MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 2

Problem 1: Chapter 1, \#10 (5pts)

Suppose M is a compact nonempty manifold of dimension n and $f: M \longrightarrow \mathbb{R}^{n}$ is a smooth map. Show that f is not an immersion (i.e. $\left.d f\right|_{m}$ is not injective for some $m \in M$.

Solution 1 (direct): We first notice that if $h: M \longrightarrow \mathbb{R}$ is a smooth map and reaches its maximum at some $m \in M$ (which need not exist in general), then $\left.d h\right|_{m}=0$. If (\mathcal{U}, φ) is a coordinate chart near m, then

$$
h \circ \varphi^{-1}: \varphi(\mathcal{U}) \longrightarrow \mathbb{R}
$$

is a smooth map that reaches its maximum at $\varphi(m)$. Thus,

$$
\frac{\partial\left(h \circ \varphi^{-1}\right)}{\partial x_{i}}=0 \quad \forall i=1, \ldots,\left.n \quad \Longrightarrow \quad d h\right|_{m}=\sum_{i=1}^{n}\left(\frac{\partial\left(h \circ \varphi^{-1}\right)}{\partial x_{i}}\right) d x_{i}=0
$$

Suppose next that $f: M^{n} \longrightarrow \mathbb{R}^{n}$ is smooth and $r_{1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is the projection onto the first component. Since r_{1} is a smooth map, so is

$$
r_{1} \circ f: M \longrightarrow \mathbb{R}
$$

Since M is compact, $r_{1}(f(M))$ is a closed bounded subset of \mathbb{R} and thus $r_{1} \circ f$ reaches its maximum at some point $m \in M$. By the above,

$$
\left.\left.d r_{1}\right|_{f(m)} \circ d f\right|_{m}=\left.d\left(r_{1} \circ f\right)\right|_{m}=0 .
$$

Since the linear map

$$
\left.d r_{1}\right|_{f(m)}: T_{f(m)} \mathbb{R}^{n}=\mathbb{R}^{n} \longrightarrow T_{r_{1}(f(m))} \mathbb{R}=\mathbb{R}
$$

is surjective (being projection onto the first component), the linear map

$$
\left.d f\right|_{m}: T_{m} M \longrightarrow T_{f(m)} \mathbb{R}^{n}
$$

is not surjective. Since the dimension of $T_{m} M$ is n, it follows that $\left.d f\right|_{m}$ is not injective either.
Solution 2 (via Inverse $F T$): Suppose $f: M^{n} \longrightarrow \mathbb{R}^{n}$ is an immersion. Since for every $m \in M$, the linear map

$$
\left.d f\right|_{m}: T_{m} M \longrightarrow T_{f(m)} \mathbb{R}^{n}
$$

is injective, $\left.d f\right|_{m}$ is an isomorphism. Thus, by the Inverse Function Theorem, for every $m \in M$ there exist open neighborhoods \mathcal{U}_{m} of m in M and V_{m} of $f(m)$ in \mathbb{R}^{n} such that

$$
\left.f\right|_{\mathcal{U}_{m}}: U_{m} \longrightarrow V_{m}
$$

is a diffeomorphism. In particular,

$$
f(M)=\bigcup_{m \in M} V_{m} \subset \mathbb{R}^{n}
$$

is an open subset of \mathbb{R}^{n}. On the other hand, if M is compact, then so is $f(M)$. Since \mathbb{R}^{n} is Hausdorff, $f(M)$ is then a closed subset of \mathbb{R}^{n}. Since \mathbb{R}^{n} is connected and $f(M)$ is open and closed, $f(M)$ is either empty or the entire space \mathbb{R}^{n}. The former is impossible if M is not empty; the latter is impossible because $f(M)$ is compact, while \mathbb{R}^{n} is not.

Problem 2: Chapter 1, \#7 (10pts)

Suppose N is a smooth manifold, A is a subset of N, and $\iota: A \longrightarrow N$ is the inclusion map.
(a) Let \mathcal{T} be a topology on A. Show that there exists at most one differentiable structure \mathcal{F} on (A, \mathcal{T}) such that $\iota:(A, \mathcal{F}) \longrightarrow N$ is a submanifold of N (i.e. ८ is smooth and $\left.d \iota\right|_{a}$ is injective for all $a \in A$).
(b) Let \mathcal{T} be the subspace topology on A (induced from the topology of N). Suppose (A, \mathcal{T}) admits a smooth structure \mathcal{F} such that $\iota:(A, \mathcal{F}) \longrightarrow N$ is a submanifold of N. Show that there exists no other manifold structure $\left(\mathcal{T}^{\prime}, \mathcal{F}^{\prime}\right)$ such that $\iota:\left(A, \mathcal{F}^{\prime}\right) \longrightarrow N$ is a submanifold of N.
(a) Suppose \mathcal{F} and \mathcal{F}^{\prime} are smooth structures on (A, \mathcal{T}) such that the maps

$$
\iota:(A, \mathcal{F}) \longrightarrow N \quad \text { and } \quad \iota:\left(A, \mathcal{F}^{\prime}\right) \longrightarrow N
$$

are immersions. The map id : $\left(A, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{F})$ is a homeomorphism (and thus continuous) and $\iota=\iota$ oid:

Since $\iota:(A, \mathcal{F}) \longrightarrow N$ is a submanifold and $\iota:\left(A, \mathcal{F}^{\prime}\right) \longrightarrow N$ is smooth, by Theorem 1.32 the map

$$
\mathrm{id}:\left(A, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{F})
$$

is smooth. Similarly, the map id: $(A, \mathcal{F}) \longrightarrow\left(A, \mathcal{F}^{\prime}\right)$ is smooth. Thus, the map

$$
\text { id: }\left(A, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{F})
$$

is a diffeomorphism. Since \mathcal{F} and \mathcal{F}^{\prime} are maximal with respect to the smooth-overlap condition, it follows that $\mathcal{F}=\mathcal{F}^{\prime}$.
(b) Suppose $\left(\mathcal{T}^{\prime}, \mathcal{F}^{\prime}\right)$ is a manifold structure on A such that the map

$$
\iota:\left(A, \mathcal{F}^{\prime}\right) \longrightarrow N
$$

is a submanifold of N. The map $\iota:(A, \mathcal{T}) \longrightarrow N$ is a topological embedding and $\iota:\left(A, \mathcal{T}^{\prime}\right) \longrightarrow N$ is continuous:

Thus, the map id : $\left(A, \mathcal{T}^{\prime}\right) \longrightarrow(A, \mathcal{T})$ is continuous. Since $\iota:(A, \mathcal{T}) \longrightarrow N$ is a submanifold, by Theorem 1.32 the map

$$
\mathrm{id}:\left(A, \mathcal{T}^{\prime}, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{T}, \mathcal{F})
$$

is then smooth. Since the map

$$
\iota=\iota \circ \mathrm{id}:\left(A, \mathcal{T}^{\prime}, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{T}, \mathcal{F}) \longrightarrow N
$$

is an immersion, so is the map

$$
\mathrm{id}:\left(A, \mathcal{T}^{\prime}, \mathcal{F}^{\prime}\right) \longrightarrow(A, \mathcal{T}, \mathcal{F}) .
$$

Since it is bijective, by Problem 4 on PS1 id is a diffeomorphism. We conclude that $\mathcal{T}^{\prime}=\mathcal{T}$ and $\mathcal{F}^{\prime}=\mathcal{F}$.

Problem 3 (15pts)

(a) For what values of $t \in \mathbb{R}$, is the subspace

$$
\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\ldots+x_{n}^{2}-x_{n+1}^{2}=t\right\}
$$

a smooth embedded submanifold of \mathbb{R}^{n+1} ?
(b) For such values of t, determine the diffeomorphism type of this submanifold (i.e. show that it is diffeomorphic to something rather standard).
(a) Let $f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be the smooth map given by

$$
f(\mathbf{x})=x_{1}^{2}+\ldots+x_{n}^{2}-x_{n+1}^{2} \quad \text { if } \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

Then, $S_{t}=f^{-1}(t)$. The differential of f,

$$
\mathrm{d}_{\mathbf{x}} f: T_{\mathbf{x}} \mathbb{R}^{n+1} \longrightarrow T_{f(\mathbf{x})} \mathbb{R}=\mathbb{R}
$$

is given by

$$
\mathrm{d}_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x_{1}}\right) \mathrm{d}_{\mathbf{x}} x_{1}+\ldots+\left(\frac{\partial f}{\partial x_{n+1}}\right) \mathrm{d}_{\mathbf{x}} x_{n+1}=2 x_{1} \mathrm{~d}_{\mathbf{x}} x_{1}+\ldots+2 x_{n} \mathrm{~d}_{\mathbf{x}} x_{n}-2 x_{n+1} \mathrm{~d}_{\mathbf{x}} x_{n+1} .
$$

Since the target space of $\mathrm{d}_{\mathbf{x}} f$ is a one-dimensional vector space, $\mathrm{d}_{\mathbf{x}} f$ is surjective if and only if $\mathrm{d}_{\mathbf{x}} f$ is nonzero. Since $\left\{\mathrm{d}_{\mathbf{x}} x_{i}\right\}$ is a basis for $T_{\mathbf{x}}^{*} \mathbb{R}^{n+1}$, it follows that $\mathrm{d}_{\mathbf{x}} f$ is surjective if and only $\mathbf{x} \neq \mathbf{0}$. If $t \neq 0$, then $\mathbf{0} \notin S_{t}$. Thus, $\mathrm{d}_{\mathbf{x}} f$ is surjective for all $\mathbf{x} \in S_{t}$ and S_{t} is an embedded submanifold of \mathbb{R}^{n+1} of dimension

$$
\operatorname{dim} S_{t}=\operatorname{dim} \mathbb{R}^{n+1}-\operatorname{dim} \mathbb{R}=n
$$

by the Implicit Function Theorem if $t \neq 0$.

The differential of f vanishes at $\mathbf{0} \in S_{0}$ and the Implicit FT does not determine whether

$$
S_{0}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\ldots+x_{n}^{2}=x_{n+1}^{2}\right\}
$$

is an embedded submanifold or not. The only potentially singular (non-smooth) point of S_{0} is $\mathbf{0}$. To see what S_{0} looks like, consider the case $n=1$:

$$
S_{0}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}=x_{2}^{2}\right\}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right|=\left|x_{2}\right|\right\} .
$$

Thus, if $n=1, S_{0}$ is the union of the lines $x_{1}= \pm x_{2}$ through the origin:

In general, the cross-section of S_{0} by the hyperplane $x_{n+1}=s$ is an $(n-1)$-sphere of radius $|s|$ or a single point if $s=0$. Thus, S_{0} is a union of 2 cones with the vertex at the the origin. This implies that $\mathbf{0}$ is not a smooth point of S_{0}. In fact, it is not even a manifold point in the topological sense, i.e. there exists no open neighborhood U of $\mathbf{0}$ in \mathbb{R}^{n+1} such that $S_{0} \cap U$ is homeomorphic to an open subset of \mathbb{R}^{k} for some k. In summary, S_{t} is a smooth embedded submanifold of \mathbb{R}^{n+1} if and only if $t \neq 0$.

Remark: Here is how to see formally that if U is a neighborhood of $\mathbf{0}$ in \mathbb{R}^{n+1} and V is an open subset of \mathbb{R}^{k}, then $S_{0} \cap U$ and V are not homeomorphic. It is enough to assume that U and V are both connected. By the Implicit Function Theorem, $S_{0}-\mathbf{0}$ is a smooth embedded submanifold of \mathbb{R}^{n+1} of dimension n. Thus, we can also assume that $k=n$. If $n>1$, then the complement of any point in V is connected. However, $\left(S_{0}-\mathbf{0}\right) \cap U$ is not connected:

$$
\begin{gathered}
S_{0}-\mathbf{0}=\left(S_{0}-\mathbf{0}\right) \cap U_{+} \cup\left(S_{0}-\mathbf{0}\right) \cap U_{-} \quad \text { where } \\
U_{+}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1}>0\right\} \quad \text { and } \quad U_{-}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1}<0\right\} .
\end{gathered}
$$

Thus, $S_{0} \cap U$ and V are not homeomorphic. If $n=1, V$ must be an open interval and the complement of a point in V has exactly two components. On the other hand, $\left(S_{0}-\mathbf{0}\right) \cap U$ has (at least) four components:

$$
\begin{aligned}
S_{0}-\mathbf{0}= & \left(S_{0}-\mathbf{0}\right) \cap U_{++} \cup\left(S_{0}-\mathbf{0}\right) \cap U_{+-} \cup\left(S_{0}-\mathbf{0}\right) \cap U_{-+} \cup\left(S_{0}-\mathbf{0}\right) \cap U_{--}, \\
& \text {where } \quad U_{ \pm \pm}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \pm x_{1}>0, \pm x_{2}>0\right\} .
\end{aligned}
$$

Thus, $S_{0} \cap U$ and V are again not homeomorphic.
(b) Suppose $t>0$. Then, the set of solutions of the equation

$$
x_{1}^{2}+\ldots+x_{n}^{2}=t+x_{n+1}^{2}, \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

with x_{n+1} fixed is an $(n-1)$-sphere (this is not the case for every x_{n+1} if $t \leq 0$). Thus, we expect that S_{t} is diffeomorphic to $S^{n-1} \times \mathbb{R}$, with the second component given by x_{n+1}. Define

$$
\psi: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n} \times \mathbb{R} \quad \text { by } \quad \psi\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{\left(x_{1}, \ldots, x_{n}\right)}{\sqrt{t+x_{n+1}^{2}}}, x_{n+1}\right)
$$

Since $t>0$, this map is smooth. In fact, it is a diffeomorphism:

$$
\psi^{-1}\left(y_{1}, \ldots, y_{n+1}\right)=\left(\sqrt{t+y_{n+1}^{2}}\left(y_{1}, \ldots, y_{n}\right), y_{n+1}\right) .
$$

Since S_{t} is a submanifold of $\mathbb{R}^{n+1},\left.\psi\right|_{S_{t}}$ is also smooth. Furthermore,

$$
\psi\left(S_{t}\right) \subset S^{n-1} \times \mathbb{R}
$$

Since $S^{n-1} \times \mathbb{R}$ is an embedded submanifold of $\mathbb{R}^{n} \times \mathbb{R}$,

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow S^{n-1} \times \mathbb{R}
$$

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow S^{n-1} \times \mathbb{R}
$$

is an injective immersion. Since $\psi^{-1}\left(S^{n-1} \times \mathbb{R}\right) \subset S_{t}\left(\right.$ i.e. $f\left(\psi^{-1}(\mathbf{y})\right)=t$ for all $\left.\mathbf{y} \in S^{n-1} \times \mathbb{R}\right)$, this map is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow S^{n-1} \times \mathbb{R}
$$

is a diffeomorphism.
Suppose $t<0$. Then, the set of solutions of the equation

$$
x_{n+1}^{2}=-t+x_{1}^{2}+\ldots+x_{n}^{2}, \quad x_{n+1} \in \mathbb{R},
$$

with x_{1}, \ldots, x_{n} fixed is two distinct points, i.e. S^{0} (this is not the case for every $\left(x_{1}, \ldots, x_{n}\right)$ if $\left.t \geq 0\right)$. Thus, we expect that S_{t} is diffeomorphic to $\mathbb{R}^{n} \times S^{0}\left(\mathbb{R}^{n} \sqcup \mathbb{R}^{n}\right)$, with the first component given by $\left(x_{1}, \ldots, x_{n}\right)$. Define

$$
\psi: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n} \times \mathbb{R} \quad \text { by } \quad \psi\left(x_{1}, \ldots, x_{n+1}\right)=\left(\left(x_{1}, \ldots, x_{n}\right), \frac{x_{n+1}}{\sqrt{-t+x_{1}^{2}+\ldots+x_{n}^{2}}}\right)
$$

Since $t<0$, this map is smooth. In fact, it is a diffeomorphism:

$$
\psi^{-1}\left(y_{1}, \ldots, y_{n+1}\right)=\left(\left(y_{1}, \ldots, y_{n}\right), \sqrt{-t+x_{1}^{2}+\ldots+x_{n}^{2}} y_{n+1}\right)
$$

Since S_{t} is a submanifold of $\mathbb{R}^{n+1},\left.\psi\right|_{S_{t}}$ is also smooth. Furthermore,

$$
\psi\left(S_{t}\right) \subset \mathbb{R}^{n} \times S^{0}
$$

Since $\mathbb{R}^{n} \times S^{0}$ is an embedded submanifold of $\mathbb{R}^{n} \times \mathbb{R}$,

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow \mathbb{R}^{n} \times S^{0}
$$

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow \mathbb{R}^{n} \times S^{0}
$$

is an injective immersion. Since $\psi^{-1}\left(\mathbb{R}^{n} \times S^{0}\right) \subset S_{t}$ (i.e. $f\left(\psi^{-1}(\mathbf{y})\right)=t$ for all $\left.\mathbf{y} \in \mathbb{R}^{n} \times S^{0}\right)$, this map is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

$$
\left.\psi\right|_{S_{t}}: S_{t} \longrightarrow \mathbb{R}^{n} \times S^{0}
$$

is a diffeomorphism.
In summary, S_{t} is diffeomorphic to $S^{n-1} \times \mathbb{R}$ if $t>0$ and to $\mathbb{R}^{n} \sqcup \mathbb{R}^{n}$ if $t<0$.
Remark: The above argument assumed that $n \geq 1$. If $n=0, S_{t}$ is the empty set if $t>0$, consists of one point if $t=0$, and consists of two points if $t<0$. All are zero-dimensional manifolds.

Problem 4 (10pts)

Show that the special unitary group

$$
S U_{n}=\left\{A \in \operatorname{Mat}_{n} \mathbb{C}: \bar{A}^{t} A=\mathbb{I}_{n}, \quad \operatorname{det} A=1\right\}
$$

is a smooth compact manifold. What is its dimension?
We will use the Implicit Function Theorem to show that the unitary group

$$
U_{n}=\left\{A \in \operatorname{Mat}_{n} \mathbb{C}: \bar{A}^{t} A=\mathbb{I}_{n}\right\}
$$

is a compact embedded submanifold of Mat $_{n} \mathbb{C}$ (which is diffeomorphic to $\mathbb{R}^{2 n^{2}}$) and $S U_{n}$ is a closed embedded submanifold of U_{n}.

First, for each $B \in \operatorname{Mat}_{n} \mathbb{C}$, let

$$
L_{B}: \operatorname{Mat}_{n} \mathbb{C} \longrightarrow \operatorname{Mat}_{n} \mathbb{C}, \quad L_{B}(A)=B A
$$

be the left-multiplication map. It is smooth (being a linear transformation) on $\mathbb{C}^{n^{2}}$.
Let Her_{n} denote the space of Hermitian $n \times n$ matrices:

$$
\operatorname{Her}_{n}=\left\{A \in \operatorname{Mat}_{n} \mathbb{C}: \bar{A}^{t}=A\right\}
$$

Since Her_{n} is a linear subspace of $\mathbb{R}^{2 n^{2}}$ (it is defined by a linear equation on the coefficients), Her ${ }_{n}$ is an embedded submanifold of $\mathrm{Mat}_{n} \mathbb{C}$. Define

$$
f: \operatorname{Mat}_{n} \mathbb{C} \longrightarrow \operatorname{Mat}_{n} \mathbb{C} \quad \text { by } \quad f(A)=\bar{A}^{t} A
$$

Since f is a polynomial map in the coefficients of A, f is smooth. Furthermore,

$$
f\left(\operatorname{Mat}_{n} \mathbb{C}\right) \subset \operatorname{Her}_{n}
$$

Since Her_{n} is an embedded submanifold of $\operatorname{Mat}_{n} \mathbb{C}$, the map

$$
g: \operatorname{Mat}_{n} \mathbb{C} \longrightarrow \operatorname{Her}_{n} \mathbb{C}, \quad g(A)=f(A)
$$

is smooth. We will show that \mathbb{I}_{n} is a regular value for g (it is not for f), i.e. $\mathrm{d}_{A} g$ is surjective for all

$$
A \in g^{-1}\left(\mathbb{I}_{n}\right)=U_{n} .
$$

First, we show that

$$
\mathrm{d}_{\mathbb{I}_{n}} g: T_{\mathbb{I}_{n}} \operatorname{Mat}_{n} \mathbb{C} \longrightarrow T_{\mathbb{I}_{n}} \operatorname{Her}_{n}
$$

is surjective. For each $B \in \operatorname{Mat}_{n} \mathbb{C}$, define

$$
\alpha_{B}: \mathbb{R} \longrightarrow \operatorname{Mat}_{n} \mathbb{C} \quad \text { by } \quad \alpha_{B}(s)=\mathbb{I}_{n}+s B .
$$

Then, α_{B} is a smooth curve in $\operatorname{Mat}_{n} \mathbb{C}$ so that $\alpha_{B}(0)=\mathbb{I}_{n}$. In particular,

$$
\alpha_{B}^{\prime}(0)=\left.\mathrm{d}_{B} \alpha\right|_{0} \frac{\mathrm{~d}}{\mathrm{~d} s} \in T_{\mathbb{I}_{n}} \operatorname{Mat}_{n} \mathbb{C} .
$$

Furthermore,

$$
\begin{aligned}
\mathrm{d}_{\mathbb{I}_{n}} g\left(\alpha_{B}^{\prime}(0)\right) & =\mathrm{d}_{\mathbb{I}_{n}} g\left(\mathrm{~d}_{0} \alpha_{B}\left(\frac{\mathrm{~d}}{\mathrm{~d} s}\right)\right)=\mathrm{d}_{0}\left(g \circ \alpha_{B}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} s}\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} s} g\left(\alpha_{B}(s)\right)\right|_{s=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} s}\left(\mathbb{I}_{n}+s \bar{B}^{t}\right)\left(\mathbb{I}_{n}+s B\right)\right|_{s=0}=\bar{B}^{t}+B \in \operatorname{Her}_{n}=T_{\mathbb{I}_{n}} \operatorname{Her}_{n} .
\end{aligned}
$$

In particular, the map

$$
\mathrm{d}_{\mathbb{I}_{n}} g:\left\{\alpha_{B}^{\prime}(0): B \in \operatorname{Her}_{n}\right\} \longrightarrow T_{\mathbb{I}_{n}} \operatorname{Her}_{n}, \quad d_{\mathbb{I}_{n}} g\left(\alpha_{B}^{\prime}(0)\right)=2 B,
$$

is surjective, and thus so is $d_{\mathbb{I}_{n}} g$. On the other hand, if $B \in g^{-1}\left(\mathbb{I}_{n}\right)$, then

$$
\begin{aligned}
g\left(L_{B}(A)\right) & =g(B A)=\overline{B A}^{t}(B A)=\bar{A}^{t} \bar{B}^{t} B A=\bar{A}^{t} A=g(A) \quad \forall A \in \operatorname{Mat}_{n} \mathbb{C} \quad \Longrightarrow \quad g=g \circ L_{B} \\
& \Longrightarrow \quad d_{\mathbb{I}_{n}} g=\mathrm{d}_{L_{B}\left(\mathbb{I}_{n}\right)} g \circ \mathrm{~d}_{\mathbb{I}_{n}} L_{B}: T_{\mathbb{I}_{n}} \operatorname{Mat}_{n} \mathbb{C} \longrightarrow T_{B} \operatorname{Mat}_{n} \mathbb{C} \longrightarrow T_{\mathbb{I}_{n}} \operatorname{Her}_{n} .
\end{aligned}
$$

Since $\mathrm{d}_{\mathbb{I}_{n}} g$ is surjective, it follows that so is $\mathrm{d}_{B} g$, for all $B \in U_{n}$, i.e. \mathbb{I}_{n} is a regular value for g. Thus, by the Implicit FT, $U_{n}=g^{-1}\left(\mathbb{I}_{n}\right)$ is an embedded submanifold of Mat ${ }_{n} \mathbb{C}$ of dimension

$$
\operatorname{dim} U_{n}=\operatorname{dim} \operatorname{Mat}_{n} \mathbb{C}-\operatorname{dim} \operatorname{Her}_{n}=2 n^{2}-(2 n(n-1) / 2+n)=n^{2}
$$

(the condition $\bar{A}^{t}=A$ defining Her_{n} means that the $n(n-1) / 2$ above-diagonal complex entries can be chosen freely and determine the below-diagram entries, and the diagonal entries must be real). The subspace U_{n} of $\mathrm{Mat}_{n} \mathbb{C}$ is compact because it is closed (preimage of a point under a continuous map into a T1-space) and bounded in the standard metric on $\mathbb{R}^{2 n^{2}}$ (the condition $\bar{A}^{t} A=\mathbb{I}_{n}$ implies that the length of each row and column of A is 1).

We now show that $S U_{n}$ is an embedded submanifold of U_{n}. Define

$$
\psi: \operatorname{Mat}_{n} \mathbb{C} \longrightarrow \mathbb{C} \quad \text { by } \quad \psi(A)=\operatorname{det} A
$$

Since ψ is a polynomial in the entries, it is a smooth function. Since U_{n} is a submanifold of $\operatorname{Mat}_{n} \mathbb{C}$, $\left.\psi\right|_{U_{n}}$ is also smooth. Furthermore,

$$
\begin{aligned}
A \in U_{n} & \Longrightarrow 1=\operatorname{det} \mathbb{I}_{n}=\operatorname{det}\left(\bar{A}^{t} A\right)=\left(\operatorname{det} \bar{A}^{t}\right)(\operatorname{det} A)=(\overline{\operatorname{det} A}) \cdot(\operatorname{det} A) \\
& \Longrightarrow \operatorname{det} A \in S^{1} \Longrightarrow \psi\left(U_{n}\right) \subset S^{1} .
\end{aligned}
$$

Since S^{1} is an embedded submanifold of \mathbb{C}, the map

$$
\varphi: U_{n} \longrightarrow S^{1}, \quad \varphi(A)=\psi(A)
$$

is smooth by Theorem 1.32. By definition, $S U_{n}=\varphi^{-1}(1)$. We will show that 1 is a regular value for φ (but not for $\left.\psi\right|_{U_{n}}$), i.e. $\mathrm{d}_{A} \varphi$ is surjective for all $A \in \varphi^{-1}(1)$. First, we show that

$$
\mathrm{d}_{\mathbb{I}_{n}} \varphi: T_{\mathbb{I}_{n}} U_{n} \longrightarrow T_{1} S^{1}
$$

is surjective. Define

$$
\alpha: \mathbb{R} \longrightarrow \operatorname{Mat}_{n} \mathbb{C} \quad \text { by } \quad \alpha(s)=e^{\mathrm{is}} \mathbb{I}_{n}
$$

This map is smooth and $\alpha(\mathbb{R}) \subset U_{n}$. Since U_{n} is an embedded submanifold of Mat ${ }_{n} \mathbb{C}$, the map

$$
\beta: \mathbb{R} \longrightarrow U_{n}, \quad \beta(s)=\alpha(s)
$$

is then smooth by Theorem 1.32. Furthermore, $\beta(0)=\mathbb{I}_{n}$. In particular,

$$
\beta^{\prime}(0)=\mathrm{d}_{0} \beta\left(\frac{\mathrm{~d}}{\mathrm{~d} s}\right) \in T_{\mathbb{I}_{n}} U_{n}
$$

We have

$$
\begin{aligned}
\mathrm{d}_{\mathbb{I}_{n}} \varphi\left(\beta^{\prime}(0)\right) & =\mathrm{d}_{\mathbb{I}_{n}} \varphi\left(\mathrm{~d}_{0} \beta\left(\frac{\mathrm{~d}}{\mathrm{~d} s}\right)\right)=\mathrm{d}_{0}(\varphi \circ \beta)\left(\frac{\mathrm{d}}{\mathrm{~d} s}\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \varphi(\beta(s))\right|_{s=0} \\
& =\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det}\left(e^{\left.\mathrm{i} s \mathbb{I}_{n}\right)\left.\right|_{s=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} s} e^{\mathrm{in} s}\right|_{s=0}=\mathfrak{i} n \in T_{1} S^{1} \subset T_{1} \mathbb{C}=\mathbb{C} .}\right.
\end{aligned}
$$

Thus, $\mathrm{d}_{\mathbb{I}_{n}} \varphi$ is nonzero and must then be surjective (since its target space is one-dimensional). On the other hand, if $B \in \varphi^{-1}(1)$, then $L_{B}\left(U_{n}\right) \subset U_{n}$ (i.e. U_{n} is a subgroup of $\mathrm{GL}_{n} \mathbb{C}$). Since U_{n} is an embedded submanifold of Mat $_{n} \mathbb{C}$, then the map

$$
L_{B}^{\prime}: U_{n} \longrightarrow U_{n}, \quad L_{B}^{\prime}(A)=L_{B}(A)
$$

is smooth by Theorem 1.32. Furthermore,

$$
\begin{gathered}
\varphi\left(L_{B}^{\prime}(A)\right)=\varphi(B A)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A)=\operatorname{det} A=\varphi(A) \quad \forall A \in U_{n} \quad \Longrightarrow \quad \varphi=\varphi \circ L_{B}^{\prime} \\
\Longrightarrow \quad d_{\mathbb{I}_{n}} \varphi=d_{L_{B}^{\prime}\left(\mathbb{I}_{n}\right)} \varphi \circ \mathrm{d}_{\mathbb{I}_{n}} L_{B}^{\prime}: T_{\mathbb{I}_{n}} U_{n} \mathbb{C} \longrightarrow T_{B} U_{n} \longrightarrow T_{1} S^{1} .
\end{gathered}
$$

Since $d_{\mathbb{I}_{n}} \varphi$ is surjective, it follows that so is $d_{B} \varphi$, for all $B \in S U_{n}$, i.e. 1 is a regular value for φ. Thus, by the Implicit FT, $S U_{n}=\varphi^{-1}(1)$ is an embedded submanifold of U_{n} of dimension

$$
\operatorname{dim} S U_{n}=\operatorname{dim} U_{n}-\operatorname{dim} S^{1}=n^{2}-1
$$

Since $S U_{n}$ is the preimage of a point under a continuous function in a $T 1$-space, $S U_{n}$ is closed subset of U_{n} and thus compact.

Problem 5 (10pts)

Suppose $f: X \longrightarrow M$ and $g: Y \longrightarrow M$ are smooth maps that are transverse to each other:

$$
\begin{equation*}
T_{f(x)} M=\operatorname{Im~}_{x} f+\operatorname{Im~}_{y} g \quad \forall(x, y) \in X \times Y \text { s.t } f(x)=g(y) . \tag{1}
\end{equation*}
$$

Show that

$$
X \times_{M} Y \equiv\{(x, y) \in X \times Y: f(x)=g(y)\}
$$

is a smooth (embedded) submanifold of $X \times Y$ of codimension equal to the dimension of X and

$$
T_{(x, y)}\left(X \times_{M} Y\right)=\left\{(v, w) \in T_{x} X \oplus T_{y} Y: \mathrm{d}_{x} f(v)=\mathrm{d}_{y} g(w)\right\} \quad \forall(x, y) \in X \times_{M} Y .
$$

We need to find a smooth function $h: X \times Y \longrightarrow N$ and a submanifold Z of N such that $X \times_{M} Y=$ $h^{-1}(Z)$ and h is transverse to Z in N. The following is a standard trick for replacing a condition like $f(x)=g(y) \in M$ by $(x, y) \in h^{-1}(Z)$. Let

$$
\Delta_{M}=\{(p, p) \in M \times M: p \in M\} \subset M \times M
$$

be the diagonal in $M \times M$. It is the image of M under the smooth map

$$
d: M \longrightarrow M \times M, \quad d(p)=(p, p) .
$$

This map is a topological embedding and an immersion; so $Z=\Delta_{M}$ is an embedded submanifold of $N=M \times M$ and

$$
\begin{equation*}
T_{(p, p)} \Delta_{M}=\left\{(v, v) \in T_{p} M \oplus T_{p} M\right\} \subset T_{(p, p)}(M \times M)=T_{p} M \oplus T_{p} M \quad \forall p \in M . \tag{2}
\end{equation*}
$$

Define

$$
h: X \times Y \longrightarrow M \times M \quad \text { by } \quad h(x, y)=(f(x), g(y)) .
$$

Since the maps f and g are smooth, so is the map h. Furthermore, $X \times_{M} Y=h^{-1}\left(\Delta_{M}\right)$.
We will now show that the transversality assumption (eq1) is equivalent to h being transverse to the diagonal:

$$
\begin{equation*}
T_{h(x, y)}(M \times M)=\operatorname{Imd}_{(x, y)} h+T_{h(x, y)} \Delta_{M} \quad \forall(x, y) \in h^{-1}\left(\Delta_{M}\right) ; \tag{3}
\end{equation*}
$$

by the Implicit Function Theorem, $h^{-1}\left(\Delta_{M}\right)$ is then a smooth submanifold of $X \times Y$ (we only need to show (eq1) implies (eq3) for this). Suppose $(x, y) \in h^{-1}\left(\Delta_{M}\right)$. Condition (eq3) is equivalent to the condition that for all $v, w \in T_{f(x)} M=T_{g(y)} M$ there exist $x^{\prime} \in T_{x} X$ and $y^{\prime} \in T_{y} Y$ such that

$$
v-\mathrm{d}_{x} f\left(x^{\prime}\right)=w-\mathrm{d}_{y} g\left(y^{\prime}\right)
$$

because then

$$
(v, w)=\left(\mathrm{d}_{x} f\left(x^{\prime}\right), \mathrm{d}_{y} g\left(y^{\prime}\right)\right)+\left(v-\mathrm{d}_{x} f\left(x^{\prime}\right), w-\mathrm{d}_{y} g\left(y^{\prime}\right)\right) \in \operatorname{Im~}_{(x, y)} h+T_{h(x, y)} \Delta_{M}
$$

This condition is equivalent to (eq1) (just move w to LHS and $\mathrm{d}_{x} f\left(x^{\prime}\right)$ to RHS).
It follows that $X \times_{M} Y$ is a smooth submanifold of $X \times Y$ of codimension equal to the codimension of Δ_{M} in M^{2}, which is the same as the dimension of M. For the last statement, note that
$T_{(x, y)}\left(X \times_{M} Y\right) \subset\left\{\mathrm{d}_{(x, y)} h\right\}^{-1}\left(T_{(f(x), f(x))} \Delta_{M}\right)=\left\{\mathrm{d}_{(x, y)} h\right\}^{-1}\left(\left\{(u, u) \in T_{f(x)} M \oplus T_{f(x)} M: u \in T_{f(x)} M\right\}\right)$, because $h\left(X \times_{M} Y\right) \subset \Delta_{M}$. By the transversality of h to Δ_{M},

$$
\begin{aligned}
\operatorname{dim}\left\{\mathrm{d}_{(x, y)} h\right\}^{-1}\left(T_{(f(x), f(x))} \Delta_{M}\right) & =\operatorname{dim} T_{x} X+\operatorname{dim} T_{y} Y-\left(\operatorname{dim} T_{(f(x), f(x))} M^{2}-\operatorname{dim} T_{(f(x), f(x))} \Delta_{M}\right) \\
& =\operatorname{dim} T_{x} X+\operatorname{dim} T_{y} Y-\operatorname{dim} M=\operatorname{dim} T_{(x, y)}\left(X \times_{M} Y\right)
\end{aligned}
$$

thus, the above inclusion is actually an equality.

