MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 2

Problem 1: Chapter 1, #10 (5pts)

Suppose M is a compact nonempty manifold of dimension n and $f: M \longrightarrow \mathbb{R}^n$ is a smooth map. Show that f is not an immersion (i.e. $df|_m$ is not injective for some $m \in M$.

Solution 1 (direct): We first notice that if $h: M \longrightarrow \mathbb{R}$ is a smooth map and reaches its maximum at some $m \in M$ (which need not exist in general), then $dh|_m = 0$. If (\mathcal{U}, φ) is a coordinate chart near m, then

$$h \circ \varphi^{-1} \colon \varphi(\mathcal{U}) \longrightarrow \mathbb{R}$$

is a smooth map that reaches its maximum at $\varphi(m)$. Thus,

$$\frac{\partial(h\circ\varphi^{-1})}{\partial x_i} = 0 \quad \forall i = 1,\dots,n \qquad \Longrightarrow \qquad dh|_m = \sum_{i=1}^n \left(\frac{\partial(h\circ\varphi^{-1})}{\partial x_i}\right) dx_i = 0.$$

Suppose next that $f: M^n \longrightarrow \mathbb{R}^n$ is smooth and $r_1: \mathbb{R}^n \longrightarrow \mathbb{R}$ is the projection onto the first component. Since r_1 is a smooth map, so is

$$r_1 \circ f \colon M \longrightarrow \mathbb{R}.$$

Since M is compact, $r_1(f(M))$ is a closed bounded subset of \mathbb{R} and thus $r_1 \circ f$ reaches its maximum at some point $m \in M$. By the above,

$$dr_1|_{f(m)} \circ df|_m = d(r_1 \circ f)|_m = 0.$$

Since the linear map

$$dr_1|_{f(m)} \colon T_{f(m)} \mathbb{R}^n = \mathbb{R}^n \longrightarrow T_{r_1(f(m))} \mathbb{R} = \mathbb{R}$$

is surjective (being projection onto the first component), the linear map

$$df|_m: T_m M \longrightarrow T_{f(m)} \mathbb{R}^r$$

is not surjective. Since the dimension of $T_m M$ is n, it follows that $df|_m$ is not injective either.

Solution 2 (via Inverse FT): Suppose $f: M^n \longrightarrow \mathbb{R}^n$ is an immersion. Since for every $m \in M$, the linear map

$$df|_m: T_m M \longrightarrow T_{f(m)} \mathbb{R}^n$$

is injective, $df|_m$ is an isomorphism. Thus, by the Inverse Function Theorem, for every $m \in M$ there exist open neighborhoods \mathcal{U}_m of m in M and V_m of f(m) in \mathbb{R}^n such that

$$f|_{\mathcal{U}_m}: U_m \longrightarrow V_m$$

is a diffeomorphism. In particular,

$$f(M) = \bigcup_{m \in M} V_m \subset \mathbb{R}^n$$

is an open subset of \mathbb{R}^n . On the other hand, if M is compact, then so is f(M). Since \mathbb{R}^n is Hausdorff, f(M) is then a closed subset of \mathbb{R}^n . Since \mathbb{R}^n is connected and f(M) is open and closed, f(M)is either empty or the entire space \mathbb{R}^n . The former is impossible if M is not empty; the latter is impossible because f(M) is compact, while \mathbb{R}^n is not.

Problem 2: Chapter 1, #7 (10pts)

Suppose N is a smooth manifold, A is a subset of N, and $\iota: A \longrightarrow N$ is the inclusion map.

- (a) Let \mathcal{T} be a topology on A. Show that there exists at most one differentiable structure \mathcal{F} on (A, \mathcal{T}) such that $\iota: (A, \mathcal{F}) \longrightarrow N$ is a submanifold of N (i.e. ι is smooth and $d\iota|_a$ is injective for all $a \in A$).
- (b) Let \mathcal{T} be the subspace topology on A (induced from the topology of N). Suppose (A, \mathcal{T}) admits a smooth structure \mathcal{F} such that $\iota: (A, \mathcal{F}) \longrightarrow N$ is a submanifold of N. Show that there exists no other manifold structure $(\mathcal{T}', \mathcal{F}')$ such that $\iota: (A, \mathcal{F}') \longrightarrow N$ is a submanifold of N.
- (a) Suppose \mathcal{F} and \mathcal{F}' are smooth structures on (A, \mathcal{T}) such that the maps

$$\iota: (A, \mathcal{F}) \longrightarrow N$$
 and $\iota: (A, \mathcal{F}') \longrightarrow N$

are immersions. The map id : $(A, \mathcal{F}') \longrightarrow (A, \mathcal{F})$ is a homeomorphism (and thus continuous) and $\iota = \iota \circ id$:

Since $\iota: (A, \mathcal{F}) \longrightarrow N$ is a submanifold and $\iota: (A, \mathcal{F}') \longrightarrow N$ is smooth, by Theorem 1.32 the map

$$\mathrm{id}\colon (A,\mathcal{F}') \longrightarrow (A,\mathcal{F})$$

is smooth. Similarly, the map id: $(A, \mathcal{F}) \longrightarrow (A, \mathcal{F}')$ is smooth. Thus, the map

$$\operatorname{id}: (A, \mathcal{F}') \longrightarrow (A, \mathcal{F})$$

is a diffeomorphism. Since \mathcal{F} and \mathcal{F}' are maximal with respect to the smooth-overlap condition, it follows that $\mathcal{F} = \mathcal{F}'$.

(b) Suppose $(\mathcal{T}', \mathcal{F}')$ is a manifold structure on A such that the map

$$\iota \colon (A, \mathcal{F}') \longrightarrow N$$

is a submanifold of N. The map $\iota: (A, \mathcal{T}) \longrightarrow N$ is a topological embedding and $\iota: (A, \mathcal{T}') \longrightarrow N$ is continuous:

Thus, the map id : $(A, \mathcal{T}') \longrightarrow (A, \mathcal{T})$ is continuous. Since $\iota : (A, \mathcal{T}) \longrightarrow N$ is a submanifold, by Theorem 1.32 the map

$$\operatorname{id}: (A, \mathcal{T}', \mathcal{F}') \longrightarrow (A, \mathcal{T}, \mathcal{F})$$

is then smooth. Since the map

$$\iota = \iota \circ \mathrm{id} \colon (A, \mathcal{T}', \mathcal{F}') \longrightarrow (A, \mathcal{T}, \mathcal{F}) \longrightarrow N$$

is an immersion, so is the map

$$\operatorname{id}: (A, \mathcal{T}', \mathcal{F}') \longrightarrow (A, \mathcal{T}, \mathcal{F}).$$

Since it is bijective, by Problem 4 on PS1 id is a diffeomorphism. We conclude that $\mathcal{T}' = \mathcal{T}$ and $\mathcal{F}' = \mathcal{F}$.

Problem 3 (15pts)

(a) For what values of $t \in \mathbb{R}$, is the subspace

$$\{(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}:x_1^2+\ldots+x_n^2-x_{n+1}^2=t\}$$

a smooth embedded submanifold of \mathbb{R}^{n+1} ?

(b) For such values of t, determine the diffeomorphism type of this submanifold (i.e. show that it is diffeomorphic to something rather standard).

(a) Let $f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be the smooth map given by

$$f(\mathbf{x}) = x_1^2 + \ldots + x_n^2 - x_{n+1}^2$$
 if $\mathbf{x} = (x_1, \ldots, x_n)$.

Then, $S_t = f^{-1}(t)$. The differential of f,

$$\mathbf{d}_{\mathbf{x}}f: T_{\mathbf{x}}\mathbb{R}^{n+1} \longrightarrow T_{f(\mathbf{x})}\mathbb{R} = \mathbb{R},$$

is given by

$$\mathbf{d}_{\mathbf{x}}f = \left(\frac{\partial f}{\partial x_1}\right)\mathbf{d}_{\mathbf{x}}x_1 + \ldots + \left(\frac{\partial f}{\partial x_{n+1}}\right)\mathbf{d}_{\mathbf{x}}x_{n+1} = 2x_1\mathbf{d}_{\mathbf{x}}x_1 + \ldots + 2x_n\mathbf{d}_{\mathbf{x}}x_n - 2x_{n+1}\mathbf{d}_{\mathbf{x}}x_{n+1}.$$

Since the target space of $d_{\mathbf{x}}f$ is a one-dimensional vector space, $d_{\mathbf{x}}f$ is surjective if and only if $d_{\mathbf{x}}f$ is nonzero. Since $\{d_{\mathbf{x}}x_i\}$ is a basis for $T^*_{\mathbf{x}}\mathbb{R}^{n+1}$, it follows that $d_{\mathbf{x}}f$ is surjective if and only $\mathbf{x}\neq\mathbf{0}$. If $t\neq 0$, then $\mathbf{0}\notin S_t$. Thus, $d_{\mathbf{x}}f$ is surjective for all $\mathbf{x}\in S_t$ and S_t is an embedded submanifold of \mathbb{R}^{n+1} of dimension

$$\dim S_t = \dim \mathbb{R}^{n+1} - \dim \mathbb{R} = n$$

by the Implicit Function Theorem if $t \neq 0$.

The differential of f vanishes at $0 \in S_0$ and the Implicit FT does not determine whether

$$S_0 = \left\{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \colon x_1^2 + \dots + x_n^2 = x_{n+1}^2 \right\}$$

is an embedded submanifold or not. The only potentially singular (non-smooth) point of S_0 is **0**. To see what S_0 looks like, consider the case n=1:

$$S_0 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \colon x_1^2 = x_2^2 \right\} = \left\{ (x_1, x_2) \in \mathbb{R}^2 \colon |x_1| = |x_2| \right\}.$$

Thus, if n=1, S_0 is the union of the lines $x_1 = \pm x_2$ through the origin:

In general, the cross-section of S_0 by the hyperplane $x_{n+1} = s$ is an (n-1)-sphere of radius |s| or a single point if s = 0. Thus, S_0 is a union of 2 cones with the vertex at the the origin. This implies that **0** is not a smooth point of S_0 . In fact, it is not even a manifold point in the topological sense, i.e. there exists no open neighborhood U of **0** in \mathbb{R}^{n+1} such that $S_0 \cap U$ is homeomorphic to an open subset of \mathbb{R}^k for some k. In summary, S_t is a smooth embedded submanifold of \mathbb{R}^{n+1} if and only if $t \neq 0$.

Remark: Here is how to see formally that if U is a neighborhood of **0** in \mathbb{R}^{n+1} and V is an open subset of \mathbb{R}^k , then $S_0 \cap U$ and V are not homeomorphic. It is enough to assume that U and V are both connected. By the Implicit Function Theorem, $S_0 - \mathbf{0}$ is a smooth embedded submanifold of \mathbb{R}^{n+1} of dimension n. Thus, we can also assume that k = n. If n > 1, then the complement of any point in V is connected. However, $(S_0 - \mathbf{0}) \cap U$ is not connected:

$$S_0 - \mathbf{0} = (S_0 - \mathbf{0}) \cap U_+ \cup (S_0 - \mathbf{0}) \cap U_- \quad \text{where}$$
$$U_+ = \{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \colon x_{n+1} > 0 \} \quad \text{and} \quad U_- = \{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \colon x_{n+1} < 0 \}.$$

Thus, $S_0 \cap U$ and V are not homeomorphic. If n=1, V must be an open interval and the complement of a point in V has exactly two components. On the other hand, $(S_0 - \mathbf{0}) \cap U$ has (at least) four components:

$$S_0 - \mathbf{0} = (S_0 - \mathbf{0}) \cap U_{++} \cup (S_0 - \mathbf{0}) \cap U_{+-} \cup (S_0 - \mathbf{0}) \cap U_{-+} \cup (S_0 - \mathbf{0}) \cap U_{--},$$

where $U_{\pm\pm} = \{(x_1, x_2) \in \mathbb{R}^2 : \pm x_1 > 0, \pm x_2 > 0\}.$

Thus, $S_0 \cap U$ and V are again not homeomorphic.

(b) Suppose t > 0. Then, the set of solutions of the equation

$$x_1^2 + \ldots + x_n^2 = t + x_{n+1}^2, \qquad (x_1, \ldots, x_n) \in \mathbb{R}^n,$$

with x_{n+1} fixed is an (n-1)-sphere (this is not the case for every x_{n+1} if $t \leq 0$). Thus, we expect that S_t is diffeomorphic to $S^{n-1} \times \mathbb{R}$, with the second component given by x_{n+1} . Define

$$\psi \colon \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n \times \mathbb{R}$$
 by $\psi(x_1, \dots, x_{n+1}) = \left(\frac{(x_1, \dots, x_n)}{\sqrt{t + x_{n+1}^2}}, x_{n+1}\right).$

Since t > 0, this map is smooth. In fact, it is a diffeomorphism:

$$\psi^{-1}(y_1,\ldots,y_{n+1}) = \left(\sqrt{t+y_{n+1}^2}(y_1,\ldots,y_n),y_{n+1}\right).$$

Since S_t is a submanifold of \mathbb{R}^{n+1} , $\psi|_{S_t}$ is also smooth. Furthermore,

$$\psi(S_t) \subset S^{n-1} \times \mathbb{R}.$$

Since $S^{n-1} \times \mathbb{R}$ is an *embedded* submanifold of $\mathbb{R}^n \times \mathbb{R}$,

$$\psi|_{S_t}: S_t \longrightarrow S^{n-1} \times \mathbb{R}$$

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

$$\psi|_{S_t} \colon S_t \longrightarrow S^{n-1} \times \mathbb{R}$$

is an injective immersion. Since $\psi^{-1}(S^{n-1} \times \mathbb{R}) \subset S_t$ (i.e. $f(\psi^{-1}(\mathbf{y})) = t$ for all $\mathbf{y} \in S^{n-1} \times \mathbb{R}$), this map is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

$$\psi|_{S_t}: S_t \longrightarrow S^{n-1} \times \mathbb{R}$$

is a diffeomorphism.

Suppose t < 0. Then, the set of solutions of the equation

$$x_{n+1}^2 = -t + x_1^2 + \ldots + x_n^2, \qquad x_{n+1} \in \mathbb{R},$$

with x_1, \ldots, x_n fixed is two distinct points, i.e. S^0 (this is not the case for every (x_1, \ldots, x_n) if $t \ge 0$). Thus, we expect that S_t is diffeomorphic to $\mathbb{R}^n \times S^0$ ($\mathbb{R}^n \sqcup \mathbb{R}^n$), with the first component given by (x_1, \ldots, x_n) . Define

$$\psi \colon \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n \times \mathbb{R}$$
 by $\psi(x_1, \dots, x_{n+1}) = \left((x_1, \dots, x_n), \frac{x_{n+1}}{\sqrt{-t + x_1^2 + \dots + x_n^2}} \right).$

Since t < 0, this map is smooth. In fact, it is a diffeomorphism:

$$\psi^{-1}(y_1,\ldots,y_{n+1}) = ((y_1,\ldots,y_n), \sqrt{-t + x_1^2 + \ldots + x_n^2} y_{n+1}).$$

Since S_t is a submanifold of \mathbb{R}^{n+1} , $\psi|_{S_t}$ is also smooth. Furthermore,

$$\psi(S_t) \subset \mathbb{R}^n \times S^0.$$

Since $\mathbb{R}^n \times S^0$ is an *embedded* submanifold of $\mathbb{R}^n \times \mathbb{R}$,

$$\psi|_{S_t}: S_t \longrightarrow \mathbb{R}^n \times S^0$$

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

$$\psi|_{S_t}: S_t \longrightarrow \mathbb{R}^n \times S^0$$

is an injective immersion. Since $\psi^{-1}(\mathbb{R}^n \times S^0) \subset S_t$ (i.e. $f(\psi^{-1}(\mathbf{y})) = t$ for all $\mathbf{y} \in \mathbb{R}^n \times S^0$), this map is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

$$\psi|_{S_t}: S_t \longrightarrow \mathbb{R}^n \times S^0$$

is a diffeomorphism.

In summary, S_t is diffeomorphic to $S^{n-1} \times \mathbb{R}$ if t > 0 and to $\mathbb{R}^n \sqcup \mathbb{R}^n$ if t < 0.

Remark: The above argument assumed that $n \ge 1$. If n = 0, S_t is the empty set if t > 0, consists of one point if t = 0, and consists of two points if t < 0. All are zero-dimensional manifolds.

Problem 4 (10pts)

Show that the special unitary group

$$SU_n = \{A \in \operatorname{Mat}_n \mathbb{C} : \overline{A}^t A = \mathbb{I}_n, \det A = 1\}$$

is a smooth compact manifold. What is its dimension?

We will use the Implicit Function Theorem to show that the unitary group

$$U_n = \left\{ A \in \operatorname{Mat}_n \mathbb{C} \colon \bar{A}^t A = \mathbb{I}_n \right\}$$

is a compact embedded submanifold of $\operatorname{Mat}_n \mathbb{C}$ (which is diffeomorphic to \mathbb{R}^{2n^2}) and SU_n is a closed embedded submanifold of U_n .

First, for each $B \in \operatorname{Mat}_n \mathbb{C}$, let

$$L_B: \operatorname{Mat}_n \mathbb{C} \longrightarrow \operatorname{Mat}_n \mathbb{C}, \qquad L_B(A) = BA,$$

be the left-multiplication map. It is smooth (being a linear transformation) on \mathbb{C}^{n^2} .

Let Her_n denote the space of Hermitian $n \times n$ matrices:

$$\operatorname{Her}_{n} = \left\{ A \in \operatorname{Mat}_{n} \mathbb{C} : \bar{A}^{t} = A \right\}.$$

Since Her_n is a linear subspace of \mathbb{R}^{2n^2} (it is defined by a linear equation on the coefficients), Her_n is an embedded submanifold of $\operatorname{Mat}_n \mathbb{C}$. Define

$$f: \operatorname{Mat}_n \mathbb{C} \longrightarrow \operatorname{Mat}_n \mathbb{C}$$
 by $f(A) = \overline{A}^t A$.

Since f is a polynomial map in the coefficients of A, f is smooth. Furthermore,

$$f(\operatorname{Mat}_n \mathbb{C}) \subset \operatorname{Her}_n$$
.

Since Her_n is an embedded submanifold of $\operatorname{Mat}_n \mathbb{C}$, the map

$$g: \operatorname{Mat}_n \mathbb{C} \longrightarrow \operatorname{Her}_n \mathbb{C}, \qquad g(A) = f(A),$$

is smooth. We will show that \mathbb{I}_n is a regular value for g (it is not for f), i.e. $d_A g$ is surjective for all

$$A \in g^{-1}(\mathbb{I}_n) = U_n$$

First, we show that

$$\mathrm{d}_{\mathbb{I}_n}g:T_{\mathbb{I}_n}\mathrm{Mat}_n\mathbb{C}\longrightarrow T_{\mathbb{I}_n}\mathrm{Her}_n$$

is surjective. For each $B \in \operatorname{Mat}_n \mathbb{C}$, define

$$\alpha_B \colon \mathbb{R} \longrightarrow \operatorname{Mat}_n \mathbb{C} \qquad \text{by} \qquad \alpha_B(s) = \mathbb{I}_n + sB.$$

Then, α_B is a smooth curve in $\operatorname{Mat}_n \mathbb{C}$ so that $\alpha_B(0) = \mathbb{I}_n$. In particular,

$$\alpha'_B(0) = \mathrm{d}_B \alpha \big|_0 \frac{\mathrm{d}}{\mathrm{d}s} \in T_{\mathbb{I}_n} \mathrm{Mat}_n \mathbb{C}.$$

Furthermore,

$$d_{\mathbb{I}_n}g(\alpha'_B(0)) = d_{\mathbb{I}_n}g\left(d_0\alpha_B\left(\frac{\mathrm{d}}{\mathrm{d}s}\right)\right) = d_0(g \circ \alpha_B)\left(\frac{\mathrm{d}}{\mathrm{d}s}\right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}s}g(\alpha_B(s))\big|_{s=0} = \frac{\mathrm{d}}{\mathrm{d}s}(\mathbb{I}_n + s\bar{B}^t)(\mathbb{I}_n + sB)\big|_{s=0} = \bar{B}^t + B \in \mathrm{Her}_n = T_{\mathbb{I}_n}\mathrm{Her}_n.$$

In particular, the map

$$d_{\mathbb{I}_n}g:\left\{\alpha'_B(0)\colon B\in \mathrm{Her}_n\right\}\longrightarrow T_{\mathbb{I}_n}\mathrm{Her}_n, \qquad d_{\mathbb{I}_n}g\big(\alpha'_B(0)\big)=2B,$$

is surjective, and thus so is $d_{\mathbb{I}_n}g$. On the other hand, if $B \in g^{-1}(\mathbb{I}_n)$, then

$$g(L_B(A)) = g(BA) = \overline{BA}^t(BA) = \overline{A}^t \overline{B}^t BA = \overline{A}^t A = g(A) \quad \forall A \in \operatorname{Mat}_n \mathbb{C} \implies g = g \circ L_B$$
$$\implies \quad \operatorname{d}_{\mathbb{I}_n} g = \operatorname{d}_{L_B(\mathbb{I}_n)} g \circ \operatorname{d}_{\mathbb{I}_n} L_B \colon T_{\mathbb{I}_n} \operatorname{Mat}_n \mathbb{C} \longrightarrow T_B \operatorname{Mat}_n \mathbb{C} \longrightarrow T_{\mathbb{I}_n} \operatorname{Her}_n.$$

Since $d_{\mathbb{I}_n}g$ is surjective, it follows that so is d_Bg , for all $B \in U_n$, i.e. \mathbb{I}_n is a regular value for g. Thus, by the Implicit FT, $U_n = g^{-1}(\mathbb{I}_n)$ is an embedded submanifold of $\operatorname{Mat}_n \mathbb{C}$ of dimension

$$\dim U_n = \dim \operatorname{Mat}_n \mathbb{C} - \dim \operatorname{Her}_n = 2n^2 - (2n(n-1)/2 + n) = n^2$$

(the condition $\bar{A}^t = A$ defining Her_n means that the n(n-1)/2 above-diagonal complex entries can be chosen freely and determine the below-diagram entries, and the diagonal entries must be real). The subspace U_n of $\operatorname{Mat}_n \mathbb{C}$ is compact because it is closed (preimage of a point under a continuous map into a T1-space) and bounded in the *standard* metric on \mathbb{R}^{2n^2} (the condition $\bar{A}^t A = \mathbb{I}_n$ implies that the length of each row and column of A is 1).

We now show that SU_n is an embedded submanifold of U_n . Define

$$\psi \colon \operatorname{Mat}_n \mathbb{C} \longrightarrow \mathbb{C}$$
 by $\psi(A) = \det A$.

Since ψ is a polynomial in the entries, it is a smooth function. Since U_n is a submanifold of $\operatorname{Mat}_n \mathbb{C}$, $\psi|_{U_n}$ is also smooth. Furthermore,

$$A \in U_n \implies 1 = \det \mathbb{I}_n = \det (\bar{A}^t A) = (\det \bar{A}^t) (\det A) = (\overline{\det A}) \cdot (\det A)$$
$$\implies \det A \in S^1 \implies \psi(U_n) \subset S^1.$$

Since S^1 is an *embedded* submanifold of \mathbb{C} , the map

$$\varphi \colon U_n \longrightarrow S^1, \qquad \varphi(A) = \psi(A),$$

is smooth by Theorem 1.32. By definition, $SU_n = \varphi^{-1}(1)$. We will show that 1 is a regular value for φ (but *not* for $\psi|_{U_n}$), i.e. $d_A \varphi$ is surjective for all $A \in \varphi^{-1}(1)$. First, we show that

$$\mathrm{d}_{\mathbb{I}_n}\varphi\colon T_{\mathbb{I}_n}U_n\longrightarrow T_1S^1$$

is surjective. Define

$$\alpha \colon \mathbb{R} \longrightarrow \operatorname{Mat}_n \mathbb{C} \qquad \text{by} \qquad \alpha(s) = e^{\mathrm{i}s} \mathbb{I}_n$$

This map is smooth and $\alpha(\mathbb{R}) \subset U_n$. Since U_n is an *embedded* submanifold of $\operatorname{Mat}_n \mathbb{C}$, the map

$$\beta \colon \mathbb{R} \longrightarrow U_n, \qquad \beta(s) = \alpha(s),$$

is then smooth by Theorem 1.32. Furthermore, $\beta(0) = \mathbb{I}_n$. In particular,

$$\beta'(0) = \mathrm{d}_0 \beta\left(\frac{\mathrm{d}}{\mathrm{d}s}\right) \in T_{\mathbb{I}_n} U_n$$

We have

$$\begin{aligned} \mathrm{d}_{\mathbb{I}_{n}}\varphi\big(\beta'(0)\big) &= \mathrm{d}_{\mathbb{I}_{n}}\varphi\bigg(\mathrm{d}_{0}\beta\bigg(\frac{\mathrm{d}}{\mathrm{d}s}\bigg)\bigg) = \mathrm{d}_{0}(\varphi\circ\beta)\bigg(\frac{\mathrm{d}}{\mathrm{d}s}\bigg) = \frac{\mathrm{d}}{\mathrm{d}s}\varphi\big(\beta(s)\big)\big|_{s=0} \\ &= \frac{\mathrm{d}}{\mathrm{d}s}\det\big(e^{\mathrm{i}s}\mathbb{I}_{n}\big)\big|_{s=0} = \frac{\mathrm{d}}{\mathrm{d}s}e^{\mathrm{i}ns}\big|_{s=0} = \mathfrak{i}\,n\in T_{1}S^{1}\subset T_{1}\mathbb{C} = \mathbb{C}.\end{aligned}$$

Thus, $d_{\mathbb{I}_n}\varphi$ is nonzero and must then be surjective (since its target space is one-dimensional). On the other hand, if $B \in \varphi^{-1}(1)$, then $L_B(U_n) \subset U_n$ (i.e. U_n is a subgroup of $\operatorname{GL}_n\mathbb{C}$). Since U_n is an *embedded* submanifold of $\operatorname{Mat}_n\mathbb{C}$, then the map

$$L'_B: U_n \longrightarrow U_n, \qquad L'_B(A) = L_B(A),$$

is smooth by Theorem 1.32. Furthermore,

$$\varphi(L'_B(A)) = \varphi(BA) = \det(BA) = (\det B)(\det A) = \det A = \varphi(A) \quad \forall A \in U_n \implies \varphi = \varphi \circ L'_B$$
$$\implies \quad \mathrm{d}_{\mathbb{I}_n}\varphi = \mathrm{d}_{L'_B(\mathbb{I}_n)}\varphi \circ \mathrm{d}_{\mathbb{I}_n}L'_B \colon T_{\mathbb{I}_n}U_n\mathbb{C} \longrightarrow T_BU_n \longrightarrow T_1S^1.$$

Since $d_{\mathbb{I}_n}\varphi$ is surjective, it follows that so is $d_B\varphi$, for all $B \in SU_n$, i.e. 1 is a regular value for φ . Thus, by the Implicit FT, $SU_n = \varphi^{-1}(1)$ is an embedded submanifold of U_n of dimension

$$\dim SU_n = \dim U_n - \dim S^1 = n^2 - 1.$$

Since SU_n is the preimage of a point under a continuous function in a T1-space, SU_n is closed subset of U_n and thus compact.

Problem 5 (10pts)

Suppose $f: X \longrightarrow M$ and $g: Y \longrightarrow M$ are smooth maps that are transverse to each other:

$$T_{f(x)}M = \operatorname{Im} d_x f + \operatorname{Im} d_y g \qquad \forall \ (x, y) \in X \times Y \ s.t \ f(x) = g(y). \tag{1}$$

Show that

$$X \times_M Y \equiv \left\{ (x, y) \in X \times Y \colon f(x) = g(y) \right\}$$

is a smooth (embedded) submanifold of $X \times Y$ of codimension equal to the dimension of X and

$$T_{(x,y)}(X \times_M Y) = \{(v,w) \in T_x X \oplus T_y Y \colon d_x f(v) = d_y g(w)\} \qquad \forall (x,y) \in X \times_M Y.$$

We need to find a smooth function $h: X \times Y \longrightarrow N$ and a submanifold Z of N such that $X \times_M Y = h^{-1}(Z)$ and h is transverse to Z in N. The following is a standard trick for replacing a condition like $f(x) = g(y) \in M$ by $(x, y) \in h^{-1}(Z)$. Let

$$\Delta_M = \{(p, p) \in M \times M \colon p \in M\} \subset M \times M$$

be the diagonal in $M \times M$. It is the image of M under the smooth map

$$d: M \longrightarrow M \times M, \qquad d(p) = (p, p).$$

This map is a topological embedding and an immersion; so $Z = \Delta_M$ is an embedded submanifold of $N = M \times M$ and

$$T_{(p,p)}\Delta_M = \left\{ (v,v) \in T_p M \oplus T_p M \right\} \subset T_{(p,p)}(M \times M) = T_p M \oplus T_p M \qquad \forall p \in M.$$

$$\tag{2}$$

Define

$$h: X \times Y \longrightarrow M \times M$$
 by $h(x, y) = (f(x), g(y)).$

Since the maps f and g are smooth, so is the map h. Furthermore, $X \times_M Y = h^{-1}(\Delta_M)$.

We will now show that the transversality assumption (eq1) is equivalent to h being transverse to the diagonal:

$$T_{h(x,y)}(M \times M) = \operatorname{Im} \operatorname{d}_{(x,y)}h + T_{h(x,y)}\Delta_M \qquad \forall (x,y) \in h^{-1}(\Delta_M);$$
(3)

by the Implicit Function Theorem, $h^{-1}(\Delta_M)$ is then a smooth submanifold of $X \times Y$ (we only need to show (eq1) implies (eq3) for this). Suppose $(x, y) \in h^{-1}(\Delta_M)$. Condition (eq3) is equivalent to the condition that for all $v, w \in T_{f(x)}M = T_{g(y)}M$ there exist $x' \in T_xX$ and $y' \in T_yY$ such that

$$v - d_x f(x') = w - d_y g(y')$$

because then

$$(v,w) = \left(\mathrm{d}_x f(x'), \mathrm{d}_y g(y')\right) + \left(v - \mathrm{d}_x f(x'), w - \mathrm{d}_y g(y')\right) \in \mathrm{Im}\,\mathrm{d}_{(x,y)}h + T_{h(x,y)}\Delta_M.$$

This condition is equivalent to (eq1) (just move w to LHS and $d_x f(x')$ to RHS).

It follows that $X \times_M Y$ is a smooth submanifold of $X \times Y$ of codimension equal to the codimension of Δ_M in M^2 , which is the same as the dimension of M. For the last statement, note that $T_{(x,y)}(X \times_M Y) \subset \{d_{(x,y)}h\}^{-1}(T_{(f(x),f(x))}\Delta_M) = \{d_{(x,y)}h\}^{-1}(\{(u,u) \in T_{f(x)}M \oplus T_{f(x)}M : u \in T_{f(x)}M\}),$ because $h(X \times_M Y) \subset \Delta_M$. By the transversality of h to Δ_M , $\dim \{d_{(x,y)}h\}^{-1}(T_{(f(x),f(x))}\Delta_M) = \dim T_x X + \dim T_y Y - (\dim T_{(f(x),f(x))}M^2 - \dim T_{(f(x),f(x))}\Delta_M))$ $= \dim T_x X + \dim T_y Y - \dim M = \dim T_{(x,y)}(X \times_M Y);$

thus, the above inclusion is actually an equality.