
MAT 531: Topology&Geometry, II
Spring 2011

Solutions to Problem Set 2

Problem 1: Chapter 1, #10 (5pts)

Suppose M is a compact nonempty manifold of dimension n and f : M −→ R
n is a smooth map.

Show that f is not an immersion (i.e. df |m is not injective for some m∈M .

Solution 1 (direct): We first notice that if h :M−→R is a smooth map and reaches its maximum at
some m∈M (which need not exist in general), then dh|m=0. If (U , ϕ) is a coordinate chart near m,
then

h ◦ ϕ−1 : ϕ(U) −→ R

is a smooth map that reaches its maximum at ϕ(m). Thus,

∂(h ◦ ϕ−1)

∂xi
= 0 ∀ i = 1, . . . , n =⇒ dh|m =

n
∑

i=1

(

∂(h ◦ ϕ−1)

∂xi

)

dxi = 0.

Suppose next that f : Mn −→ R
n is smooth and r1 : R

n −→ R is the projection onto the first
component. Since r1 is a smooth map, so is

r1◦ f :M −→ R.

Since M is compact, r1(f(M)) is a closed bounded subset of R and thus r1◦ f reaches its maximum
at some point m∈M . By the above,

dr1|f(m) ◦ df |m = d(r1◦ f)|m = 0.

Since the linear map
dr1|f(m) : Tf(m)R

n=R
n −→ Tr1(f(m))R=R

is surjective (being projection onto the first component), the linear map

df |m : TmM −→ Tf(m)R
n

is not surjective. Since the dimension of TmM is n, it follows that df |m is not injective either.

Solution 2 (via Inverse FT): Suppose f : Mn −→R
n is an immersion. Since for every m∈M , the

linear map
df |m : TmM −→ Tf(m)R

n

is injective, df |m is an isomorphism. Thus, by the Inverse Function Theorem, for every m∈M there
exist open neighborhoods Um of m in M and Vm of f(m) in R

n such that

f |Um
: Um −→ Vm

is a diffeomorphism. In particular,

f(M) =
⋃

m∈M

Vm ⊂ R
n



is an open subset of Rn. On the other hand, if M is compact, then so is f(M). Since R
n is Haus-

dorff, f(M) is then a closed subset of Rn. Since Rn is connected and f(M) is open and closed, f(M)
is either empty or the entire space R

n. The former is impossible if M is not empty; the latter is
impossible because f(M) is compact, while R

n is not.

Problem 2: Chapter 1, #7 (10pts)

Suppose N is a smooth manifold, A is a subset of N , and ι : A−→N is the inclusion map.

(a) Let T be a topology on A. Show that there exists at most one differentiable structure F on
(A, T ) such that ι : (A,F)−→N is a submanifold of N (i.e. ι is smooth and dι|a is injective for
all a∈A).

(b) Let T be the subspace topology on A (induced from the topology of N). Suppose (A, T ) admits
a smooth structure F such that ι : (A,F)−→N is a submanifold of N . Show that there exists
no other manifold structure (T ′,F ′) such that ι : (A,F ′)−→N is a submanifold of N .

(a) Suppose F and F ′ are smooth structures on (A, T ) such that the maps

ι : (A,F) −→ N and ι : (A,F ′) −→ N

are immersions. The map id : (A,F ′) −→ (A,F) is a homeomorphism (and thus continuous) and
ι= ι◦id:

(A,F)

(A,F ′)

N

ι

ιid

Since ι : (A,F)−→N is a submanifold and ι : (A,F ′)−→N is smooth, by Theorem 1.32 the map

id: (A,F ′)−→(A,F)

is smooth. Similarly, the map id: (A,F)−→(A,F ′) is smooth. Thus, the map

id: (A,F ′) −→ (A,F)

is a diffeomorphism. Since F and F ′ are maximal with respect to the smooth-overlap condition, it
follows that F=F ′.

(b) Suppose (T ′,F ′) is a manifold structure on A such that the map

ι : (A,F ′)−→N

is a submanifold of N . The map ι : (A, T )−→N is a topological embedding and ι : (A, T ′)−→N is
continuous:
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(A, T ,F)

(A, T ′,F ′)

N

ι

ιid

Thus, the map id : (A, T ′) −→ (A, T ) is continuous. Since ι : (A, T ) −→ N is a submanifold, by
Theorem 1.32 the map

id: (A, T ′,F ′) −→ (A, T ,F)

is then smooth. Since the map

ι = ι ◦ id : (A, T ′,F ′) −→ (A, T ,F) −→ N

is an immersion, so is the map
id: (A, T ′,F ′) −→ (A, T ,F).

Since it is bijective, by Problem 4 on PS1 id is a diffeomorphism. We conclude that T ′ = T and
F ′=F .

Problem 3 (15pts)

(a) For what values of t∈R, is the subspace

{

(x1, . . . , xn+1)∈R
n+1 : x21+. . .+x

2
n−x

2
n+1 = t

}

a smooth embedded submanifold of Rn+1?
(b) For such values of t, determine the diffeomorphism type of this submanifold (i.e. show that it is
diffeomorphic to something rather standard).

(a) Let f : Rn+1−→R be the smooth map given by

f(x) = x21+. . .+x
2
n−x

2
n+1 if x = (x1, . . . , xn).

Then, St=f
−1(t). The differential of f ,

dxf : TxR
n+1 −→ Tf(x)R = R,

is given by

dxf =

(

∂f

∂x1

)

dxx1 + . . .+

(

∂f

∂xn+1

)

dxxn+1 = 2x1dxx1 + . . .+ 2xndxxn − 2xn+1dxxn+1.

Since the target space of dxf is a one-dimensional vector space, dxf is surjective if and only if dxf
is nonzero. Since {dxxi} is a basis for T ∗

x
R
n+1, it follows that dxf is surjective if and only x 6=0. If

t 6=0, then 0 6∈St. Thus, dxf is surjective for all x∈St and St is an embedded submanifold of Rn+1

of dimension
dimSt = dimR

n+1 − dimR = n

by the Implicit Function Theorem if t 6=0.
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The differential of f vanishes at 0∈S0 and the Implicit FT does not determine whether

S0 =
{

(x1, . . . , xn+1)∈R
n+1 : x21+. . .+x

2
n=x

2
n+1

}

is an embedded submanifold or not. The only potentially singular (non-smooth) point of S0 is 0.
To see what S0 looks like, consider the case n=1:

S0 =
{

(x1, x2)∈R
2 : x21=x

2
2

}

=
{

(x1, x2)∈R
2 : |x1|= |x2|

}

.

Thus, if n=1, S0 is the union of the lines x1=±x2 through the origin:

x1

x2

In general, the cross-section of S0 by the hyperplane xn+1= s is an (n−1)-sphere of radius |s| or a
single point if s=0. Thus, S0 is a union of 2 cones with the vertex at the the origin. This implies
that 0 is not a smooth point of S0. In fact, it is not even a manifold point in the topological sense,
i.e. there exists no open neighborhood U of 0 in R

n+1 such that S0∩U is homeomorphic to an open
subset of Rk for some k. In summary, St is a smooth embedded submanifold of Rn+1 if and only if
t 6=0.

Remark: Here is how to see formally that if U is a neighborhood of 0 in R
n+1 and V is an open

subset of Rk, then S0∩U and V are not homeomorphic. It is enough to assume that U and V are
both connected. By the Implicit Function Theorem, S0−0 is a smooth embedded submanifold of
R
n+1 of dimension n. Thus, we can also assume that k=n. If n> 1, then the complement of any

point in V is connected. However, (S0−0)∩U is not connected:

S0−0 = (S0−0)∩U+ ∪ (S0−0)∩U− where

U+ =
{

(x1, . . . , xn+1)∈R
n+1 : xn+1>0

}

and U− =
{

(x1, . . . , xn+1)∈R
n+1 : xn+1<0

}

.

Thus, S0∩U and V are not homeomorphic. If n=1, V must be an open interval and the complement
of a point in V has exactly two components. On the other hand, (S0−0)∩U has (at least) four
components:

S0−0 = (S0−0)∩U++ ∪ (S0−0)∩U+− ∪ (S0−0)∩U−+ ∪ (S0−0)∩U−−,

where U±± =
{

(x1, x2)∈R
2 : ±x1>0,±x2>0

}

.

Thus, S0∩U and V are again not homeomorphic.

(b) Suppose t>0. Then, the set of solutions of the equation

x21+. . .+x
2
n = t+x2n+1, (x1, . . . , xn) ∈ R

n,

with xn+1 fixed is an (n−1)-sphere (this is not the case for every xn+1 if t≤ 0). Thus, we expect
that St is diffeomorphic to Sn−1×R, with the second component given by xn+1. Define

ψ : Rn+1 −→ R
n × R by ψ(x1, . . . , xn+1) =

(

(x1, . . . , xn)
√

t+x2n+1

, xn+1

)

.
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Since t>0, this map is smooth. In fact, it is a diffeomorphism:

ψ−1(y1, . . . , yn+1) =
(

√

t+y2n+1 (y1, . . . , yn), yn+1

)

.

Since St is a submanifold of Rn+1, ψ|St
is also smooth. Furthermore,

ψ(St) ⊂ Sn−1×R.

Since Sn−1×R is an embedded submanifold of Rn×R,

ψ|St
: St −→ Sn−1×R

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

ψ|St
: St −→ Sn−1×R

is an injective immersion. Since ψ−1(Sn−1×R)⊂St (i.e. f(ψ
−1(y)

)

= t for all y∈Sn−1×R), this map
is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

ψ|St
: St −→ Sn−1×R

is a diffeomorphism.

Suppose t<0. Then, the set of solutions of the equation

x2n+1 = −t+ x21+. . .+x
2
n, xn+1 ∈ R,

with x1, . . . , xn fixed is two distinct points, i.e. S0 (this is not the case for every (x1, . . . , xn) if t≥0).
Thus, we expect that St is diffeomorphic to R

n×S0 (Rn⊔R
n), with the first component given by

(x1, . . . , xn). Define

ψ : Rn+1 −→ R
n × R by ψ(x1, . . . , xn+1) =

(

(x1, . . . , xn),
xn+1

√

−t+x21+. . .+x
2
n

)

.

Since t<0, this map is smooth. In fact, it is a diffeomorphism:

ψ−1(y1, . . . , yn+1) =
(

(y1, . . . , yn),
√

−t+x21+. . .+x
2
n yn+1

)

.

Since St is a submanifold of Rn+1, ψ|St
is also smooth. Furthermore,

ψ(St) ⊂ R
n×S0.

Since R
n×S0 is an embedded submanifold of Rn×R,

ψ|St
: St −→ R

n×S0

is smooth by Theorem 1.32. Since ψ is a diffeomorphism,

ψ|St
: St −→ R

n×S0
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is an injective immersion. Since ψ−1(Rn×S0)⊂St (i.e. f(ψ
−1(y)

)

= t for all y∈R
n×S0), this map

is surjective as well. Thus, by Exercise 6 on p51 (from PS1),

ψ|St
: St −→ R

n×S0

is a diffeomorphism.

In summary, St is diffeomorphic to Sn−1×R if t>0 and to R
n ⊔ R

n if t<0.

Remark: The above argument assumed that n≥ 1. If n=0, St is the empty set if t> 0, consists of
one point if t=0, and consists of two points if t<0. All are zero-dimensional manifolds.

Problem 4 (10pts)

Show that the special unitary group

SUn =
{

A∈MatnC : ĀtA=In, det A=1
}

is a smooth compact manifold. What is its dimension?

We will use the Implicit Function Theorem to show that the unitary group

Un =
{

A∈MatnC : ĀtA=In

}

is a compact embedded submanifold of MatnC (which is diffeomorphic to R
2n2

) and SUn is a closed
embedded submanifold of Un.

First, for each B∈MatnC, let

LB : MatnC −→ MatnC, LB(A) = BA,

be the left-multiplication map. It is smooth (being a linear transformation) on C
n2

.

Let Hern denote the space of Hermitian n×n matrices:

Hern =
{

A∈MatnC : Āt=A
}

.

Since Hern is a linear subspace of R2n2

(it is defined by a linear equation on the coefficients), Hern
is an embedded submanifold of MatnC. Define

f : MatnC −→ MatnC by f(A) = ĀtA.

Since f is a polynomial map in the coefficients of A, f is smooth. Furthermore,

f
(

MatnC
)

⊂ Hern.

Since Hern is an embedded submanifold of MatnC, the map

g : MatnC −→ HernC, g(A) = f(A),
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is smooth. We will show that In is a regular value for g (it is not for f), i.e. dAg is surjective for all

A ∈ g−1(In) = Un.

First, we show that
dIng : TInMatnC −→ TInHern

is surjective. For each B∈MatnC, define

αB : R −→ MatnC by αB(s) = In + sB.

Then, αB is a smooth curve in MatnC so that αB(0)=In. In particular,

α′
B(0) = dBα

∣

∣

0

d

ds
∈ TInMatnC.

Furthermore,

dIng
(

α′
B(0)

)

= dIng

(

d0αB

(

d

ds

))

= d0(g ◦ αB)

(

d

ds

)

=
d

ds
g
(

αB(s)
)
∣

∣

s=0
=

d

ds
(In+sB̄

t)(In+sB)
∣

∣

s=0
= B̄t+B ∈ Hern = TInHern.

In particular, the map

dIng :
{

α′
B(0) : B∈Hern

}

−→ TInHern, dIng
(

α′
B(0)

)

= 2B,

is surjective, and thus so is dIng. On the other hand, if B∈g−1(In), then

g
(

LB(A)
)

= g(BA) = BA
t
(BA) = ĀtB̄tBA = ĀtA = g(A) ∀A ∈ MatnC =⇒ g = g ◦ LB

=⇒ dIng = dLB(In)g ◦ dInLB : TInMatnC −→ TBMatnC −→ TInHern.

Since dIng is surjective, it follows that so is dBg, for all B∈Un, i.e. In is a regular value for g. Thus,
by the Implicit FT, Un=g

−1(In) is an embedded submanifold of MatnC of dimension

dimUn = dimMatnC− dimHern = 2n2 −
(

2n(n−1)/2 + n
)

= n2

(the condition Āt=A defining Hern means that the n(n−1)/2 above-diagonal complex entries can
be chosen freely and determine the below-diagram entries, and the diagonal entries must be real).
The subspace Un of MatnC is compact because it is closed (preimage of a point under a continuous
map into a T1-space) and bounded in the standard metric on R

2n2

(the condition ĀtA= In implies
that the length of each row and column of A is 1).

We now show that SUn is an embedded submanifold of Un. Define

ψ : MatnC −→ C by ψ(A) = det A.

Since ψ is a polynomial in the entries, it is a smooth function. Since Un is a submanifold of MatnC,
ψ|Un

is also smooth. Furthermore,

A ∈ Un =⇒ 1 = det In = det (ĀtA) =
(

det Āt
)(

det A
)

= (det A) · (det A)

=⇒ det A ∈ S1 =⇒ ψ(Un) ⊂ S1.
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Since S1 is an embedded submanifold of C, the map

ϕ : Un −→ S1, ϕ(A) = ψ(A),

is smooth by Theorem 1.32. By definition, SUn = ϕ−1(1). We will show that 1 is a regular value
for ϕ (but not for ψ|Un

), i.e. dAϕ is surjective for all A∈ϕ−1(1). First, we show that

dInϕ : TInUn −→ T1S
1

is surjective. Define
α : R −→ MatnC by α(s) = eisIn.

This map is smooth and α(R)⊂Un. Since Un is an embedded submanifold of MatnC, the map

β : R −→ Un, β(s) = α(s),

is then smooth by Theorem 1.32. Furthermore, β(0)=In. In particular,

β′(0) = d0β

(

d

ds

)

∈ TInUn.

We have

dInϕ
(

β′(0)
)

= dInϕ

(

d0β

(

d

ds

))

= d0(ϕ ◦ β)

(

d

ds

)

=
d

ds
ϕ
(

β(s)
)∣

∣

s=0

=
d

ds
det

(

eisIn
)
∣

∣

s=0
=

d

ds
eins

∣

∣

s=0
= in ∈ T1S

1 ⊂ T1C = C.

Thus, dInϕ is nonzero and must then be surjective (since its target space is one-dimensional). On
the other hand, if B ∈ϕ−1(1), then LB(Un)⊂Un (i.e. Un is a subgroup of GLnC). Since Un is an
embedded submanifold of MatnC, then the map

L′
B : Un −→ Un, L′

B(A) = LB(A),

is smooth by Theorem 1.32. Furthermore,

ϕ
(

L′
B(A)

)

= ϕ(BA) = det (BA) = (det B)(det A) = det A = ϕ(A) ∀A ∈ Un =⇒ ϕ = ϕ ◦ L′
B

=⇒ dInϕ = dL′

B
(In)ϕ ◦ dInL

′
B : TInUnC −→ TBUn −→ T1S

1.

Since dInϕ is surjective, it follows that so is dBϕ, for all B ∈ SUn, i.e. 1 is a regular value for ϕ.
Thus, by the Implicit FT, SUn=ϕ

−1(1) is an embedded submanifold of Un of dimension

dimSUn = dimUn − dimS1 = n2 − 1.

Since SUn is the preimage of a point under a continuous function in a T1-space, SUn is closed subset
of Un and thus compact.
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Problem 5 (10pts)

Suppose f : X−→M and g : Y −→M are smooth maps that are transverse to each other:

Tf(x)M = Imdxf + Imdyg ∀ (x, y)∈X×Y s.t f(x)=g(y). (1)

Show that
X×M Y ≡

{

(x, y)∈X×Y : f(x)=g(y)
}

is a smooth (embedded) submanifold of X×Y of codimension equal to the dimension of X and

T(x,y)
(

X×M Y
)

=
{

(v, w)∈TxX⊕TyY : dxf(v)=dyg(w)
}

∀ (x, y) ∈ X×M Y.

We need to find a smooth function h : X×Y −→N and a submanifold Z of N such that X×M Y =
h−1(Z) and h is transverse to Z in N . The following is a standard trick for replacing a condition
like f(x)=g(y)∈M by (x, y)∈h−1(Z). Let

∆M =
{

(p, p)∈M×M : p∈M
}

⊂M×M

be the diagonal in M×M . It is the image of M under the smooth map

d :M −→M×M, d(p) = (p, p).

This map is a topological embedding and an immersion; so Z=∆M is an embedded submanifold of
N=M×M and

T(p,p)∆M =
{

(v, v)∈TpM⊕TpM
}

⊂ T(p,p)(M×M) = TpM⊕TpM ∀ p∈M. (2)

Define
h : X×Y −→M×M by h(x, y) =

(

f(x), g(y)
)

.

Since the maps f and g are smooth, so is the map h. Furthermore, X×M Y =h−1(∆M ).

We will now show that the transversality assumption (eq1) is equivalent to h being transverse to the
diagonal:

Th(x,y)(M×M) = Imd(x,y)h+ Th(x,y)∆M ∀ (x, y)∈h−1(∆M ); (3)

by the Implicit Function Theorem, h−1(∆M ) is then a smooth submanifold of X×Y (we only need
to show (eq1) implies (eq3) for this). Suppose (x, y) ∈ h−1(∆M ). Condition (eq3) is equivalent to
the condition that for all v, w∈Tf(x)M=Tg(y)M there exist x′∈TxX and y′∈TyY such that

v − dxf(x
′) = w − dyg(y

′)

because then

(v, w) =
(

dxf(x
′), dyg(y

′)
)

+
(

v − dxf(x
′), w − dyg(y

′)
)

∈ Imd(x,y)h+ Th(x,y)∆M .

This condition is equivalent to (eq1) (just move w to LHS and dxf(x
′) to RHS).

It follows that X×M Y is a smooth submanifold of X×Y of codimension equal to the codimension
of ∆M in M2, which is the same as the dimension of M . For the last statement, note that

T(x,y)
(

X×MY
)

⊂
{

d(x,y)h
}−1(

T(f(x),f(x))∆M

)

=
{

d(x,y)h
}−1({

(u, u)∈Tf(x)M⊕Tf(x)M : u∈Tf(x)M
})

,

because h(X×M Y )⊂∆M . By the transversality of h to ∆M ,

dim
{

d(x,y)h
}−1(

T(f(x),f(x))∆M

)

= dimTxX + dimTyY −
(

dimT(f(x),f(x))M
2 − dimT(f(x),f(x))∆M

)

= dimTxX + dimTyY − dimM = dimT(x,y)
(

X×M Y
)

;

thus, the above inclusion is actually an equality.
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