
MAT 531: Topology&Geometry, II
Spring 2011

Solutions to Problem Set 11

Problem 1 (15pts)

Suppose M and N are smooth oriented compact connected n-manifolds. If f : M −→N is a smooth

map, the degree of f is the number deg f ∈R such that

∫

M
f∗ω = (deg f) ·

∫

N
ω ∀ ω∈En(N).

This number is well-defined.

(a) Show that if f : M −→N and g : N −→X are smooth maps between smooth oriented compact

connected n-manifolds, then

deg(g ◦ f) = (deg g) · (deg f).

(b) Show that if f : M −→ N is a covering projection between smooth oriented compact connected

n-manifolds, then deg f is the degree of f as a covering map (i.e. the number of elements in

each fiber).

(c) Show that if f : M −→N is a smooth map of degree one, then it induces a surjective homomor-

phism between the fundamental groups of M and N .

(a) If ω∈En(X), then
∫

M
(g◦f)∗ω =

∫

M
f∗(g∗ω) = (deg f) ·

∫

N
g∗ω = (deg f) · (deg g)

∫

X
ω

=
(

(deg g) · (deg f)
)

∫

X
ω.

Since this equality holds for all ω∈En(X), by definition of the degree of a map

deg(g ◦ f) = (deg g) · (deg f).

(b) Suppose f : M −→N is a k-to-1 covering map. Choose y∈N , an evenly covered neighborhood U
of y in N (which can be assumed to be diffeomorphic to R

n), and an element

ω ∈ En(N) s.t. suppω ⊂ U and

∫

U
ω =

∫

N
ω = 1.

Since f−1(U) is the disjoint union of k copies of U (with its orientation) under f and suppω⊂U ,
∫

M
f∗ω =

∫

f−1(U)
f∗ω = k ·

∫

U
ω = k = k ·

∫

N
ω.

Thus, the degree of f must be k.



(c) Suppose x∈M and H is the image of the homomorphism

f∗ : π1(M,x) −→ π1
(

N, f(x)
)

.

Since N is semi-locally simply connected (being locally Euclidean), there exists a covering map π :
Ñ−→N with Ñ connected, such that

π∗
(

π1(Ñ , z)
)

= H ⊂ π1
(

N, f(x)
)

,

for any z∈π−1(f(x)); see Theorem 82.1 in Munkres. Since N is a smooth oriented manifold, so is Ñ .
Since

f∗
(

π1(M,x)
)

= H ⊂ H = π∗
(

π1(Ñ , z)
)

,

by the Lifting Lemma (Munkres, Lemma 79.1) the map f : M −→N lifts over π, i.e. there exists a
continuous map f̃ :M −→ Ñ such that diagram

Ñ

π
��

M

f̃

88
q

q

q

q

q

q

q f
// N

commutes. Since f is smooth and π̃ is a smooth covering projection, f̃ is also a smooth map.

If Ñ is compact (or equivalently, π−1(y) is finite for any y∈N), then degrees of π and f̃ are well-defined
integers and

1 = deg f = (deg π) · (deg f̃)

by part (a). By part (b), the degree of π is its degree as a covering map. Since deg f̃ is an integer, π
must be a 1:1-covering map, i.e. a diffeomorphism. Thus,

f∗
(

π1(M,x)
)

= H = π∗
(

π1(Ñ , z)
)

= π1
(

N, f(x)
)

,

i.e. f∗ is surjective.

Suppose Ñ is not compact (or equivalently, π−1(y) is infinite for any y∈N). Let ω∈En(N) be any
element such that

∫

N ω 6= 0, e.g. an orientation (or volume) form on N . Since f=π◦f̃ ,

∫

M
f∗ω =

∫

M
(π◦f̃)∗ω =

∫

M
f̃∗

(

π∗ω
)

.

Since the n-manifold Ñ is connected and not compact, Hn
deR(Ñ) = 0. Since π∗ω ∈En(Ñ) is closed

(being a top form), it must be exact. Therefore, f̃∗(π∗ω) is also exact and by Stokes Theorem

(deg f)

∫

N
ω =

∫

M
f∗ω =

∫

M
f̃∗

(

π∗ω
)

= 0.

Since
∫

N ω 6= 0, it follows that deg f=0, contrary to the assumption.

Note: The fundamental group of any compact manifold is finitely generated (and of an arbitrary
manifold is countably generated). Thus, the index of the subgroup H above is countable, and so Ñ is
second-countable. Alternatively, one can adapt the proof of the vanishing of the top cohomology of
non-compact manifolds to the present situation.
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Problem 2 (5pts)

State and prove a Mayer-Vietoris theorem for compactly supported cohomology.

If U is an open subset of a smooth manifold M , a compactly supported form α∈E∗
c (U) determines a

compactly supported form on M . Thus, there is an inclusion homomorphism

ιM,U : E∗
c (U) −→ E∗

c (M),

which replaces the restriction homomorphism rU,M : E∗(M)−→E∗(U) going in the opposite direction.

Mayer-Vietoris for compactly supported cohomology: If M is a smooth manifold and U, V ⊂M are open
subsets such that M=U∪V , then there is a long exact sequence

. . . Hp−1
deR;c(M)

δc−→ Hp
deR;c(U∩V )

i
−→ Hp

deR;c(U)⊕Hp
deR;c(V )

j
−→ Hp

deR;c(M)
δc−→ Hp+1

deR;c(U∩V ) . . .

i
(

[κ]
)

=
(

[ιU,U∩V κ],−[ιV,U∩V κ]
)

, j
(

[µ], [η]
)

= [ιM,Uµ] + [ιM,V η].

By the Snake Lemma, it is sufficient to show that the sequence

0 −→
(

E∗
c (U∩V ), dU∩V

) i
−→

(

E∗
c (U)⊕E∗

c (V ), dU⊕dV
) j
−→

(

E∗
c (M), dM

)

−→ 0

i(κ) =
(

ιU,U∩V κ,−ιV,U∩V κ
)

, j
(

µ, η
)

= ιM,Uµ+ ιM,V η,

is an exact sequence of co-chain complexes. It is immediate that i and j commute with the differentials
(the forms are just extended by 0), i is injective (same reason), and j◦i=0. If ιM,Uµ+ιM,V η=0,

suppµ = supp η ⊂ U ∩ V =⇒ µ|U∩V = −η|U∩V ∈ E∗
c (U ∩ V ) =⇒ (µ, η) = i

(

µ|U∩V

)

.

It remains to show that j is surjective. Let {ψU , ψV } be a partition of unity on M subordinate to
{U, V }. Then, for every γ∈E∗(M),

ψUγ|U ∈ E∗
c (U), ψV γ|V ∈ E∗

c (V ), γ = ψUγ + ψV γ = j
(

ψUγ, ψV γ
)

;

so j is surjective.

Problem 3 (5+10+10pts)

Let M be an oriented n-manifold, possibly non-compact.

(a) Show that the pairing

H∗
deR(M)⊗H∗

deR;c(M) −→ R, [α]⊗ [β] −→

∫

M
α ∧ β,

is well-defined.

(b) Show that the above pairing is nondegenerate if M=R
n.

(c) Suppose that M admits a cover {Ui}i=1,...,m such that every intersection Ui1∩ . . .∩Uik is either

empty or diffeomorphic to R
n. Show that the above pairing is nondegenerate.
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(a) If α ∈ E∗(M) and β ∈ E∗
c (M), α∧β ∈ E∗

c (M). Since M is oriented,

∫

M
α∧β exists (only the

homogeneous part of α∧β of degree n contributes to the integral). If in addition α∈ ker d, then

α ∧ dβ = ±d(α∧β) =⇒

∫

M
α ∧ dβ = ±

∫

∂M
α∧β = 0

by Stokes Theorem because α∧β∈E∗
c (M) and ∂M=0. If β∈ ker d∩E∗

c (M), then

dα ∧ β = d(α∧β) =⇒

∫

M
dα ∧ β =

∫

∂M
α∧β = 0

by Stokes Theorem because α∧β∈E∗
c (M). Thus, the homomorphism

(ker d)⊗
(

(ker d)∩E∗
c (M)

)

−→ R, α⊗ β −→

∫

M
α∧β,

vanishes on (ker d)⊗(dE∗
c (M))⊕ (dE∗(M))⊗((ker d)∩E∗

c (M)) and thus induces a well-defined homo-
morphism on the quotient

H∗
deR(M)⊗H∗

deR;c(M) =
(ker d)⊗ ((ker d)∩E∗

c (M))

(ker d)⊗(dE∗
c (M))⊕ (dE∗(M))⊗((ker d)∩E∗

c (M))
−→ R,

[α]⊗ [β] −→

∫

M
α ∧ β.

(b) H0
deR(R

n) is generated by the constant function 1 on R
n, while Hn

deR;c(R
n) is generated by [η] for

any η∈En
c (R

n) with nonzero integral on R
n. The pairing of these two elements is nonzero:

[1]⊗ [η] −→

∫

Rn

1 ∧ η =

∫

Rn

η 6= 0.

Thus, the pairing

H0
deR(R

n)⊗Hn
deR;c(R

n) = R −→ R, [α]⊗ [β] −→

∫

Rn

α ∧ β,

is nonzero and thus nondegenerate (since both vector spaces are one-dimensional). Since Hp
deR(R

n)=0
for p 6= 0, it remains to show that Hq

deR;c(R
n) = 0 for q 6= n. This is immediate for q > n (because

Eq(Rn)=0 in this case) and easy for q=0 (done in class).

Thus, we need to show that for every

α ≡
∑

I

fIdxI ∈ Eq
c (R

n)

with q=1, . . . , n−1 and dα=0, there exists β∈Eq−1
c (Rn) such that α=dβ. Since α∈Eq

c (Rn), there
exists A>0 such that α|x=0 if |x|≥A. By Warner 4.18 (Poincare Lemma and its proof), α=d(ιX α̃),
where ιX is the contraction (Warner 2.11),

X =
i=n
∑

i=1

xi
∂

∂xi
≡ r

∂

∂r
, α̃x =

∑

I

(
∫ 1

0
tq−1fI(tx)dt

)

dxI =
∑

I

(
∫ |x|

0
tq−1fI(tx/|x|)dt

)

dxI
|x|q

if x 6=0

=
∑

I

(
∫ A

0
tq−1fI(tx/|x|)dt

)

dxI
|x|q

if |x|≥A.
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Since ιX(ιX α̃)=0 (ιX α̃ vanishes if any input is X), ιX α̃=r
∗β′ on R

n−BA(0), where r : R
n−0 −→Sn−1

is the usual retraction and β′∈Eq−1(Sn−1) is given by

β′x =
∑

I

(
∫ A

0
tq−1fI(tx)dt

)

ιXdxI .

Since d(r∗β′)=α=0 on the sphere Sn−1
A of radius A and r∗ is injective, dβ′=0∈Eq(Sn−1). If q=1,

it follows that β′ is a constant function with some value C on Sn−1; thus, the 0-form β ≡ ιX α̃−C
is supported in B̄A(0) (because ιX α̃ = r∗β′ = C outside of B̄A(0)) and α = dβ. Suppose instead
2≤ q≤n−1. Since Hq−1

deR(S
n−1)=0 and dβ′=0, β′=dγ′ for some γ′∈Eq−2(Sn−1). Choose a smooth

function η : Rn−→ [0, 1] such that

η|BA/2(0) ≡ 0, η|Rn−BA(0) ≡ 1,

and let γ=η · r∗γ′∈Eq−2(Rn); even though r is not defined at 0∈R
n, γ is well-defined because η · r∗γ′

vanishes on BA/2(0)−0 and thus extends by 0 over the origin. With β= ιX α̃−dγ∈E
q−1(Rn), α=dβ.

Since ιX α̃=r
∗β′=r∗dγ′=dγ outside of BA(0), β is supported in B̄A(0) in this case as well.

(c) We prove by induction on m that H∗(M) ≡ H∗
deR(M) and H∗

c (M) ≡ H∗
deR;c(M) are finite-

dimensional (actually of dimension at most m) and that the homomorphism

Hp(M) −→ Hn−p
c (M)∗, [α] −→

∫

M
α ∧ · ,

induced by the pairing is an isomorphism; the latter is equivalent to the pairing being non-degenerate
(when the vector spaces are finite-dimensional). Part (b) is the m=1 case.

Suppose m≥2 and both statements hold for all oriented n-manifolds admitting good covers as above
with at most m−1 elements. Let

U = U1 ∪ U2 ∪ . . . ∪ Um−1, V = Um .

By our inductive assumption, H∗ and H∗
c of U , V , and

U∩V = (U1∩Um) ∪ (U2∩Um) ∪ . . . ∪ (Um−1∩Um)

are finite-dimensional and dual to each other via the Poincare pairing. We have two MV long exact
sequence for M=U∪V :

// Hp−1(U)⊕Hp−1(V )
g

//

⊗ ⊗

Hp−1(U∩V )
(−1)pδ

//

⊗

Hp(M)
f

//

⊗

Hp(U)⊕Hp(V )
g

//

⊗ ⊗

Hp(U∩V )

⊗

//

Hq+1
c (U)⊕Hq+1

c (V )oo

〈,〉=
∫
U +

∫
V

��

Hq+1
c (U∩V )

ioo

〈,〉=
∫
U∩V

��

Hq
c (M)

δcoo

〈,〉=
∫
M

��

Hq
c (U)⊕Hq

c (V )
j

oo

〈,〉=
∫
U +

∫
V

��

Hq
c (U∩V )

ioo

〈,〉=
∫
U∩V

��

oo

= R = R = R = R = R =

where p+q=n, the homomorphisms f , g, and δ in the top row are as in Problem 2a on PS7, and the
homomorphisms i, j, and δc are as in Problem 2 above. The entire diagram commutes, i.e.

〈

f([α]), ([µ], [η])
〉

=
〈

[α], j([µ], [η])
〉

,
〈

g([β], [γ]), [κ]
〉

=
〈

([β], [γ]), i([κ])
〉

,

(−1)p+1
〈

δ([ω]), [θ]
〉

=
〈

[ω], δc([θ])
〉

∀ [ω]∈Hp(M).
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The first two identities are immediate from the definitions of f , g, i, and j:

〈

f([α]), ([µ], [η])
〉

=

∫

U
α|U∧µ+

∫

V
α|V ∧η

=

∫

M
α ∧

(

ιM,Uµ+ ιM,V η
)

=
〈

[α], j([µ], [η])
〉

,

〈

g([β], [γ]), [κ]
〉

=

∫

U∩V

(

β|U∩V −γ|U∩V ) ∧ κ

=

∫

U
β ∧ (ιU,U∩V κ) +

∫

V
β ∧ (−ιV,U∩V κ) =

〈

([β], [γ]), i([κ])
〉

;

the middle equalities above hold because µ, η, and κ are extended by 0 outside of U , V , and U∩V ,
respectively. For the last identity, we need explicit expressions for δ and δc. Let {ψU , ψV } be a
partition of unity subordinate to {U, V }. By Problem 2a on PS7,

δ
(

[ω]
)

=
[

ιM,U∩V (dψV ∧ω)
]

.

Similarly, since θ= ιM,U (ψUθ) + ιM,V (ψV θ) and ψU+ψV =1,

δc
(

[θ]
)

=
[

dψU∧θ|U∩V

]

= −
[

dψV ∧θ|U∩V

]

.

Thus,

(−1)p+1
〈

δ([ω]), [θ]
〉

= (−1)p+1

∫

M
ιM,U∩V (dψV ∧ω) ∧ θ =

∫

U∩V
ω ∧ (dψU∧θ)|U∩V =

〈

[ω], δc([θ])
〉

,

if [ω]∈Hp(M).

Taking the dual of the middle row in the above diagram, we thus obtain a commutative diagram of
two exact sequences

// Hp−1(U)⊕Hp−1(V )
g

//

��

Hp−1(U∩V )
(−1)pδ

//

��

Hp(M)
f

//

��

Hp(U)⊕Hp(V )
g

//

��

Hp(U∩V )

��

//

// Hq+1
c (U)∗⊕Hq+1

c (V )∗
i∗ // Hq+1

c (U∩V )∗
δ∗c // Hq

c (M)∗
j∗

// Hq
c (U)∗⊕Hq

c (V )∗
i∗ // Hq

c (U∩V )∗ //

with the vertical maps induced by the pairing 〈,〉. By the inductive assumption, the second and
fourth vector spaces in each row are finite-dimensional; since the rows are exact, so are the middle
vector spaces in each row. The first, second, fourth, and fifth vertical arrows are isomorphisms by the
inductive assumption; since the rows are exact, so is the middle vertical arrow by the Five Lemma.
Thus, every oriented n-manifold admitting a good cover with at mostm elements has finite-dimensional
H∗ and H∗

c and satisfies Poincare duality between the two cohomologies.
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