MAT 531: Topology& Geometry, 11
Spring 2011

Solutions to Problem Set 11
Problem 1 (15pts)

Suppose M and N are smooth oriented compact connected n-manifolds. If f: M — N s a smooth
map, the degree of f is the number deg f€R such that

| o=t [ o veer ),

This number is well-defined.

(a) Show that if f: M — N and g: N — X are smooth maps between smooth oriented compact
connected n-manifolds, then

deg(g o f) = (deg g) - (deg f).

(b) Show that if f: M — N is a covering projection between smooth oriented compact connected
n-manifolds, then deg f is the degree of f as a covering map (i.e. the number of elements in
each fiber).

(¢) Show that if f: M — N is a smooth map of degree one, then it induces a surjective homomor-
phism between the fundamental groups of M and N.

(a) f we E™(X), then
/M(QOf)*w = /M f(g"w) = (deg f) - /Ng*w = (deg f) - (degg)/Xw
= ((deg g) - (degf))/ w.
X

Since this equality holds for all we E™(X), by definition of the degree of a map

deg(g o f) = (deg g) - (deg f).

(b) Suppose f: M — N is a k-to-1 covering map. Choose y € N, an evenly covered neighborhood U
of y in N (which can be assumed to be diffeomorphic to R™), and an element

we€ E™"(N) s.t. suppw C U and /Uw:/Nw:I.

Since f~(U) is the disjoint union of k copies of U (with its orientation) under f and suppw CU,

/Mf*w:/f—l(U)f*w:k‘/Uw:k:k'/Nw'

Thus, the degree of f must be k.



(c) Suppose z€ M and H is the image of the homomorphism
ferm(M,z) — w1 (N, f(z)).

Since N is semi-locally simply connected (being locally Euclidean), there exists a covering map  :
N — N with N connected, such that

mo(m(N,2)) = H C m (N, f(a)),

for any z€ 7' (f(z)); see Theorem 82.1 in Munkres. Since N is a smooth oriented manifold, so is N.
Since

f*(m(M,x)) =HCH-= 7T*(7T1(N,Z)),

by the Lifting Lemma (Munkres, Lemma 79.1) the map f: M — N lifts over 7, i.e. there exists a
continuous map f: M — N such that diagram

-
-

N
~ 7
e J{ﬂ

N

M

commutes. Since f is smooth and 7 is a smooth covering projection, f is also a smooth map.

If N is compact (or equivalently, 7! (y) is finite for any y € N), then degrees of  and f are well-defined
integers and 3
1 =deg f = (degm) - (deg f)

by part (a). By part (b), the degree of 7 is its degree as a covering map. Since deg f is an integer, =
must be a 1:1-covering map, i.e. a diffeomorphism. Thus,

f*(m(M,x)) = H = 7T*(7T1(N,Z)) = 7T1(N,f(l’)),

i.e. f, is surjective.

Suppose N is not compact (or equivalently, 7~!(y) is infinite for any y € N). Let w € E"(N) be any
element such that wa # 0, e.g. an orientation (or volume) form on N. Since f=mof,

| o= [ wopu= [ Fw).

Since the n-manifold N is connected and not compact, H} 2(N)=0. Since 7*w € E"(N) is closed
(being a top form), it must be exact. Therefore, f*(7*w) is also exact and by Stokes Theorem

(degf)/Nw=/Mf*w=/Mf*(7r*w) = 0.

Since || N w # 0, it follows that deg f =0, contrary to the assumption.

Note: The fundamental group of any compact manifold is finitely generated (and of an arbitrary
manifold is countably generated). Thus, the index of the subgroup H above is countable, and so N is
second-countable. Alternatively, one can adapt the proof of the vanishing of the top cohomology of
non-compact manifolds to the present situation.



Problem 2 (5pts)

State and prove a Mayer-Vietoris theorem for compactly supported cohomology.

If U is an open subset of a smooth manifold M, a compactly supported form a€ E*(U) determines a
compactly supported form on M. Thus, there is an inclusion homomorphism

e Bo(U) — EZ(M),
which replaces the restriction homomorphism 7 : E*(M)— E*(U) going in the opposite direction.

Mayer-Vietoris for compactly supported cohomology: If M is a smooth manifold and U,V C M are open
subsets such that M =UUV, then there is a long exact sequence

— dc 7 j Jc
HE R (M) S5 HY o (UNV) =5 HE L (U)@HE (V) =5 HE (M) =25 HY . (UAV).
i([s]) = (Lvvavel, ~lvoeval), Gkl ) = s + [earvn)-

By the Snake Lemma, it is sufficient to show that the sequence
0 — (EX(UNV),dynyv) == (BL(U)@EL(V), dy@dy) == (EX(M),da) — 0
i(k) = (LU,UmVFﬂ, _LV,UﬁVFG)a j(u,n) = LMUB LMV,

is an exact sequence of co-chain complexes. It is immediate that ¢ and j commute with the differentials
(the forms are just extended by 0), ¢ is injective (same reason), and joi=0. If tpryp+ear,yn=0,

supppu =suppn CUNV = plvav = —nluav € EXUNV) = (1) = i(pluav).

It remains to show that j is surjective. Let {¢y, ¥y} be a partition of unity on M subordinate to
{U,V'}. Then, for every v€ E*(M),

Yulu € EX(U), vvalv € EX(V), ~v=vuy+ vy = j(¢uy, vvy);
so j is surjective.
Problem 3 (5+10-+10pts)

Let M be an oriented n-manifold, possibly non-compact.

(a) Show that the pairing
Hian (M) ® HiogoM) — R, ll@[s] — [ ang,

s well-defined.
(b) Show that the above pairing is nondegenerate if M =R".

(c) Suppose that M admits a cover {U;}i=1,.. m such that every intersection U;, N...NU;, is either
empty or diffeomorphic to R™. Show that the above pairing is nondegenerate.



(a) If a € E*(M) and S € E}(M), aNpB € EX(M). Since M is oriented, / aAf exists (only the

M
homogeneous part of aAS of degree n contributes to the integral). If in addition o € ker d, then
aNdf = zxd(anp) = /a/\dﬂz:l:/ aNB =0
M oM
by Stokes Theorem because aAf € EX (M) and OM =0. If f&€ kerdNE} (M), then
da A B =d(anp) = /da/\ﬁz aNf =0
M oM
by Stokes Theorem because aAf € EX(M). Thus, the homomorphism
(kerd) @ ((kerd)NE}(M)) — R, a®/3—>/ alp,
M

vanishes on (ker d)®(dEX(M)) & (dE*(M))®((ker d)NE}(M)) and thus induces a well-defined homo-
morphism on the quotient

(ker d) ((kerd)NEZX(M))
(ker d) (dE*( & (dE*(M))@((ker d)NEX(M))

—>/a/\ﬁ

(b) HJ,(R™) is generated by the constant function 1 on R", while HY, r.c(R™) is generated by [n] for
any n€ EY(R™) with nonzero integral on R". The pairing of these two elements is nonzero:

HélkeR(M) ®H§eR;c(M) — Ra

el — [ 1= [ azo
Thus, the pairing
ngR(Rn) ® HZiLeR;c(Rn) =R — R, [a] ® [6] — aN /87
RTL

is nonzero and thus nondegenerate (since both vector spaces are one-dimensional). Since HY . (R™)=0
for p #£ 0, it remains to show that queR- (R™) =0 for g #n. This is immediate for ¢ >n (because
E%(R™)=0 in this case) and easy for ¢=0 (done in class).

Thus, we need to show that for every

a=>_ fidr; € B{(R")
I

with ¢=1,...,n—1 and da=0, there exists 3 € E{ ' (R™) such that a=dS. Since a € E{(R"), there
exists A >0 such that a|, =0 if |x| > A. By Warner 4.18 (Poincare Lemma and its proof), a=d(tx&),
where ¢x is the contraction (Warner 2.11),

= 0 0 Lo o de;
X:;%‘axi:Tar, aacZZ(/th fj(ta:)dt>dszz</0 t4 f[(t$/’$’)dt>‘x|q if 240

1 1

—Z(/ 197 fr(t2 | )dt) ‘dw’g if || > A.



Since tx (1x@)=0 (tx& vanishes if any input is X), txa=r*3" on R"~B4(0), where r: R"—0 — S 1
is the usual retraction and 3’ € E971(S"~1) is given by

A
By = Z(/{; tq_lf[(tl‘)dt> txdxy .

I

Since d(r*8") =a =0 on the sphere SZ_I of radius A and r* is injective, d3' =0€ E4(S"1). If ¢=1,
it follows that 3’ is a constant function with some value C' on S™~!; thus, the 0-form = i1xa—C
is supported in B4(0) (because txa = r*8" = C outside of Ba(0 )) and o = dB. Suppose instead
2<g¢<n-—1. Since Hg;é(S”_l) 0 and dB'=0, B’ =dy for some v' € E2(S"~1). Choose a smooth
function n: R” — [0, 1] such that

B0 =0, Nrr—Ba0) = 1,

and let y=7-r*y’ € E972(R"); even though r is not defined at 0 €R", v is well-defined because 7 - r*y’
vanishes on B 4/3(0)—0 and thus extends by 0 over the origin. With B=1xa—dycEI"YR"), a=d}p.
Since txa=r*3"=r*dy' =dy outside of B4(0), 3 is supported in B4(0) in this case as well.

(c) We prove by induction on m that H*(M) = Hj (M) and H}(M) = H} g..(M) are finite-
dimensional (actually of dimension at most m) and that the homomorphism

HP(M) — HY™P(MY*, o] —>/MaA-,

induced by the pairing is an isomorphism; the latter is equivalent to the pairing being non-degenerate
(when the vector spaces are finite-dimensional). Part (b) is the m=1 case.

Suppose m>2 and both statements hold for all oriented n-manifolds admitting good covers as above
with at most m—1 elements. Let
U=U,UU0zU...UUp-_1, V=U,.
By our inductive assumption, H* and H} of U, V, and
UNV = (UNUyy) U (UaNUp) U... U (Up—1NUr)

are finite-dimensional and dual to each other via the Poincare pairing. We have two MV long exact
sequence for M =UUV:

B O e H (V) — L i V) 2L g L B0 e HY (V) —- BP(UAV) ——
® ® ® ® ® ® ®
~  HIP)eHIT (V) < BT UNV) < BI(M) < B @ HI(V) ~— HI(UNV) ~—
l@)fﬁfv imfw i Ty l<7>fU+fv lmfw
= R = R = R = R =

where p+qg=mn, the homomorphisms f, g, and ¢ in the top row are as in Problem 2a on PS7, and the
homomorphisms i, j, and J. are as in Problem 2 above. The entire diagram commutes, i.e.

(f(la]), ([n] [n])> ([al, ([, [n)), <9B D []) = (([8], D) i([x])),
—1)PHH5(w)), [0]) = ([w], 6.([0])) ¥ [w]€ HP(M).



The first two identities are immediate from the definitions of f, g, ¢, and j:

(D () = [ alunu+ [ alvns
= [ an (ot ) = (ol (0l 1)
(o181 B ) = [ (Blonw=alonv) A
= [ 8w + [ A ivunvs) = (@)L b))

the middle equalities above hold because u, 1, and x are extended by 0 outside of U, V, and UNV,
respectively. For the last identity, we need explicit expressions for 6 and d.. Let {4y, ¢y} be a
partition of unity subordinate to {U,V'}. By Problem 2a on PS7,

(5([&1]) = [LM,UHV(de/\W)]'
Similarly, since QZLM’U(’(ﬁUG) + LMyv(l/JVg) and Yy+yy =1,
6.(10]) = [dvuNOlunv] = —[dvv Abluav].

Thus,

(—1PHL(8([w)), [8]) = (1P /

//M,UQV(CMJV/\W) ANO = / w A (dlﬁU/\H)’UmV = <[w], 50([9])> ,
M

unv
if [w] € HP(M).

Taking the dual of the middle row in the above diagram, we thus obtain a commutative diagram of
two exact sequences

B O H (V) — s mr-Ywnv) L g — L

| | L |

- 5 i
— B U) e HIT (V) —— HIT (UNV)* —— HI(M)* —— HI(U)*"© H!(V)* —— HI(UNV)* —

HP(U)®HP(V) —L~ HP(UNV) ——

with the vertical maps induced by the pairing (,). By the inductive assumption, the second and
fourth vector spaces in each row are finite-dimensional; since the rows are exact, so are the middle
vector spaces in each row. The first, second, fourth, and fifth vertical arrows are isomorphisms by the
inductive assumption; since the rows are exact, so is the middle vertical arrow by the Five Lemma.
Thus, every oriented n-manifold admitting a good cover with at most m elements has finite-dimensional
H* and H} and satisfies Poincare duality between the two cohomologies.



