MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 11

Problem 1 (15pts)

Suppose M and N are smooth oriented compact connected n-manifolds. If $f: M \longrightarrow N$ is a smooth map, the degree of f is the number $\operatorname{deg} f \in \mathbb{R}$ such that

$$
\int_{M} f^{*} \omega=(\operatorname{deg} f) \cdot \int_{N} \omega \quad \forall \omega \in E^{n}(N)
$$

This number is well-defined.
(a) Show that if $f: M \longrightarrow N$ and $g: N \longrightarrow X$ are smooth maps between smooth oriented compact connected n-manifolds, then

$$
\operatorname{deg}(g \circ f)=(\operatorname{deg} g) \cdot(\operatorname{deg} f)
$$

(b) Show that if $f: M \longrightarrow N$ is a covering projection between smooth oriented compact connected n-manifolds, then $\operatorname{deg} f$ is the degree of f as a covering map (i.e. the number of elements in each fiber).
(c) Show that if $f: M \longrightarrow N$ is a smooth map of degree one, then it induces a surjective homomorphism between the fundamental groups of M and N.
(a) If $\omega \in E^{n}(X)$, then

$$
\begin{aligned}
\int_{M}(g \circ f)^{*} \omega & =\int_{M} f^{*}\left(g^{*} \omega\right)=(\operatorname{deg} f) \cdot \int_{N} g^{*} \omega=(\operatorname{deg} f) \cdot(\operatorname{deg} g) \int_{X} \omega \\
& =((\operatorname{deg} g) \cdot(\operatorname{deg} f)) \int_{X} \omega
\end{aligned}
$$

Since this equality holds for all $\omega \in E^{n}(X)$, by definition of the degree of a map

$$
\operatorname{deg}(g \circ f)=(\operatorname{deg} g) \cdot(\operatorname{deg} f)
$$

(b) Suppose $f: M \longrightarrow N$ is a k-to- 1 covering map. Choose $y \in N$, an evenly covered neighborhood U of y in N (which can be assumed to be diffeomorphic to \mathbb{R}^{n}), and an element

$$
\omega \in E^{n}(N) \quad \text { s.t. } \quad \operatorname{supp} \omega \subset U \quad \text { and } \quad \int_{U} \omega=\int_{N} \omega=1
$$

Since $f^{-1}(U)$ is the disjoint union of k copies of U (with its orientation) under f and supp $\omega \subset U$,

$$
\int_{M} f^{*} \omega=\int_{f^{-1}(U)} f^{*} \omega=k \cdot \int_{U} \omega=k=k \cdot \int_{N} \omega
$$

Thus, the degree of f must be k.
(c) Suppose $x \in M$ and H is the image of the homomorphism

$$
f_{*}: \pi_{1}(M, x) \longrightarrow \pi_{1}(N, f(x)) .
$$

Since N is semi-locally simply connected (being locally Euclidean), there exists a covering map π : $\tilde{N} \longrightarrow N$ with \tilde{N} connected, such that

$$
\pi_{*}\left(\pi_{1}(\tilde{N}, z)\right)=H \subset \pi_{1}(N, f(x)),
$$

for any $z \in \pi^{-1}(f(x))$; see Theorem 82.1 in Munkres. Since N is a smooth oriented manifold, so is \tilde{N}. Since

$$
f_{*}\left(\pi_{1}(M, x)\right)=H \subset H=\pi_{*}\left(\pi_{1}(\tilde{N}, z)\right),
$$

by the Lifting Lemma (Munkres, Lemma 79.1) the map $f: M \longrightarrow N$ lifts over π, i.e. there exists a continuous map $\tilde{f}: M \longrightarrow \tilde{N}$ such that diagram

commutes. Since f is smooth and $\tilde{\pi}$ is a smooth covering projection, \tilde{f} is also a smooth map.
If \tilde{N} is compact (or equivalently, $\pi^{-1}(y)$ is finite for any $y \in N$), then degrees of π and \tilde{f} are well-defined integers and

$$
1=\operatorname{deg} f=(\operatorname{deg} \pi) \cdot(\operatorname{deg} \tilde{f})
$$

by part (a). By part (b), the degree of π is its degree as a covering map. Since $\operatorname{deg} \tilde{f}$ is an integer, π must be a $1: 1$-covering map, i.e. a diffeomorphism. Thus,

$$
f_{*}\left(\pi_{1}(M, x)\right)=H=\pi_{*}\left(\pi_{1}(\tilde{N}, z)\right)=\pi_{1}(N, f(x)),
$$

i.e. f_{*} is surjective.

Suppose \tilde{N} is not compact (or equivalently, $\pi^{-1}(y)$ is infinite for any $\left.y \in N\right)$. Let $\omega \in E^{n}(N)$ be any element such that $\int_{N} \omega \neq 0$, e.g. an orientation (or volume) form on N. Since $f=\pi \circ \tilde{f}$,

$$
\int_{M} f^{*} \omega=\int_{M}(\pi \circ \tilde{f})^{*} \omega=\int_{M} \tilde{f}^{*}\left(\pi^{*} \omega\right)
$$

Since the n-manifold \tilde{N} is connected and not compact, $H_{\text {de }}^{n}(\tilde{N})=0$. Since $\pi^{*} \omega \in E^{n}(\tilde{N})$ is closed (being a top form), it must be exact. Therefore, $\tilde{f}^{*}\left(\pi^{*} \omega\right)$ is also exact and by Stokes Theorem

$$
(\operatorname{deg} f) \int_{N} \omega=\int_{M} f^{*} \omega=\int_{M} \tilde{f}^{*}\left(\pi^{*} \omega\right)=0
$$

Since $\int_{N} \omega \neq 0$, it follows that $\operatorname{deg} f=0$, contrary to the assumption.
Note: The fundamental group of any compact manifold is finitely generated (and of an arbitrary manifold is countably generated). Thus, the index of the subgroup H above is countable, and so \tilde{N} is second-countable. Alternatively, one can adapt the proof of the vanishing of the top cohomology of non-compact manifolds to the present situation.

Problem 2 (5pts)

State and prove a Mayer-Vietoris theorem for compactly supported cohomology.
If U is an open subset of a smooth manifold M, a compactly supported form $\alpha \in E_{c}^{*}(U)$ determines a compactly supported form on M. Thus, there is an inclusion homomorphism

$$
\iota_{M, U}: E_{c}^{*}(U) \longrightarrow E_{c}^{*}(M),
$$

which replaces the restriction homomorphism $r_{U, M}: E^{*}(M) \longrightarrow E^{*}(U)$ going in the opposite direction.
Mayer-Vietoris for compactly supported cohomology: If M is a smooth manifold and $U, V \subset M$ are open subsets such that $M=U \cup V$, then there is a long exact sequence

$$
\begin{aligned}
& \ldots H_{\mathrm{deR} ; c}^{p-1}(M) \xrightarrow{\delta_{c}} H_{\mathrm{deR} ; c}^{p}(U \cap V) \xrightarrow{i} H_{\mathrm{deR} ; c}^{p}(U) \oplus H_{\mathrm{deR} ; c}^{p}(V) \xrightarrow{j} H_{\mathrm{deR} ; c}^{p}(M) \xrightarrow{\delta_{c}} H_{\mathrm{deR} ; c}^{p+1}(U \cap V) \ldots \\
& i([\kappa])=\left(\left[\iota_{U, U \cap V} k\right],-\left[\iota_{V, U \cap V} k\right]\right), \quad j([\mu],[\eta])=\left[\iota_{M, U} \mu\right]+\left[\iota_{M, V} \eta\right] .
\end{aligned}
$$

By the Snake Lemma, it is sufficient to show that the sequence

$$
\begin{gathered}
0 \longrightarrow\left(E_{c}^{*}(U \cap V), d_{U \cap V}\right) \xrightarrow{i}\left(E_{c}^{*}(U) \oplus E_{c}^{*}(V), d_{U} \oplus d_{V}\right) \xrightarrow{j}\left(E_{c}^{*}(M), d_{M}\right) \longrightarrow 0 \\
i(\kappa)=\left(\iota_{U, U \cap V} \kappa,-\iota_{V, U \cap V} \kappa\right), \quad j(\mu, \eta)=\iota_{M, U} \mu+\iota_{M, V} \eta,
\end{gathered}
$$

is an exact sequence of co-chain complexes. It is immediate that i and j commute with the differentials (the forms are just extended by 0), i is injective (same reason), and $j \circ i=0$. If $\iota_{M, U} \mu+\iota_{M, V} \eta=0$,

$$
\operatorname{supp} \mu=\left.\operatorname{supp} \eta \subset U \cap V \quad \Longrightarrow \quad \mu\right|_{U \cap V}=-\left.\eta\right|_{U \cap V} \in E_{c}^{*}(U \cap V) \quad \Longrightarrow \quad(\mu, \eta)=i\left(\left.\mu\right|_{U \cap V}\right)
$$

It remains to show that j is surjective. Let $\left\{\psi_{U}, \psi_{V}\right\}$ be a partition of unity on M subordinate to $\{U, V\}$. Then, for every $\gamma \in E^{*}(M)$,

$$
\left.\psi_{U} \gamma\right|_{U} \in E_{c}^{*}(U),\left.\quad \psi_{V} \gamma\right|_{V} \in E_{c}^{*}(V), \quad \gamma=\psi_{U} \gamma+\psi_{V} \gamma=j\left(\psi_{U} \gamma, \psi_{V} \gamma\right)
$$

so j is surjective.

Problem 3 (5+10+10pts)

Let M be an oriented n-manifold, possibly non-compact.
(a) Show that the pairing

$$
H_{\mathrm{deR}}^{*}(M) \otimes H_{\mathrm{deR} ; c}^{*}(M) \longrightarrow \mathbb{R}, \quad[\alpha] \otimes[\beta] \longrightarrow \int_{M} \alpha \wedge \beta
$$

is well-defined.
(b) Show that the above pairing is nondegenerate if $M=\mathbb{R}^{n}$.
(c) Suppose that M admits a cover $\left\{U_{i}\right\}_{i=1, \ldots, m}$ such that every intersection $U_{i_{1}} \cap \ldots \cap U_{i_{k}}$ is either empty or diffeomorphic to \mathbb{R}^{n}. Show that the above pairing is nondegenerate.
(a) If $\alpha \in E^{*}(M)$ and $\beta \in E_{c}^{*}(M), \alpha \wedge \beta \in E_{c}^{*}(M)$. Since M is oriented, $\int_{M} \alpha \wedge \beta$ exists (only the homogeneous part of $\alpha \wedge \beta$ of degree n contributes to the integral). If in addition $\alpha \in \operatorname{ker} d$, then

$$
\alpha \wedge d \beta= \pm d(\alpha \wedge \beta) \quad \Longrightarrow \quad \int_{M} \alpha \wedge d \beta= \pm \int_{\partial M} \alpha \wedge \beta=0
$$

by Stokes Theorem because $\alpha \wedge \beta \in E_{c}^{*}(M)$ and $\partial M=0$. If $\beta \in \operatorname{ker} d \cap E_{c}^{*}(M)$, then

$$
d \alpha \wedge \beta=d(\alpha \wedge \beta) \quad \Longrightarrow \quad \int_{M} d \alpha \wedge \beta=\int_{\partial M} \alpha \wedge \beta=0
$$

by Stokes Theorem because $\alpha \wedge \beta \in E_{c}^{*}(M)$. Thus, the homomorphism

$$
(\operatorname{ker} d) \otimes\left((\operatorname{ker} d) \cap E_{c}^{*}(M)\right) \longrightarrow \mathbb{R}, \quad \alpha \otimes \beta \longrightarrow \int_{M} \alpha \wedge \beta,
$$

vanishes on $(\operatorname{ker} d) \otimes\left(d E_{c}^{*}(M)\right) \oplus\left(d E^{*}(M)\right) \otimes\left((\operatorname{ker} d) \cap E_{c}^{*}(M)\right)$ and thus induces a well-defined homomorphism on the quotient

$$
\begin{gathered}
H_{\mathrm{deR}}^{*}(M) \otimes H_{\mathrm{de} \mathrm{R} ; c}^{*}(M)=\frac{(\operatorname{ker} d) \otimes\left((\operatorname{ker} d) \cap E_{c}^{*}(M)\right)}{(\operatorname{ker} d) \otimes\left(d E_{c}^{*}(M)\right) \oplus\left(d E^{*}(M)\right) \otimes\left((\operatorname{ker} d) \cap E_{c}^{*}(M)\right)} \longrightarrow \mathbb{R}, \\
{[\alpha] \otimes[\beta] \longrightarrow \int_{M} \alpha \wedge \beta .}
\end{gathered}
$$

(b) $H_{\text {de } R}^{0}\left(\mathbb{R}^{n}\right)$ is generated by the constant function 1 on \mathbb{R}^{n}, while $H_{\text {de } R ; c}^{n}\left(\mathbb{R}^{n}\right)$ is generated by $[\eta]$ for any $\eta \in E_{c}^{n}\left(\mathbb{R}^{n}\right)$ with nonzero integral on \mathbb{R}^{n}. The pairing of these two elements is nonzero:

$$
[1] \otimes[\eta] \longrightarrow \int_{\mathbb{R}^{n}} 1 \wedge \eta=\int_{\mathbb{R}^{n}} \eta \neq 0
$$

Thus, the pairing

$$
H_{\mathrm{de} \mathrm{R}}^{0}\left(\mathbb{R}^{n}\right) \otimes H_{\mathrm{de} \mathrm{R} ; c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R} \longrightarrow \mathbb{R}, \quad[\alpha] \otimes[\beta] \longrightarrow \int_{\mathbb{R}^{n}} \alpha \wedge \beta,
$$

is nonzero and thus nondegenerate (since both vector spaces are one-dimensional). Since $H_{\text {deR }}^{p}\left(\mathbb{R}^{n}\right)=0$ for $p \neq 0$, it remains to show that $H_{\mathrm{deR} ; c}^{q}\left(\mathbb{R}^{n}\right)=0$ for $q \neq n$. This is immediate for $q>n$ (because $E^{q}\left(\mathbb{R}^{n}\right)=0$ in this case) and easy for $q=0$ (done in class).

Thus, we need to show that for every

$$
\alpha \equiv \sum_{I} f_{I} d x_{I} \in E_{c}^{q}\left(\mathbb{R}^{n}\right)
$$

with $q=1, \ldots, n-1$ and $d \alpha=0$, there exists $\beta \in E_{c}^{q-1}\left(\mathbb{R}^{n}\right)$ such that $\alpha=d \beta$. Since $\alpha \in E_{c}^{q}\left(\mathbb{R}^{n}\right)$, there exists $A>0$ such that $\left.\alpha\right|_{x}=0$ if $|x| \geq A$. By Warner 4.18 (Poincare Lemma and its proof), $\alpha=d\left(\iota_{X} \tilde{\alpha}\right)$, where ι_{X} is the contraction (Warner 2.11),

$$
\begin{aligned}
X=\sum_{i=1}^{i=n} x_{i} \frac{\partial}{\partial x_{i}} \equiv r \frac{\partial}{\partial r}, \quad \tilde{\alpha}_{x}=\sum_{I}\left(\int_{0}^{1} t^{q-1} f_{I}(t x) d t\right) d x_{I} & =\sum_{I}\left(\int_{0}^{|x|} t^{q-1} f_{I}(t x /|x|) d t\right) \frac{d x_{I}}{|x|^{q}} \quad \text { if } x \neq 0 \\
& =\sum_{I}\left(\int_{0}^{A} t^{q-1} f_{I}(t x /|x|) d t\right) \frac{d x_{I}}{|x|^{q}} \quad \text { if }|x| \geq A .
\end{aligned}
$$

Since $\iota_{X}\left(\iota_{X} \tilde{\alpha}\right)=0\left(\iota_{X} \tilde{\alpha}\right.$ vanishes if any input is $\left.X\right), \iota_{X} \tilde{\alpha}=r^{*} \beta^{\prime}$ on $\mathbb{R}^{n}-B_{A}(0)$, where $r: \mathbb{R}^{n}-0 \longrightarrow S^{n-1}$ is the usual retraction and $\beta^{\prime} \in E^{q-1}\left(S^{n-1}\right)$ is given by

$$
\beta_{x}^{\prime}=\sum_{I}\left(\int_{0}^{A} t^{q-1} f_{I}(t x) d t\right) \iota_{X} d x_{I}
$$

Since $d\left(r^{*} \beta^{\prime}\right)=\alpha=0$ on the sphere S_{A}^{n-1} of radius A and r^{*} is injective, $d \beta^{\prime}=0 \in E^{q}\left(S^{n-1}\right)$. If $q=1$, it follows that β^{\prime} is a constant function with some value C on S^{n-1}; thus, the 0 -form $\beta \equiv \iota_{X} \tilde{\alpha}-C$ is supported in $\bar{B}_{A}(0)$ (because $\iota_{X} \tilde{\alpha}=r^{*} \beta^{\prime}=C$ outside of $\left.\bar{B}_{A}(0)\right)$ and $\alpha=d \beta$. Suppose instead $2 \leq q \leq n-1$. Since $H_{\mathrm{deR}}^{q-1}\left(S^{n-1}\right)=0$ and $d \beta^{\prime}=0, \beta^{\prime}=d \gamma^{\prime}$ for some $\gamma^{\prime} \in E^{q-2}\left(S^{n-1}\right)$. Choose a smooth function $\eta: \mathbb{R}^{n} \longrightarrow[0,1]$ such that

$$
\left.\eta\right|_{B_{A / 2}(0)} \equiv 0,\left.\quad \eta\right|_{\mathbb{R}^{n}-B_{A}(0)} \equiv 1
$$

and let $\gamma=\eta \cdot r^{*} \gamma^{\prime} \in E^{q-2}\left(\mathbb{R}^{n}\right)$; even though r is not defined at $0 \in \mathbb{R}^{n}, \gamma$ is well-defined because $\eta \cdot r^{*} \gamma^{\prime}$ vanishes on $B_{A / 2}(0)-0$ and thus extends by 0 over the origin. With $\beta=\iota_{X} \tilde{\alpha}-d \gamma \in E^{q-1}\left(\mathbb{R}^{n}\right), \alpha=d \beta$. Since $\iota_{X} \tilde{\alpha}=r^{*} \beta^{\prime}=r^{*} d \gamma^{\prime}=d \gamma$ outside of $B_{A}(0), \beta$ is supported in $\bar{B}_{A}(0)$ in this case as well.
(c) We prove by induction on m that $H^{*}(M) \equiv H_{\text {deR }}^{*}(M)$ and $H_{c}^{*}(M) \equiv H_{\text {de } ; c}^{*}(M)$ are finitedimensional (actually of dimension at most m) and that the homomorphism

$$
H^{p}(M) \longrightarrow H_{c}^{n-p}(M)^{*}, \quad[\alpha] \longrightarrow \int_{M} \alpha \wedge \cdot
$$

induced by the pairing is an isomorphism; the latter is equivalent to the pairing being non-degenerate (when the vector spaces are finite-dimensional). Part (b) is the $m=1$ case.

Suppose $m \geq 2$ and both statements hold for all oriented n-manifolds admitting good covers as above with at most $m-1$ elements. Let

$$
U=U_{1} \cup U_{2} \cup \ldots \cup U_{m-1}, \quad V=U_{m}
$$

By our inductive assumption, H^{*} and H_{c}^{*} of U, V, and

$$
U \cap V=\left(U_{1} \cap U_{m}\right) \cup\left(U_{2} \cap U_{m}\right) \cup \ldots \cup\left(U_{m-1} \cap U_{m}\right)
$$

are finite-dimensional and dual to each other via the Poincare pairing. We have two MV long exact sequence for $M=U \cup V$:

$$
\longrightarrow H^{p-1}(U) \oplus H^{p-1}(V) \xrightarrow{g} H^{p-1}(U \cap V) \xrightarrow{(-1)^{p} \delta} H^{p}(M) \xrightarrow{f} H^{p}(U) \oplus H^{p}(V) \xrightarrow{g} H^{p}(U \cap V) \longrightarrow
$$

where $p+q=n$, the homomorphisms f, g, and δ in the top row are as in Problem 2a on PS7, and the homomorphisms i, j, and δ_{c} are as in Problem 2 above. The entire diagram commutes, i.e.

$$
\begin{gathered}
\langle f([\alpha]),([\mu],[\eta])\rangle=\langle[\alpha], j([\mu],[\eta])\rangle, \quad\langle g([\beta],[\gamma]),[\kappa]\rangle=\langle([\beta],[\gamma]), i([\kappa])\rangle, \\
(-1)^{p+1}\langle\delta([\omega]),[\theta]\rangle=\left\langle[\omega], \delta_{c}([\theta])\right\rangle \quad \forall[\omega] \in H^{p}(M) .
\end{gathered}
$$

The first two identities are immediate from the definitions of f, g, i, and j :

$$
\begin{aligned}
\langle f([\alpha]),([\mu],[\eta])\rangle & =\left.\int_{U} \alpha\right|_{U} \wedge \mu+\left.\int_{V} \alpha\right|_{V} \wedge \eta \\
& =\int_{M} \alpha \wedge\left(\iota_{M, U} \mu+\iota_{M, V} \eta\right)=\langle[\alpha], j([\mu],[\eta])\rangle \\
\langle g([\beta],[\gamma]),[\kappa]\rangle & =\int_{U \cap V}\left(\left.\beta\right|_{U \cap V}-\left.\gamma\right|_{U \cap V}\right) \wedge \kappa \\
& =\int_{U} \beta \wedge\left(\iota_{U, U \cap V} \kappa\right)+\int_{V} \beta \wedge\left(-\iota_{V, U \cap V} \kappa\right)=\langle([\beta],[\gamma]), i([\kappa])\rangle
\end{aligned}
$$

the middle equalities above hold because μ, η, and κ are extended by 0 outside of U, V, and $U \cap V$, respectively. For the last identity, we need explicit expressions for δ and δ_{c}. Let $\left\{\psi_{U}, \psi_{V}\right\}$ be a partition of unity subordinate to $\{U, V\}$. By Problem 2a on PS7,

$$
\delta([\omega])=\left[\iota_{M, U \cap V}\left(d \psi_{V} \wedge \omega\right)\right]
$$

Similarly, since $\theta=\iota_{M, U}\left(\psi_{U} \theta\right)+\iota_{M, V}\left(\psi_{V} \theta\right)$ and $\psi_{U}+\psi_{V}=1$,

$$
\delta_{c}([\theta])=\left[\left.d \psi_{U} \wedge \theta\right|_{U \cap V}\right]=-\left[\left.d \psi_{V} \wedge \theta\right|_{U \cap V}\right]
$$

Thus,

$$
(-1)^{p+1}\langle\delta([\omega]),[\theta]\rangle=(-1)^{p+1} \int_{M} \iota_{M, U \cap V}\left(d \psi_{V} \wedge \omega\right) \wedge \theta=\left.\int_{U \cap V} \omega \wedge\left(d \psi_{U} \wedge \theta\right)\right|_{U \cap V}=\left\langle[\omega], \delta_{c}([\theta])\right\rangle
$$

if $[\omega] \in H^{p}(M)$.

Taking the dual of the middle row in the above diagram, we thus obtain a commutative diagram of two exact sequences

with the vertical maps induced by the pairing \langle,$\rangle . By the inductive assumption, the second and$ fourth vector spaces in each row are finite-dimensional; since the rows are exact, so are the middle vector spaces in each row. The first, second, fourth, and fifth vertical arrows are isomorphisms by the inductive assumption; since the rows are exact, so is the middle vertical arrow by the Five Lemma. Thus, every oriented n-manifold admitting a good cover with at most m elements has finite-dimensional H^{*} and H_{c}^{*} and satisfies Poincare duality between the two cohomologies.

