∩V

)
×R

n −→ ψ
(
U∩V

)
×R

n, ψ̃◦ϕ̃−1(p, w) =
(
ψ◦ϕ−1(p),J (ψ◦ϕ−1)|pw

)
,

where

J (ψ◦ϕ−1)|p =

(
∂yi
∂xj

)

i,j=1,...,n

∣
∣
∣
p



is the Jacobian (the matrix of partial derivatives) of ψ◦ϕ−1 at p. Since (U , ϕ), (V, ψ)∈F , the maps

ψ◦ϕ−1 : ϕ
(
U∩V

)
−→ R

n and J (ψ◦ϕ−1) : ϕ
(
U∩V

)
−→ MatnR = R

n2

are smooth. Since the multiplication map is smooth, so is the map

ϕ
(
U∩V

)
×R

n −→ R
n, (p, w) −→ J (ψ◦ϕ−1)|pw.

Since both “coordinate” functions of the overlap map ψ̃◦ϕ̃−1 are smooth, the map ψ̃◦ϕ̃−1 itself is
smooth as well.

(b-i) We begin by showing that B covers TM . Since F is a differentiable structure on M ,

TM = π−1(M) = π−1

(
⋃

(U ,ϕ)∈F

U

)

=
⋃

(U ,ϕ)∈F

π−1(U) =
⋃

(U ,ϕ)

ϕ̃−1(R2n) ⊂
⋃

V ∈B

V.

Furthermore, if (U , ϕ), (V, ψ)∈F and W,W ′ are open subsets of R2n, then

ϕ̃−1(W ) ∩ ψ̃−1(W ′) = ϕ̃−1(W ) ∩ ϕ̃−1(R2n) ∩ ψ̃−1(W ′) = ϕ̃−1(W ) ∩ ϕ̃−1
(
ϕ̃(ϕ̃−1(R2n)∩ψ̃−1(W ′))

)

= ϕ̃−1
(
W ∩ ϕ̃(ϕ̃−1(R2n)∩ψ̃−1(W ′))

)
= ϕ̃−1

(
W ∩ ϕ̃(ψ̃−1(W ′)

)
∈ B,

since ϕ̃(ψ̃−1(W ′))⊂R
2n is open (because by part (a), ψ̃◦ϕ̃−1 is smooth and thus continuous). We

conclude that B is a basis for a topology on TM .

(b-ii) We next show that TM is Hausdorff in this topology. Suppose v, w ∈ TM and v 6= w. If
π(v)=π(w), choose (U , ϕ)∈F such that π(v)∈U . Since the map ϕ̃ is injective, ϕ̃(v) 6= ϕ̃(w)∈R

2n.
If V and W are disjoint open subsets of R

2n (which is Hausdorff) containing ϕ̃(v) and ϕ̃(w),
respectively, then

ϕ̃−1(V ), ϕ̃−1(W ) ∈ B

are disjoint open subsets of TM containing v and w, respectively. On the other hand, suppose
π(v) 6= π(w). Since M is Hausdorff, there exist disjoint open subsets V and W of M containing
π(v) and π(w). Note that since F is maximal with respect to the smooth-overlap condition, if
(U , ϕ)∈F , then (U ′, ϕ|U ′)∈F for every open subset U ′⊂U . Thus, there exist (V ′, ϕ), (W ′, ψ)∈F
such that

π(v) ∈ V ′ ⊂ V, π(w) ∈W ′ ⊂W =⇒ v ∈ π−1(V ′) = ϕ̃−1(R2n), w ∈ π−1(W ′) = ψ̃−1(R2n).

Thus, ϕ̃−1(R2n), ψ̃−1(R2n)∈B are are disjoint open subsets of TM containing v and w, respectively.

(b-iii) If (U , ϕ)∈F , the map

ϕ̃ : π−1(U)= ϕ̃−1(R2n) −→ ϕ(U)×R
n

is continuous, as ϕ̃−1(W )∈B for all W ⊂R
n open. Furthermore, if W ⊂R

2n is open, then

ϕ̃
(
ϕ̃−1(W )

)
=W ∩ (ϕ(U)×R

n)
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is open in R
2n. Combining this with (b-i), it follows that ϕ̃ takes basis elements for the topology

on π−1(U)⊂TM to open subsets of R2n. Thus, the map

ϕ̃ : π−1(U) −→ ϕ(U)×R
n

is continuous, open, and bijective, i.e. a homeomorphism. Since {π−1(U)}(U ,ϕ)∈F is a cover of TM ,
it follows that {(U , ϕ̃)}(U ,ϕ)∈F is a collection of charts covering TM and TM is locally Euclidean
of dimension 2n.

(b-iv) It remains to show that the topology on TM has a countable basis. Since M has a count-
able basis, there exists a countable subcollection F0 = {(Ui, ϕi)}i∈Z of F such that the collection
{Ui}i∈Z covers M . Then, the collection {π−1(Ui)}i∈Z is a countable open cover of TM and π−1(Ui)
is second-countable (being homeomorphic to subset of R2n). Thus, TM is second-countable as well.

(c) We need to show that the collection

F̃0 =
{
(π−1(U), ϕ̃) : (U , ϕ)∈F

}

is a collection of charts on TM covering TM and the overlap maps are smooth. Each of the maps

ϕ̃ : π−1(U)= ϕ̃−1(R2n) −→ π−1(U)×R
n

is a chart onM by (b-iii). The overlap maps, ψ̃−1◦ϕ̃, are smooth by part (a). Finally, {π−1(U)}(U ,ϕ)∈F

is a cover of TM , since {U}(U ,ϕ)∈F is a cover of M .

Problem 2 (5pts)

Show that the tangent bundle TM of a smooth n-manifold is a real vector bundle of rank n over M .
What is its transition data?

Let {(Uα, ϕα)}α∈A be the smooth structure on M . By Problem 1, TM is a smooth manifold with
smooth structure given by the collection {(π−1(Uα), ϕ̃α)}α∈A. If α∈A and ϕα =(x1, . . . , xn), we
define a trivialization of TM over Uα by

hα : TM |Uα ≡π
−1(Uα) −→ Uα×R

n, hα(v) =
(
π(v), v(x1), . . . , v(xn)

)
.

This map is smooth, since the induced map between the charts

{ϕα×id} ◦ hα ◦ ϕ̃−1
α : ϕα(Uα)×R

n −→ ϕα(Uα)×R
n

is the identity (and thus smooth). Furthermore, π1 ◦ hα = π|TM |Uα
and the restriction of hα to

each fiber of π is an isomorphism of vector spaces. Thus, π : TM −→M is a real vector bundle
of rank n, with trivializations {(π−1(Uα), ϕ̃α)}α∈A. By Problem 2(a), the corresponding overlap
maps are given by

hα ◦ h−1
β

(
m, v

)
=

(
m, gαβ(m)v

)
,

where the transition map
gαβ : Uα∩Uβ −→ GLnR

3



is given by
gαβ

(
m
)
= J (ϕα◦ϕ

−1
β )|ϕβ(m).

Problem 3 (5pts)

Show that the tangent bundle TS1 of S1, defined as in 1.25 (p19), is isomorphic to the trivial real
line bundle over S1.

By Lemma 8.5 in Lecture Notes, it is sufficient to show that the vector bundle π : TS1 −→ S1

admits a nowhere-zero section s or vector field, i.e. a smooth family of choices of vm ∈ TmS
1 for

each m∈M . Such a section is given by

s(m) =
∂

∂θ

∣
∣
∣
m
,

where θ is the angle “coordinate”. Formally, let

ψ : R −→ S1 ⊂ C, ψ(θ) = eiθ,

be the standard covering projection. Then, we define the section s of TS1 by

s
(
ψ(θ)

)
= dψ

∣
∣
θ

∂

∂θ
.

This section is well-defined, i.e. depends only on ψ(θ) and not θ. To see this, define

h : R −→ R by h(θ) = θ + 2π.

If ψ(θ)=ψ(θ′), then θ′=hm(θ) for some m∈Z. On the other hand,

dh|θ
∂

∂θ
=

∂

∂θ
=⇒ dhm|θ

∂

∂θ
=

∂

∂θ

=⇒ dψ
∣
∣
θ

∂

∂θ
= d(ψ ◦ hm)

∣
∣
θ

∂

∂θ
= dψ

∣
∣
hm(θ)

◦ dhm|θ
∂

∂θ
= dψ

∣
∣
θ′

∂

∂θ
.

Furthermore, the restriction of ψ to each interval (θ−π, θ+π) is the inverse map for a coordinate
patch (U , ϕ). Then,

ϕ̃
(
s(ψ(θ))

)
≡

(
ϕ
(
π
(
s(ψ(θ)))

)
,
{
s(ψ(θ))

}
(ϕ)

)
=

(

ϕ(ψ(θ)),
{

dψ
∣
∣
θ

∂

∂θ

}

(ϕ)
)

=
(

θ,
∂

∂θ
(ϕ ◦ ψ)

)

=
(

θ,
∂

∂θ
(id)

)

= (θ, 1).

Thus, the section s is smooth and never zero.

Remark: If we view S1 as the circle of radius 1 in R
2, s(m) is the unit vector tangent to S1 at m

and pointing counterclockwise.

Problem 4 (5pts)
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Suppose that f : X−→M is a smooth map and π : V −→M is a smooth vector bundle. The pullback
of V by f , π1 : f

∗V −→X, is the vector bundle defined by taking

f∗V =
{
(x, v)∈X×V : f(x)=π(v)

}
⊂ X×V.

In particular, f∗V is supposed to be a smooth manifold. Show that f∗V is in fact a smooth sub-
manifold of X×V .

Apply PS2-5 with (Y, g)=(V, π). The condition on the differentials there holds because

dvπ : TvV −→ Tπ(v)V

is surjective for all v ∈ V , since on a trivialization of V the map π is the projection on the first
component.

Problem 5 (10pts)

Show that the tautological line bundle γn −→ CPn is indeed a complex line bundle (describe its
trivializations). What is its transition data? Why is it non-trivial for n≥ 1? (not isomorphic to
CPn×C−→CPn as line bundle over CPn)

(a) The topological space γn is Hausdorff and second-countable, being a subspace of such a space.
The vector space structures in the fibers of the projection map

π : γn −→ CPn, π(ℓ, v) = ℓ,

are induced from the vector space structures on the fibers of

π1 : CP
n × C

n+1 −→ CPn.

Below we construct a differentiable structure on γn along with trivializations of γn over each of the
open sets

Ui =
{
[X0, . . . , Xn]∈CPn : Xi 6=0

}
(1)

with i=0, 1, . . . , n.

For each i=0, 1, . . . , n, define

hi : γn
∣
∣
Ui
≡π−1(Ui) −→ Ui× C by hi

(
ℓ, (c0, . . . , cn)

)
=

(
ℓ, ci

)
.

This map is continuous, being a projection map. The inverse map, which is given by

h−1
i

(
[X0, . . . , Xn], c

)
=

(
[X0, . . . , Xn], (cX0/Xi, . . . , cXn/Xi)

)
∈ γn,

is also continuous; it is well-defined because Xi 6=0 on Ui. Thus, hi is a homeomorphism. Further-
more, π1◦ hi=π|γn|Ui

and the restriction of hi to each fiber of π is a vector-space isomorphism. If
i, j=0, 1, . . . , n, the corresponding overlap map

hi ◦ h
−1
j : (Ui∩Uj)× C −→ (Ui∩Uj)× C

5



is given by

hi ◦ h
−1
j

(
[X0, . . . , Xn], c

)
= hi

(
[X0, . . . , Xn], (cX0/Xj , . . . , cXn/Xj)

)

=
(
[X0, . . . , Xn], cXi/Xj

)
=

(
[X0, . . . , Xn], (Xi/Xj)c

)
.

(2)

Since all overlap maps are smooth, the collection {(γn|Ui
, hi)}i=0,1,...,n induces a differentiable struc-

ture on γn such that the projection map π is smooth, as this is the case on the trivializations over Ui.
We conclude that

π : γn −→ CPn

is a smooth complex line bundle, with trivializations {(Ui, hi)}i=0,1,...,n. By (2), the corresponding
overlap maps are given by

hi ◦ h
−1
j

(
ℓ, c

)
=

(
ℓ, gij([X0, . . . , Xn])c

)
,

where the transition map

gij : Ui∩Uj −→ GL1C = C
∗ , gij

(
[X0, . . . , Xn]

)
= Xi/Xj .

(b) In order to show that γn −→ CPn is not isomorphic to the trivial line bundle over CPn, it
is sufficient to show that the complements of the zero sections in the total spaces of the two line
bundles are not homotopy-equivalent. In the case of the trivial line bundle, the complement is
CPn×C

∗; it is homotopy-equivalent to CPn×S1. Since

π1
(
CPn×S1) = π1(CP

n)× π1(S
1) = π1(CP

n)× Z,

CPn×S1 is not simply connected (you can in fact show that π1(CP
n) = 0, but this is irrelevant

here). On the other hand,

γn − s0(CP
n) =

{
(ℓ, v)∈CPn×C

n+1 : v∈ℓ−0
}

is homotopy-equivalent to the sphere (circle) bundle of γn,

S(γn) =
{
(ℓ, v)∈CPn×C

n+1 : v∈ℓ, |v|=1
}
=

{
(ℓ, v)∈CPn×S2n+1 : ℓ=q(v)

}
,

where q : S2n+1−→CPn is the restriction of the quotient projection map C
n+1−0−→CPn. Since

S(γn) is a compact space, S2n+1 is Hausdorff, and the projection π2 : S(γn)−→S2n+1 is a contin-
uous bijection, it follows that π2 is a homeomorphism. Thus, γn − s0(CP

n) is simply connected
(since S2n+1 is for n≥1).

Problem 6 (10pts)

Suppose k<n. Show that the map

ι : CP k −→ CPn, [X0, . . . , Xk] −→ [X0, . . . , Xk, 0, . . . , 0
︸ ︷︷ ︸

n−k

],

6



is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the charts
that determine the complex structures on CP k and CPn). Show that the normal bundle to the
immersion, Nι, is isomorphic to

(n−k)γ∗k ≡ γ∗k ⊕ . . .⊕ γ∗k
︸ ︷︷ ︸

n−k

,

where γk−→CP k is the tautological line bundle (isomorphic as complex line bundles).

For each i=0, 1, . . . , n and j=0, 1, . . . , k, let

Ui =
{
[X0, . . . , Xn]∈CPn : Xi 6=0

}
, U ′

j =
{
[X0, . . . , Xk]∈CP k : Xj 6=0

}
,

ϕi : Ui −→ C
n, ϕi

(
[X0, . . . , Xn]

)
=

(
X0/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi

)
,

ϕ′
j : U

′
j −→ C

k, ϕ′
j

(
[X0, . . . , Xk]

)
=

(
X0/Xj , . . . , Xj−1/Xj , Xj+1/Xj , . . . , Xk/Xj

)
.

The collections

F0 ≡
{
(Ui, ϕi)

}

i=0,1,...,n
and F ′

0 ≡
{
(U ′

j , ϕ
′
j)
}

j=0,1,...,k

of charts determine smooth and complex structures on CPn and CP k; see Problem 3 on PS1. We
will show that the maps on the charts induced by ι,

ϕi ◦ ι ◦ ϕ
′−1
j : ϕ′

j

(
U ′
j∩ι

−1(Ui)
)
−→ ϕi(Ui) ⊂ C

n,

are smooth embeddings that are holomorphic. Since ι(U ′
j) ⊂ Uj , it is sufficient to consider the

case i=j. In this case,

ϕj ◦ ι ◦ ϕ
′−1
j : Ck −→ C

n, (z1, . . . , zk) −→ (z1, . . . , zk, 0, . . . , 0).

Thus, ϕj ◦ ι ◦ ϕ
′−1
j is the holomorphic embedding of Ck into C

n as Ck×0.

It is immediate that the map ι is injective. Since the maps ϕj ◦ι◦ϕ
′−1
j are holomorphic embeddings,

it follows that so is ι. We can thus identify CP k with its image in CPn under ι. Then,

Nι = TCPn|CP k

/
TCP k.

We will show that Nι is isomorphic to (n−k)γ∗k as complex vector bundles over CP k in four different
ways.

(i: use exact sequence) We begin by showing that there exists a short exact sequence of vector
bundles

0 −→ CPn×C
f

−→ (n+1)γ∗n
h

−→ TCPn −→ 0. (3)

First, we construct the bundle map f=(f0, . . . , fn). If ℓ∈CPn and λ∈C, we define

fi(ℓ, λ) ∈ γ∗n by
{
fi(ℓ, λ)

}
(c0, . . . , cn) = λci ∀ (c0, . . . , cn)∈γn|ℓ. (4)

It is immediate that the map fi is linear and f is injective, i.e. the sequence (3) is exact at the first
(nonzero) position. Each map fi is smooth because the map

CPn×C⊕ γn = C× γn −→ C, (λ, c) −→
{
fi(ℓ, λ)

}
(c) = λci,

7



is smooth (it is the restriction of a smooth map on C×CPn×C
n+1 to the submanifold C×γn).

In order to construct the bundle homomorphism h, it is convenient to introduce the functions

zi,j =
Xj

Xi
, j ∈ {0, . . . , n},

on Ui. Then, the coordinates of ϕi are zi,j with j 6= i and

(id, zi) ≡
(
id, zi,0, . . . , zi,n

)
: Ui −→ γn

∣
∣
Ui

⊂ Ui × C
n+1 (5)

is a bundle section of γn over Ui. We can thus define

h : (n+1)γ∗ −→ TCPn by

(p0, . . . , pn) −→
∑

j 6=i

(
pj(ℓ, zi(ℓ))− zi,jpi(ℓ, zi(ℓ))

) ∂

∂zi,j
∀ pl ∈ γ∗ℓ , ℓ∈Ui. (6)

This is a smooth map over Ui since the coefficients of the basis vectors in (6) are smooth functions
on Ui whenever each pi is a smooth section of γ∗n, by definition of the smooth structure in γ∗n and
because the section of γn given by (5) is smooth. Suppose i′ 6= i. Then,

zi′,j′ = z−1
i,i′zi,j′ =⇒

∂

∂zi,j
=

∑

j′ 6=i′

∂zi′,j′

∂zi,j

∂

∂zi′,j′
=







z−1
i,i′

∂
∂zi′,j

, if j 6= i′;

−z−2
i,i′

(
∂

∂zi′,i
+

∑

j′ 6=i,i′
zi,j′

∂
∂zi′,j′

)

, if j= i′;
(7)

see Warner 1.20(c). Since each pl is a linear functional, for j 6= i, i′ the j-th summand in (6) can be
written as

(
z−1
i′,ipj(ℓ, zi′(ℓ))− z−2

i′,izi′,jpi(ℓ, zi′(ℓ))
)
z−1
i,i′

∂

∂zi′,j

=
(
pj(ℓ, zi′(ℓ))− zi,jpi(zi′(ℓ))

) ∂

∂zi′,j
.

(8)

The remaining, j= i′, summand in (6) is equal to

(
z−1
i′,ipi′(ℓ, zi′(ℓ))− z−2

i′,ipi(ℓ, zi′(ℓ))
)
(−z−2

i,i′ )
( ∂

∂zi′,i
+

∑

j 6=i,i′

zi,j
∂

∂zi′,j

)

=
(
pi(ℓ, zi′(ℓ))− zi′,ipi′(ℓ, zi′(ℓ))

)( ∂

∂zi′,i
+

∑

j 6=i,i′

zi,j
∂

∂zi′,j

)

.

(9)

Since zi′,izi,j=zi′,j , collecting similar terms in (8) and (9), we obtain equation (6) with i replaced
by i′. Thus, h is a bundle homomorphism defined everywhere over CPn. It is immediate from (6)
that this homomorphism is surjective and its composition with f is zero. Since the kernel of h must
be one-dimensional, it must then equal the image of f . Thus, the sequence (3) of vector bundles is
indeed exact.

If k≤n, γ∗n|CP k =γ∗k under the above embedding ι : CP k−→CPn. Let

T : (k+1)γ∗k −→ (n+1)γ∗k
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be the bundle homomorphism over CP k including the domain as the first k+1 components of the
image. By (4) and (6), the top two squares in the diagram

0

��

0

��

0

��

0 // CP k×C
f

//

��

(k+1)γ∗k
h

//

T

��

TCP k //

dι
��

0

0 // CP k×C
f

//

��

(n+1)γ∗k
h

//

��

TCPn
∣
∣
CP k

//

��

0

0 // 0

��

// (n−k)γ∗k

��

// Nι

��

// 0

0 0 0

then commute; the rows and columns in this diagram are short exact sequences. By the exactness
of the last row in this diagram, Nι ≈ (n−k)γ∗k .

(ii: construct a vector bundle isomorphism h between the two bundles) First, for each j=k+1, . . . , n,
we define a vector bundle homomorphism

h̃j : TCP
n|CP k −→ γ∗k

as follows. Suppose ℓ∈U ′
i , with i=0, 1, . . . , k, and v∈TℓCP

n. Then, v acts on smooth functions
defined on Ui (on complex-valued functions by linear extension). Thus, we can define

h̃j(v) ∈ γ∗k |ℓ by
{
h̃j(v)

}
(ℓ, c0, . . . , ck) = ci · v(zi,j) ∈ C.

where zi,j=Xj/Xi as in (i) above. The maps

h̃j(v) : γk|ℓ−→C and TℓCP
n|ℓ −→ γ∗k |ℓ, v −→ h̃j(v),

are linear (over C), since for all λ∈C

{
h̃j(v)

}(
λ · (ℓ, c0, . . . , ck)

)
=

{
h̃j(v)

}
(ℓ, λc0, . . . , λck) = λci · v(zi,j);

{
h̃j(λv)

}
(ℓ, c0, . . . , ck) = ci · {λv}(zi,j) = ci · λ · v(zi,j).

If ℓ ∈ U ′
i∩U

′
i′ and (c0, . . . , ck)∈ℓ ⊂ C

k+1, then ci′ =zi,i′(ℓ)ci, zi,j=zi,i′zi′,j , and

ci · v(zi,j) = ci · v(zi,i′zi′,j) = ci ·
(
zi,i′(ℓ) · v(zi′,j) + zi′,j(ℓ) · v(zi,i′)

)
= ci′ · v(zi′,j),

since v is a derivation with respect to the evaluation at ℓ and zi′,j(ℓ)=0 for all ℓ∈U ′
i′ ⊂ CP k and

j>k. Thus, the element h̃j(v)∈γ∗k |ℓ does not depend on i and the bundle homomorphism

h̃j : TCP
n|CP k −→ γ∗k

9



is well-defined over the entire space CP k. If i=0, 1, . . . , k and l 6=0, 1, . . . , n with j 6= i,

{
h̃j(∂/∂zi,l)ℓ

}
(c0, . . . , ck) = ci ·

∂

∂zi,l

∣
∣
∣
∣
∣
ℓ

(zi,j) = ciδjl ∀ ℓ ∈ Ui. (10)

Thus, h̃j takes smooth sections of TCPn|U ′

i
to smooth sections of γ∗k a smooth bundle map. Define

the map
h̃ : TCPn|CP k −→ (n−k)γ∗k by h̃(v) =

(
h̃k+1(v), . . . , h̃n(v)

)
.

By the above, h̃ is a smooth bundle homomorphism. By (10), h̃ is surjective on every fiber and
vanishes on TCP k (which is spanned by the first k coordinate vectors). Thus, h̃ induces a vector
bundle isomorphism

h : Nι = TCPn|CP k

/
TCP k −→ (n−k)γ∗k .

So, the two vector bundles are isomorphic.

(iii: compare transition data) We compare the transition data for the two vector bundles, corre-
sponding to trivializations over U ′

i=CP k∩Ui. By Problem 5, the transition data for the line bundle
γk−→CP k is given by

gij : U
′
i∩U

′
j −→ GL1C=C

∗, [X0, . . . , Xk] −→ Xi/Xj .

Thus, the transition data for the dual line bundle γ∗k−→CP k is given by

(g∗ij)
−1 : U ′

i∩U
′
j −→ GL1C=C

∗, [X0, . . . , Xk] −→ Xj/Xi,

and for the vector bundle (n−k)γ∗k−→CP k by

Gij=(g∗ij)
−1

In−k : U
′
i∩U

′
j −→ GLn−kC, [X0, . . . , Xk] −→ (Xj/Xi)In−k, (11)

where In−k ∈GLn−kC is the identity matrix; see Section 10 in Lecture Notes. By PS1-3(b), the
overlap map between the charts (Ui, ϕi) and (Uj , ϕj) on CPn is

ϕi◦ ϕ
−1
j : ϕj(Ui∩Uj) −→ ϕi(Ui∩Uj), (ϕi◦ ϕ

−1
j )l = zi,l = zj,lzi,j

{

zl/zi, if l>i>j;

zl/zi+1, if l>j>i.
(12)

By the complex analogue of Problem 2, the transition data for the vector bundle TCPn is given by

hij : Ui∩Uj −→ GLnC, hij(ℓ) = J
(
ϕi◦ ϕ

−1
j

)

ϕj(ℓ)
.

By (12), the (l,m)-entry of hij with i, j≤k and l,m>k is

(
hij([X0, . . . , Xn])

)

lm
= δlmzi,j . (13)

The local charts (U ′
i , ϕ

′
i) for CP

k are are given by

U ′
i = Ui ∩ CP k and ϕ′

i = π ◦ ϕi|U ′

i
,

10



where π : C
n −→ C

k is the projection on the first k components. Thus, the upper-left k×k
submatrix of hij |U ′

i∩U
′

j
gives transition data for the subbundle TCP k of TCPn|CP k and the lower-

right (n−k)×(n−k) submatrix of hij |U ′

i∩U
′

j
gives transition data for the quotient vector bundle

Nι = TCPn|CP k

/
TCP k;

see Section 10 in Lecture Notes. By (13), the data for Nι is then

Hij : U
′
i∩U

′
j −→ GLn−kC, ℓ −→ zi,j(ℓ)In−k.

Along with (11), this implies that the bundle Nι and (n−k)γ∗k are isomorphic.

(iv: identify neighborhoods) We will construct a biholomorphism

f : (n−k)γ∗k −→W

onto a neighborhood W of CP k in CPn such that

f(0ℓ) = ℓ ∀ ℓ ∈ CP k,

where 0ℓ∈(n−k)γ∗k |ℓ is the zero vector. By the general lemma stated below, the existence of such
a diffeomorphism implies that (n−k)γ∗k and Nι are isomorphic as complex vector bundles. Define

f : (n−k)γ∗k −→
i=k⋃

i=0

Ui ⊂ CPn by

f
(
[X0, . . . , Xk], αk+1, . . . , αn) =

[
X0, . . . , Xk, αk+1(X0, . . . , Xk), . . . , αn(X0, . . . , Xk)

]
.

Since (X0, . . . , Xk) is defined up to multiplication by C
∗, the map f is well-defined. It is immediate

that f is bijective and takes (n−k)γ∗k |U ′

i
to Ui. Holomorphic charts on (n−k)γ∗k |U ′

i
are induced by

the charts on γk|U ′

i
of Problem 5 and are given by

ϕ̃i : (n−k)γ
∗
k |Ui

−→ C
k × C

n−k,

(
ϕ̃i(ℓ, αk+1, . . . , αn)

)

l
=

{(
ϕi(ℓ)

)

l
, if l≤k;

αl(ℓ, zi,0(ℓ), . . . , zi,n(ℓ)), if l>k,

where zi,j=Xj/Xi as in (i) above. The map between these charts induced by f is

ϕi ◦ f ◦ ϕ̃−1
i : Cn −→ C

n

is the identity and thus biholomorphic.

Lemma Suppose M is an embedded submanifold of N and V −→M is a vector bundle. If there
exists a diffeomorphism between neighborhoods W and W ′ of M in V and in N , respectively,

f :W −→W ′ s.t. f(p)=p ∀ p∈M,

then V is isomorphic to the normal bundle N of M in N . If in addition, N is a complex manifold,
M is a complex submanifold, V −→M is a complex vector bundle, and the linear map

dpf : TpV/TpM −→ TpN/TpM

11



is C-linear for all p∈M , then V and N are isomorphic as complex vector bundles.

Remark: Recall from Section 8 in Lecture Notes that M can be viewed as the zero section in V .

Proof: Let V −→ M be a (complex) vector bundle. If v ∈ V , let αv : I −→ V be the curve
αv(t) = tv ∈ V . Then, the map

V −→ TV |M
/
TM, v −→ α′

v(0) + Tπ(v)M,

is an isomorphism of (complex) vector bundles, as this is the case in any trivialization of V . On
the other hand, if f is a diffeomorphism that maps the submanifold M of V to the submanifold M
of N , then the differential

df |M : TV |M −→ TN |M

is an isomorphism that restricts to the identity on TM . Thus, df |M induces an isomorphism

TV |M/TM −→ TN |M
/
TM = N (14)

of vector bundles over M . If V , TN , and TM are complex bundles and df |M is C-linear (as is the
case if f is a holomorphic map between complex manifolds), then the bundle isomorphism between
the quotient bundles above is also C-linear. Combining (14) with the first isomorphism, we obtain
the lemma.

Problem 7 (10pts)

Let Λn
C
TCPn −→CPn be the top exterior power of the vector bundle TCPn taken over C. Show

that Λn
C
TCPn is isomorphic to the line bundle

γ∗⊗(n+1)
n ≡ γ∗n ⊗ . . .⊗ γ∗n

︸ ︷︷ ︸

n+1

,

where γn−→CPn is the tautological line bundle (isomorphic as complex line bundles).

We will show that this is the case in three different ways.

(i: use exact sequence) By the short exact sequence (3),

γ∗⊗(n+1)
n = Λn+1

C

(
(n+1)γ∗n

)
= Λtop

C

(
(n+1)γ∗n

)
≈ Λtop

C

(
CPn×C

)
⊗ Λtop

C
TCPn

= Λ1
C

(
CPn×C

)
⊗ Λn

CTCP
n ≈ Λn

CTCP
n,

as claimed.

For approaches (ii) and (iii), let

Ui =
{
[X0, . . . , Xn]∈CPn : Xi 6=0

}
, ϕi, zi,j : Ui −→ C

n,

zi,j
(
[X0, . . . , Xn]

)
=
Xj

Xi
, ϕi(ℓ) =

(
zi,0(ℓ), . . . , zi,i−1(ℓ), zi,i+1(ℓ), . . . , zi,n(ℓ)

)
,

12



as before. The collection F0≡
{
(Ui, ϕi)

}

i=0,1,...,n
of charts determines smooth and complex struc-

tures CPn.

(ii: construct a vector bundle isomorphism h between the two bundles) We begin by constructing
an alternating linear map

h̃ : nTCPn −→ γ∗⊗(n+1)
n

as follows. Suppose ℓ ∈ Ui, with i = 0, 1, . . . , n, and v = (v1, . . . , vn) ∈ nTℓCP
n. Then, each

component vm of v acts on functions defined on Ui (on complex functions by linear extension).
Thus, we can define

h̃(v) ∈ γ∗⊗(n+1)
n |ℓ by

{
h̃(v)

}
(ℓ, c0, . . . , cn)

⊗(n+1) = (−1)icn+1
i det

(
Ai(v)

)
∈ C,

where
(
Ai(v)

)

jm
=

{

vm(zi,j−1), if j≤ i;

vm(zi,j), if j>i.

The map
h̃(v) : γ⊗(n+1)

n |ℓ−→C

is linear (over C), since for all λ∈C

{
h̃(v)

}(
λ · (ℓ, c0, . . . , cn)

)⊗(n+1)
=

{
h̃(v)

}
(ℓ, λc0, . . . , λcn)

⊗(n+1)

= (λci)
n+1 · det

(
Ai(v)

)
= λn+1 ·

{
h̃(v)

}
(ℓ, c0, . . . , cn)

⊗(n+1).

Since the map v−→Ai(v) is linear in each component of v (the determinant of a matrix is linear
in each column), the map

nTℓCP
n|ℓ −→ γ∗⊗(n+1)

n |ℓ, (v1, . . . , vn) −→ h̃(v1, . . . , vn),

is multilinear. If ℓ∈Ui∩Ui′ , then

vm(zi,i′) = vm(z−1
i′,i) = −

(
zi,i′(ℓ)

)2
vm(zi′,i) ,

vm(zi,j) = vm(zi,i′zi′,j) = zi,i′(ℓ) · vm(zi′,j) + zi′,j(ℓ) · vm(zi,i′) .

Thus, if i′<i, then

Ai(v)(i′+1)m = −
(
zi,i′(ℓ)

)2
Ai′(v)im ;

Ai(v)jm = zi,i′(ℓ) ·

{

Ai′(v)jm, if j≤ i′ or j>i

Ai′(v)(j−1)m, if i′+2≤j≤ i
+Ai(v)(i′+1)m

{

zi′,j−1(ℓ), if j≤ i;

zi′,j(ℓ), if j>i.

(15)

Since adding a multiple of a row (row #(i′+1) in this case) to another row does not change the
determinant, the last term in (15) has no effect on det(Ai(v)). Since moving row #i (in the matrix
Ai′(v)) “up” to make it row #(i′+1) and shifting rows #(i′+1) through #(i−1) “down” by 1
(increasing their row number by 1) multiples the determinant by (−1)i−(i′+1), by (15)

det
(
Ai(v)

)
= (−1)i+i′

(
zi,i′(ℓ)

)n+1
det

(
Ai′(v)

)
.

If in addition (c0, . . . , cn) ∈ ℓ, then ci′ = zi,i′(ℓ)ci. Therefore,

(−1)icn+1
i det

(
Ai(v)

)
= (−1)icn+1

i · (−1)i+i′
(
zi,i′(ℓ)

)n+1
det

(
Ai′(v)

)
= (−1)i

′

cn+1
i′ det

(
Ai′(v)

)
.
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Thus, the bundle homomorphism

h̃ : nTCPn −→ γ∗⊗(n+1)
n

is well-defined over the entire space CPn. If i=0, 1, . . . , n and ℓ∈Ui,

Ai

(
∂

∂zi,0

∣
∣
∣
∣
ℓ

, . . . ,
∂

∂zi,i−1

∣
∣
∣
∣
ℓ

,
∂

∂zi,i+1

∣
∣
∣
∣
ℓ

, . . . ,
∂

∂zi,n

∣
∣
∣
∣
ℓ

)

= det I = 1.

Thus,

{
h̃
(
(∂/∂zi,0)ℓ, . . . , (∂/∂zi,i−1)ℓ, (∂/∂zi,i+1)ℓ, . . . (∂/∂zi,n)ℓ

)}
(ℓ, c0, . . . , cn) = (−1)icn+1

i . (16)

A permutation of the coordinate vectors on LHS above would change RHS by the sign of the
permutation; if any two of the inputs on LHS were the same, RHS would be 0. Thus, h̃ takes

smooth sections of nTCPn to smooth secrions of γ
∗⊗(n+1)
n , and so is smooth. By (16), the restriction

of h̃ to every fiber is nonzero and thus surjective (because the range is one-dimensional). Since
the determinant is an alternating function of the columns, h̃ is an alternating multi-linear map
between vector bundles. It follows that h̃ descends to a surjective bundle homomorphism

h : Λn
CTCP

n −→ γ∗⊗(n+1)
n .

Since the domain of h is a line bundle, h must then be a vector-bundle isomorphism. This is
precisely the isomorphism of (i).

(iii: compare transition data) We compare the transition data for the two vector bundles, corre-
sponding to trivializations over Ui. Using the trivializations {hi} for γn−→CPn of Problem 5, the
transition data for γn is given by

gij=zj,i : Ui∩Uj −→ GL1C=C
∗, [X0, . . . , Xn] −→ Xi/Xj .

Thus, the transition data for the dual line bundle γ∗n−→CPn is given by

(g∗ij)
−1=zi,j : Ui∩Uj −→ GL1C=C

∗, [X0, . . . , Xn] −→ Xj/Xi,

and for the line bundle γ
∗⊗(n+1)
n −→CPn by

(
(g∗ij)

−1
)n+1

=zn+1
i,j : Ui∩Uj −→ C

∗, [X0, . . . , Xn] −→ (Xj/Xi)
n+1;

see Section 10 in Lecture Notes. These transition data correspond to the trivializations
(
(h∗i )

−1
)⊗(n+1)

induced by hi. However, for the present purposes it is convenient to compose each of these triv-
ialization with multiplication by (−1)i (in light of (16), these transition maps correspond to the
standard transition maps for TCPn via the isomorphism of (i) and (ii) above). Then, the transition
maps are modified by (−1)i+j and become

Gij=(−1)i+jzn+1
i,j : Ui∩Uj −→ C

∗, [X0, . . . , Xn] −→ (−1)i+j(Xj/Xi)
n+1. (17)
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By PS1-3(b), if j<i the overlap map between coordinate charts (Ui, ϕi) and (Uj , ϕj) on CPn is

ϕi◦ ϕ
−1
j : ϕj(Ui∩Uj) −→ ϕi(Ui∩Uj), (ϕi◦ ϕ

−1
j )l =







zl/zi, if l≤j or l>i;

1/zi, if l=j+1;

zl−1/zi, if j+2≤ l≤ i.

(18)

By the complex analogue of Problem 3 on PS2, the transition data for the vector bundle TCPn is
given by

hij : Ui∩Uj −→ GLnC, hij(ℓ) = J
(
ϕi◦ ϕ

−1
j

)

ϕj(ℓ)
.

Since the (complex) rank of the vector bundle TCPn is n, the transition data for the line bundle
Λn
C
TCPn is given by the determinant of the transition data for TCPn:

Hij : Ui∩Uj −→ GL1C = C
∗, ℓ −→ detJ

(
ϕi◦ ϕ

−1
j

)

ϕj(ℓ)
;

see Section 10 in Lecture Notes. By (18), the only entry in the (j+1)-st row of J
(
ϕi◦ ϕ

−1
j

)

ϕj(ℓ)
is

in the i-th column and equals −1/z2i . Once the (j+1)-st row and i-th column are crossed out, we
are left with the matrix (1/zi)In−1. Thus,

Hij(ℓ) = det
(
J
(
ϕi◦ ϕ

−1
j

)

ϕj(ℓ)

)
= (−1)i+j+1(−1/z2i )(1/zi)

n−1

= (−1)i+j(1/zj,i)
n+1 = (−1)i+jzn+1

i,j .

Since Hij=H
−1
ji , this formula applies to i<j as well. Along with (17), the above expression implies

that the line bundles Λn
C
TCPn and γ

∗⊗(n+1)
n are isomorphic.
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