MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 11

Problem 1 (15pts)

Suppose M and N are smooth oriented compact connected n-manifolds. If $f: M \longrightarrow N$ is a smooth map, the degree of f is the number deg $f \in \mathbb{R}$ such that

$$\int_{M} f^{*} \omega = (\deg f) \cdot \int_{N} \omega \qquad \forall \ \omega \in E^{n}(N).$$

This number is well-defined.

(a) Show that if $f: M \longrightarrow N$ and $g: N \longrightarrow X$ are smooth maps between smooth oriented compact connected n-manifolds, then

$$\deg(g \circ f) = (\deg g) \cdot (\deg f).$$

- (b) Show that if f: M → N is a covering projection between smooth oriented compact connected n-manifolds, then deg f is the degree of f as a covering map (i.e. the number of elements in each fiber).
- (c) Show that if $f: M \longrightarrow N$ is a smooth map of degree one, then it induces a surjective homomorphism between the fundamental groups of M and N.

(a) If $\omega \in E^n(X)$, then

$$\int_{M} (g \circ f)^* \omega = \int_{M} f^*(g^* \omega) = (\deg f) \cdot \int_{N} g^* \omega = (\deg f) \cdot (\deg g) \int_{X} \omega$$
$$= \left((\deg g) \cdot (\deg f) \right) \int_{X} \omega.$$

Since this equality holds for all $\omega \in E^n(X)$, by definition of the degree of a map

$$\deg(g \circ f) = (\deg g) \cdot (\deg f).$$

(b) Suppose $f: M \longrightarrow N$ is a k-to-1 covering map. Choose $y \in N$, an evenly covered neighborhood U of y in N (which can be assumed to be diffeomorphic to \mathbb{R}^n), and an element

$$\omega \in E^n(N)$$
 s.t. $\operatorname{supp} \omega \subset U$ and $\int_U \omega = \int_N \omega = 1$

Since $f^{-1}(U)$ is the disjoint union of k copies of U (with its orientation) under f and $\sup \omega \subset U$,

$$\int_M f^* \omega = \int_{f^{-1}(U)} f^* \omega = k \cdot \int_U \omega = k = k \cdot \int_N \omega.$$

Thus, the degree of f must be k.

(c) Suppose $x \in M$ and H is the image of the homomorphism

$$f_*: \pi_1(M, x) \longrightarrow \pi_1(N, f(x)).$$

Since N is semi-locally simply connected (being locally Euclidean), there exists a covering map π : $\tilde{N} \longrightarrow N$ with \tilde{N} connected, such that

$$\pi_*\big(\pi_1(\tilde{N},z)\big) = H \subset \pi_1\big(N,f(x)\big),$$

for any $z \in \pi^{-1}(f(x))$; see Theorem 82.1 in Munkres. Since N is a smooth oriented manifold, so is \tilde{N} . Since

$$f_*(\pi_1(M, x)) = H \subset H = \pi_*(\pi_1(\tilde{N}, z)),$$

by the Lifting Lemma (Munkres, Lemma 79.1) the map $f: M \longrightarrow N$ lifts over π , i.e. there exists a continuous map $\tilde{f}: M \longrightarrow \tilde{N}$ such that diagram

commutes. Since f is smooth and $\tilde{\pi}$ is a smooth covering projection, \tilde{f} is also a smooth map.

If \tilde{N} is compact (or equivalently, $\pi^{-1}(y)$ is finite for any $y \in N$), then degrees of π and \tilde{f} are well-defined integers and

$$1 = \deg f = (\deg \pi) \cdot (\deg \tilde{f})$$

by part (a). By part (b), the degree of π is its degree as a covering map. Since deg \tilde{f} is an integer, π must be a 1:1-covering map, i.e. a diffeomorphism. Thus,

$$f_*(\pi_1(M, x)) = H = \pi_*(\pi_1(N, z)) = \pi_1(N, f(x)),$$

i.e. f_* is surjective.

Suppose \tilde{N} is not compact (or equivalently, $\pi^{-1}(y)$ is infinite for any $y \in N$). Let $\omega \in E^n(N)$ be any element such that $\int_N \omega \neq 0$, e.g. an orientation (or volume) form on N. Since $f = \pi \circ \tilde{f}$,

$$\int_M f^* \omega = \int_M (\pi \circ \tilde{f})^* \omega = \int_M \tilde{f}^* (\pi^* \omega).$$

Since the *n*-manifold \tilde{N} is connected and not compact, $H^n_{\text{de R}}(\tilde{N}) = 0$. Since $\pi^* \omega \in E^n(\tilde{N})$ is closed (being a top form), it must be exact. Therefore, $\tilde{f}^*(\pi^*\omega)$ is also exact and by Stokes Theorem

$$(\deg f)\int_N \omega = \int_M f^*\omega = \int_M \tilde{f}^*(\pi^*\omega) = 0.$$

Since $\int_N \omega \neq 0$, it follows that deg f = 0, contrary to the assumption.

Note: The fundamental group of any compact manifold is finitely generated (and of an arbitrary manifold is countably generated). Thus, the index of the subgroup H above is countable, and so \tilde{N} is second-countable. Alternatively, one can adapt the proof of the vanishing of the top cohomology of non-compact manifolds to the present situation.

Problem 2 (5pts)

State and prove a Mayer-Vietoris theorem for compactly supported cohomology.

If U is an open subset of a smooth manifold M, a compactly supported form $\alpha \in E_c^*(U)$ determines a compactly supported form on M. Thus, there is an inclusion homomorphism

$$\iota_{M,U} \colon E_c^*(U) \longrightarrow E_c^*(M),$$

which replaces the restriction homomorphism $r_{U,M} \colon E^*(M) \longrightarrow E^*(U)$ going in the opposite direction.

Mayer-Vietoris for compactly supported cohomology: If M is a smooth manifold and $U, V \subset M$ are open subsets such that $M = U \cup V$, then there is a long exact sequence

$$\dots H^{p-1}_{\operatorname{de} \mathrm{R};c}(M) \xrightarrow{\delta_c} H^p_{\operatorname{de} \mathrm{R};c}(U \cap V) \xrightarrow{i} H^p_{\operatorname{de} \mathrm{R};c}(U) \oplus H^p_{\operatorname{de} \mathrm{R};c}(V) \xrightarrow{j} H^p_{\operatorname{de} \mathrm{R};c}(M) \xrightarrow{\delta_c} H^{p+1}_{\operatorname{de} \mathrm{R};c}(U \cap V) \dots i([\kappa]) = ([\iota_{U,U\cap V}\kappa], -[\iota_{V,U\cap V}\kappa]), \qquad j([\mu], [\eta]) = [\iota_{M,U}\mu] + [\iota_{M,V}\eta].$$

By the Snake Lemma, it is sufficient to show that the sequence

$$0 \longrightarrow \left(E_c^*(U \cap V), d_{U \cap V}\right) \xrightarrow{i} \left(E_c^*(U) \oplus E_c^*(V), d_U \oplus d_V\right) \xrightarrow{\mathcal{I}} \left(E_c^*(M), d_M\right) \longrightarrow 0$$
$$i(\kappa) = \left(\iota_{U,U \cap V}\kappa, -\iota_{V,U \cap V}\kappa\right), \qquad j(\mu, \eta) = \iota_{M,U}\mu + \iota_{M,V}\eta,$$

is an exact sequence of co-chain complexes. It is immediate that i and j commute with the differentials (the forms are just extended by 0), i is injective (same reason), and $j \circ i = 0$. If $\iota_{M,U} \mu + \iota_{M,V} \eta = 0$,

$$\operatorname{supp} \mu = \operatorname{supp} \eta \subset U \cap V \implies \mu|_{U \cap V} = -\eta|_{U \cap V} \in E_c^*(U \cap V) \implies (\mu, \eta) = i(\mu|_{U \cap V}).$$

It remains to show that j is surjective. Let $\{\psi_U, \psi_V\}$ be a partition of unity on M subordinate to $\{U, V\}$. Then, for every $\gamma \in E^*(M)$,

$$\psi_U \gamma|_U \in E_c^*(U), \quad \psi_V \gamma|_V \in E_c^*(V), \quad \gamma = \psi_U \gamma + \psi_V \gamma = j(\psi_U \gamma, \psi_V \gamma);$$

so j is surjective.

Problem 3 (5+10+10pts)

Let M be an oriented n-manifold, possibly non-compact.

(a) Show that the pairing

$$H^*_{\operatorname{de} \mathbf{R}}(M) \otimes H^*_{\operatorname{de} \mathbf{R};c}(M) \longrightarrow \mathbb{R}, \qquad [\alpha] \otimes [\beta] \longrightarrow \int_M \alpha \wedge \beta,$$

is well-defined.

- (b) Show that the above pairing is nondegenerate if $M = \mathbb{R}^n$.
- (c) Suppose that M admits a cover $\{U_i\}_{i=1,...,m}$ such that every intersection $U_{i_1} \cap \ldots \cap U_{i_k}$ is either empty or diffeomorphic to \mathbb{R}^n . Show that the above pairing is nondegenerate.

(a) If $\alpha \in E^*(M)$ and $\beta \in E_c^*(M)$, $\alpha \wedge \beta \in E_c^*(M)$. Since M is oriented, $\int_M \alpha \wedge \beta$ exists (only the homogeneous part of $\alpha \wedge \beta$ of degree n contributes to the integral). If in addition $\alpha \in \ker d$, then

$$\alpha \wedge d\beta = \pm d(\alpha \wedge \beta) \qquad \Longrightarrow \qquad \int_M \alpha \wedge d\beta = \pm \int_{\partial M} \alpha \wedge \beta = 0$$

by Stokes Theorem because $\alpha \wedge \beta \in E_c^*(M)$ and $\partial M = 0$. If $\beta \in \ker d \cap E_c^*(M)$, then

$$d\alpha \wedge \beta = d(\alpha \wedge \beta) \qquad \Longrightarrow \qquad \int_M d\alpha \wedge \beta = \int_{\partial M} \alpha \wedge \beta = 0$$

by Stokes Theorem because $\alpha \wedge \beta \in E_c^*(M)$. Thus, the homomorphism

$$(\ker d) \otimes ((\ker d) \cap E_c^*(M)) \longrightarrow \mathbb{R}, \qquad \alpha \otimes \beta \longrightarrow \int_M \alpha \wedge \beta$$

vanishes on $(\ker d) \otimes (dE_c^*(M)) \oplus (dE^*(M)) \otimes ((\ker d) \cap E_c^*(M))$ and thus induces a well-defined homomorphism on the quotient

$$H^*_{\operatorname{de} \mathbf{R}}(M) \otimes H^*_{\operatorname{de} \mathbf{R};c}(M) = \frac{(\ker d) \otimes ((\ker d) \cap E^*_c(M))}{(\ker d) \otimes (dE^*_c(M)) \oplus (dE^*(M)) \otimes ((\ker d) \cap E^*_c(M))} \longrightarrow \mathbb{R},$$
$$[\alpha] \otimes [\beta] \longrightarrow \int_M \alpha \wedge \beta.$$

(b) $H^0_{\mathrm{de}\,\mathbf{R}}(\mathbb{R}^n)$ is generated by the constant function 1 on \mathbb{R}^n , while $H^n_{\mathrm{de}\,\mathbf{R};c}(\mathbb{R}^n)$ is generated by $[\eta]$ for any $\eta \in E^n_c(\mathbb{R}^n)$ with nonzero integral on \mathbb{R}^n . The pairing of these two elements is nonzero:

$$[1] \otimes [\eta] \longrightarrow \int_{\mathbb{R}^n} 1 \wedge \eta = \int_{\mathbb{R}^n} \eta \neq 0.$$

Thus, the pairing

$$H^0_{\mathrm{de}\,\mathrm{R}}(\mathbb{R}^n)\otimes H^n_{\mathrm{de}\,\mathrm{R};c}(\mathbb{R}^n)=\mathbb{R}\longrightarrow\mathbb{R},\qquad [\alpha]\otimes[\beta]\longrightarrow\int_{\mathbb{R}^n}\alpha\wedge\beta,$$

is nonzero and thus nondegenerate (since both vector spaces are one-dimensional). Since $H^p_{de R}(\mathbb{R}^n) = 0$ for $p \neq 0$, it remains to show that $H^q_{de R;c}(\mathbb{R}^n) = 0$ for $q \neq n$. This is immediate for q > n (because $E^q(\mathbb{R}^n) = 0$ in this case) and easy for q = 0 (done in class).

Thus, we need to show that for every

$$\alpha \equiv \sum_{I} f_{I} dx_{I} \in E_{c}^{q}(\mathbb{R}^{n})$$

with $q=1,\ldots,n-1$ and $d\alpha=0$, there exists $\beta \in E_c^{q-1}(\mathbb{R}^n)$ such that $\alpha=d\beta$. Since $\alpha \in E_c^q(\mathbb{R}^n)$, there exists A>0 such that $\alpha|_x=0$ if $|x|\geq A$. By Warner 4.18 (Poincare Lemma and its proof), $\alpha=d(\iota_X\tilde{\alpha})$, where ι_X is the contraction (Warner 2.11),

$$\begin{aligned} X &= \sum_{i=1}^{i=n} x_i \frac{\partial}{\partial x_i} \equiv r \frac{\partial}{\partial r}, \quad \tilde{\alpha}_x = \sum_I \left(\int_0^1 t^{q-1} f_I(tx) dt \right) dx_I = \sum_I \left(\int_0^{|x|} t^{q-1} f_I(tx/|x|) dt \right) \frac{dx_I}{|x|^q} \quad \text{if } x \neq 0 \\ &= \sum_I \left(\int_0^A t^{q-1} f_I(tx/|x|) dt \right) \frac{dx_I}{|x|^q} \quad \text{if } |x| \ge A. \end{aligned}$$

Since $\iota_X(\iota_X\tilde{\alpha}) = 0$ ($\iota_X\tilde{\alpha}$ vanishes if any input is X), $\iota_X\tilde{\alpha} = r^*\beta'$ on $\mathbb{R}^n - B_A(0)$, where $r : \mathbb{R}^n - 0 \longrightarrow S^{n-1}$ is the usual retraction and $\beta' \in E^{q-1}(S^{n-1})$ is given by

$$\beta'_x = \sum_I \left(\int_0^A t^{q-1} f_I(tx) dt \right) \iota_X dx_I \,.$$

Since $d(r^*\beta') = \alpha = 0$ on the sphere S_A^{n-1} of radius A and r^* is injective, $d\beta' = 0 \in E^q(S^{n-1})$. If q = 1, it follows that β' is a constant function with some value C on S^{n-1} ; thus, the 0-form $\beta \equiv \iota_X \tilde{\alpha} - C$ is supported in $\bar{B}_A(0)$ (because $\iota_X \tilde{\alpha} = r^*\beta' = C$ outside of $\bar{B}_A(0)$) and $\alpha = d\beta$. Suppose instead $2 \leq q \leq n-1$. Since $H_{\text{deR}}^{q-1}(S^{n-1}) = 0$ and $d\beta' = 0$, $\beta' = d\gamma'$ for some $\gamma' \in E^{q-2}(S^{n-1})$. Choose a smooth function $\eta \colon \mathbb{R}^n \longrightarrow [0, 1]$ such that

$$\eta|_{B_{A/2}(0)} \equiv 0, \qquad \eta|_{\mathbb{R}^n - B_A(0)} \equiv 1,$$

and let $\gamma = \eta \cdot r^* \gamma' \in E^{q-2}(\mathbb{R}^n)$; even though r is not defined at $0 \in \mathbb{R}^n$, γ is well-defined because $\eta \cdot r^* \gamma'$ vanishes on $B_{A/2}(0) - 0$ and thus extends by 0 over the origin. With $\beta = \iota_X \tilde{\alpha} - d\gamma \in E^{q-1}(\mathbb{R}^n)$, $\alpha = d\beta$. Since $\iota_X \tilde{\alpha} = r^* \beta' = r^* d\gamma' = d\gamma$ outside of $B_A(0)$, β is supported in $\bar{B}_A(0)$ in this case as well.

(c) We prove by induction on m that $H^*(M) \equiv H^*_{\operatorname{de} R}(M)$ and $H^*_c(M) \equiv H^*_{\operatorname{de} R;c}(M)$ are finitedimensional (actually of dimension at most m) and that the homomorphism

$$H^p(M) \longrightarrow H^{n-p}_c(M)^*, \qquad [\alpha] \longrightarrow \int_M \alpha \wedge \cdot$$

induced by the pairing is an isomorphism; the latter is equivalent to the pairing being non-degenerate (when the vector spaces are finite-dimensional). Part (b) is the m=1 case.

Suppose $m \ge 2$ and both statements hold for all oriented *n*-manifolds admitting good covers as above with at most m-1 elements. Let

$$U = U_1 \cup U_2 \cup \ldots \cup U_{m-1}, \qquad V = U_m.$$

By our inductive assumption, H^* and H_c^* of U, V, and

$$U \cap V = (U_1 \cap U_m) \cup (U_2 \cap U_m) \cup \ldots \cup (U_{m-1} \cap U_m)$$

are finite-dimensional and dual to each other via the Poincare pairing. We have two MV long exact sequence for $M = U \cup V$:

where p+q=n, the homomorphisms f, g, and δ in the top row are as in Problem 2a on PS7, and the homomorphisms i, j, and δ_c are as in Problem 2 above. The entire diagram commutes, i.e.

$$\begin{split} \left\langle f([\alpha]), ([\mu], [\eta]) \right\rangle &= \left\langle [\alpha], j([\mu], [\eta]) \right\rangle, \qquad \left\langle g([\beta], [\gamma]), [\kappa] \right\rangle &= \left\langle ([\beta], [\gamma]), i([\kappa]) \right\rangle, \\ (-1)^{p+1} \left\langle \delta([\omega]), [\theta] \right\rangle &= \left\langle [\omega], \delta_c([\theta]) \right\rangle \quad \forall \, [\omega] \in H^p(M). \end{split}$$

The first two identities are immediate from the definitions of f, g, i, and j:

$$\begin{split} \left\langle f([\alpha]), ([\mu], [\eta]) \right\rangle &= \int_{U} \alpha |_{U} \wedge \mu + \int_{V} \alpha |_{V} \wedge \eta \\ &= \int_{M} \alpha \wedge \left(\iota_{M, U} \mu + \iota_{M, V} \eta \right) = \left\langle [\alpha], j([\mu], [\eta]) \right\rangle, \\ \left\langle g([\beta], [\gamma]), [\kappa] \right\rangle &= \int_{U \cap V} \left(\beta |_{U \cap V} - \gamma |_{U \cap V} \right) \wedge \kappa \\ &= \int_{U} \beta \wedge \left(\iota_{U, U \cap V} \kappa \right) + \int_{V} \beta \wedge \left(-\iota_{V, U \cap V} \kappa \right) = \left\langle ([\beta], [\gamma]), i([\kappa]) \right\rangle; \end{split}$$

the middle equalities above hold because μ , η , and κ are extended by 0 outside of U, V, and $U \cap V$, respectively. For the last identity, we need explicit expressions for δ and δ_c . Let $\{\psi_U, \psi_V\}$ be a partition of unity subordinate to $\{U, V\}$. By Problem 2a on PS7,

$$\delta([\omega]) = [\iota_{M,U\cap V}(d\psi_V \wedge \omega)].$$

Similarly, since $\theta = \iota_{M,U}(\psi_U \theta) + \iota_{M,V}(\psi_V \theta)$ and $\psi_U + \psi_V = 1$,

$$\delta_c([\theta]) = \left[d\psi_U \wedge \theta|_{U \cap V} \right] = -\left[d\psi_V \wedge \theta|_{U \cap V} \right].$$

Thus,

$$(-1)^{p+1} \left\langle \delta([\omega]), [\theta] \right\rangle = (-1)^{p+1} \int_M \iota_{M,U\cap V}(d\psi_V \wedge \omega) \wedge \theta = \int_{U\cap V} \omega \wedge (d\psi_U \wedge \theta)|_{U\cap V} = \left\langle [\omega], \delta_c([\theta]) \right\rangle,$$

if $[\omega] \in H^p(M).$

Taking the dual of the middle row in the above diagram, we thus obtain a commutative diagram of two exact sequences

with the vertical maps induced by the pairing \langle , \rangle . By the inductive assumption, the second and fourth vector spaces in each row are finite-dimensional; since the rows are exact, so are the middle vector spaces in each row. The first, second, fourth, and fifth vertical arrows are isomorphisms by the inductive assumption; since the rows are exact, so is the middle vertical arrow by the *Five Lemma*. Thus, every oriented *n*-manifold admitting a good cover with at most *m* elements has finite-dimensional H^* and H_c^* and satisfies Poincare duality between the two cohomologies.