MAT 531: Topology&Geometry, II Spring 2011

Solutions to Problem Set 10

Problem 1: Chapter 6, #6 (5pts)

Derive explicit formulas for d, *, δ , and Δ in Euclidean space.

Let x_1, \ldots, x_n denote the standard coordinate functions on \mathbb{R}^n . It is sufficient to describe the action of these linear operators on forms

$$\alpha = f \, dy_1 \wedge \ldots \wedge dy_p,$$

where $f \in C^{\infty}(\mathbb{R}^n)$ and y_1, \ldots, y_n is a permutation of the coordinates x_1, \ldots, x_n so that

$$dy_1 \wedge \ldots \wedge dy_n = dx_1 \wedge \ldots \wedge dx_n.$$

By Section 2.20 and Exercise 13 in Chapter 2,

$$d\alpha = df \wedge dy_1 \wedge \ldots \wedge dy_p = \sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_j} dy_j \wedge dy_1 \wedge \ldots \wedge dy_p = (-1)^p \sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_j} dy_1 \wedge \ldots \wedge dy_p \wedge dy_j;$$
$$*\alpha = f \, dy_{p+1} \wedge \ldots \wedge dy_n.$$

Thus, by Section 6.1,

$$\delta \alpha = (-1)^{n(p+1)+1} * d * \alpha = (-1)^{n(p+1)+1} * d(f \, dy_{p+1} \wedge \ldots \wedge dy_n)$$

$$= (-1)^{n(p+1)+1} * \sum_{i=1}^{i=p} \frac{\partial f}{\partial y_i} dy_i \wedge dy_{p+1} \wedge \ldots \wedge dy_n$$

$$= (-1)^{n(p+1)+1} \sum_{i=1}^{i=p} (-1)^{(n-p)(p-1)+(i-1)} \frac{\partial f}{\partial y_i} dy_1 \wedge \ldots \wedge dy_i \wedge \ldots \wedge dy_p$$

$$= \sum_{i=1}^{i=p} (-1)^i \frac{\partial f}{\partial y_i} dy_1 \wedge \ldots \wedge dy_i \wedge \ldots \wedge dy_p.$$

From this, we find that

$$\begin{aligned} \Delta \alpha &= d\delta \alpha + \delta d\alpha = d \sum_{i=1}^{i=p} (-1)^i \frac{\partial f}{\partial y_i} dy_1 \wedge \ldots \wedge \widehat{dy_i} \wedge \ldots \wedge dy_p + (-1)^p \delta \sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_j} dy_1 \wedge \ldots \wedge dy_p \wedge dy_j \\ &= \sum_{i=1}^{i=p} (-1)^i \left((-1)^{i-1} \frac{\partial^2 f}{\partial y_i^2} dy_1 \wedge \ldots \wedge dy_p + (-1)^{p-1} \sum_{j=p+1}^{j=n} \frac{\partial^2 f}{\partial y_i \partial y_j} dy_1 \wedge \ldots \wedge \widehat{dy_i} \wedge \ldots \wedge dy_p \wedge dy_j \right) \\ &+ (-1)^p \sum_{j=p+1}^{j=n} \left((-1)^{p+1} \frac{\partial^2 f}{\partial y_j^2} dy_1 \wedge \ldots \wedge dy_p + \sum_{i=1}^{i=p} (-1)^i \frac{\partial^2 f}{\partial y_i \partial y_j} dy_1 \wedge \ldots \wedge \widehat{dy_i} \wedge \ldots \wedge dy_p \wedge dy_j \right) \\ &= -\sum_{i=1}^{i=n} \frac{\partial^2 f}{\partial y_i^2} dy_1 \wedge \ldots \wedge dy_p. \end{aligned}$$

Problem 2 (5pts)

Suppose M is a compact Riemannian manifold. If M is not orientable, the Hodge *-operator is defined only up to sign. However, as the definition of δ in Section 6.1 involves two *'s, the linear operator δ is well-defined. Show that δ is the adjoint of d whether or not M is oriented.

The oriented case is dealt with in Proposition 6.2. Thus, it is sufficient to assume that M is connected and non-orientable. Let $\pi: \tilde{M} \longrightarrow M$ be the orientable double cover of M; see solution to Problem 5 on the 06 midterm. The Riemannian metric on M (or inner-product in $TM \longrightarrow M$) induces via the projection map $d\pi$ a Riemannian metric on \tilde{M} so that

$$(d\pi_x)^* \colon \Lambda^p T^*_{\pi(x)} M \longrightarrow \Lambda^p T^*_x \tilde{M}$$

is an isometry for all p and $x \in \tilde{M}$. In particular,

$$\langle \alpha, \beta \rangle = \langle \pi^* \alpha, \pi^* \beta \rangle \quad \forall \ \alpha, \beta \in \Lambda^p T^*_m M \qquad \Longrightarrow \qquad \langle \langle \alpha, \beta \rangle \rangle = \frac{1}{2} \langle \langle \pi^* \alpha, \pi^* \beta \rangle \rangle \quad \forall \ \alpha, \beta \in E^p(M),$$

since π is a double cover. Choose an orientation on \tilde{M} so that * is defined on \tilde{M} . Given $x \in \tilde{M}$, we can compute

$$(\delta \alpha)_{\pi(x)} \equiv (-1)^{n(p+1)+1} (*d * \alpha)_{\pi(x)}$$

by using the orientation on a small neighborhood of $\pi(x)$ induced from the orientation on a small neighborhood of x via $d\pi$. Then, π^* commutes with * near x and thus with δ everywhere. Therefore, by the above and Proposition 6.2

$$\begin{split} \langle\!\langle d\alpha,\beta\rangle\!\rangle &= \frac{1}{2} \langle\!\langle \pi^* d\alpha,\pi^*\beta\rangle\!\rangle = \frac{1}{2} \langle\!\langle d\,\pi^*\alpha,\pi^*\beta\rangle\!\rangle \\ &= \frac{1}{2} \langle\!\langle \pi^*\alpha,\delta\,\pi^*\beta\rangle\!\rangle = \frac{1}{2} \langle\!\langle \pi^*\alpha,\pi^*\delta\beta\rangle\!\rangle = \langle\!\langle \pi^*\alpha,\delta\beta\rangle\!\rangle \end{split}$$

for all $\alpha \in E^{p-1}(M)$ and $\beta \in E^p(M)$. Thus, $\delta = d^*$ on M.

Problem 3 (5pts)

Suppose M is a compact connected non-orientable n-manifold. Show that $H^n_{de R}(M) = 0$. Remark: In fact, if M is a non-compact connected n-manifold, orientable or not, $H^n_{de R}(M) = 0$.

Let $\pi: \tilde{M} \longrightarrow M$ be the orientable double cover of M and let G be the group of covering transformations of π . This group consists of two elements; let g be the non-trivial element. By Problem 5a on PS7,

$$H^n_{\operatorname{deR}}(M) = H^n_{\operatorname{deR}}(\tilde{M})^G = \left\{ [\omega] \in H^n_{\operatorname{deR}}(\tilde{M}) \colon [g^*\omega] = [\omega] \right\}.$$

On the other hand, since \tilde{M} is compact, connected, and orientable, $H^n_{\mathrm{de}\,\mathrm{R}}(\tilde{M}) \approx \mathbb{R}$ by Corollary 6.13. Thus, it is sufficient to find a single element $[\omega] \in H^n_{\mathrm{de}\,\mathrm{R}}(\tilde{M})$ such that $[g^*\omega] \neq [\omega]$.

Let $\omega \in E^n(M)$ be a nowhere-zero top form on \tilde{M} . Since M is not orientable, $g^*\omega$ belongs to the opposite orientation for \tilde{M} ; see solutions to Problem 6 on PS6. In other words, $g^*\omega = f \cdot \omega$ for some smooth function $f: \tilde{M} \longrightarrow \mathbb{R}^-$. Thus,

$$\int_{\tilde{M}} g^* \omega = \int_{\tilde{M}} f \cdot \omega \neq \int_{\tilde{M}} \omega \qquad \Longrightarrow \qquad [g^* \omega] \neq [\omega] \in H^n_{\operatorname{de} R}(\tilde{M});$$

the two integrals above are not equal because they have opposite signs.

Problem 4: Chapter 6, #16 (30pts)

Suppose M is a compact Riemannian manifold and $\Delta : E^p(M) \longrightarrow E^p(M)$ is the corresponding Laplacian. Show that

- (a) all eigenvalues of Δ are non-negative;
- (d) eigenfunctions corresponding to distinct eigenvalues are orthogonal;
- (b) eigenspaces of Δ are finite-dimensional;
- (c) the set of eigenvalues of Δ has no limit point;
- (e) Δ has a positive eigenvalue;
- (f) Δ has infinitely many positive eigenvalues;
- (g) the linear span of eigenfunctions of Δ is L^2 -dense in $E^p(M)$;
- (h) the linear span of eigenfunctions of Δ is L^{∞} -dense in $E^{p}(M)$.

(a) Suppose $\alpha \in E^p(M)$ is an eigenfunction of Δ with eigenvalue $\lambda \in \mathbb{R}$, i.e. $\alpha \neq 0$ and $\Delta \alpha = \lambda \alpha$. Since $\Delta = d^*d + dd^*$,

$$\begin{split} \lambda |\alpha|^2 &= \lambda \langle\!\langle \alpha, \alpha \rangle\!\rangle = \langle\!\langle \lambda \alpha, \alpha \rangle\!\rangle = \langle\!\langle \Delta \alpha, \alpha \rangle\!\rangle = \langle\!\langle d^* d\alpha, \alpha \rangle\!\rangle + \langle\!\langle dd^* \alpha, \alpha \rangle\!\rangle \\ &= \langle\!\langle d\alpha, d\alpha \rangle\!\rangle + \langle\!\langle d^* \alpha, d^* \alpha \rangle\!\rangle = |d\alpha|^2 + |d^* \alpha|^2 \ge 0. \end{split}$$

Since $|\alpha|^2 > 0$, it follows that $\lambda \ge 0$.

(d) Suppose $\alpha_1, \alpha_2 \in E^p(M)$ are eigenfunctions of Δ with eigenvalues $\lambda_1, \lambda_2 \in \mathbb{R}$. Since $\Delta^* = \Delta$,

$$\lambda_1 \langle\!\langle \alpha_1, \alpha_2 \rangle\!\rangle = \langle\!\langle \lambda_1 \alpha_1, \alpha_2 \rangle\!\rangle = \langle\!\langle \Delta \alpha_1, \alpha_2 \rangle\!\rangle = \langle\!\langle \alpha_1, \Delta \alpha_2 \rangle\!\rangle = \langle\!\langle \alpha_1, \lambda_2 \alpha_2 \rangle\!\rangle = \lambda_2 \langle\!\langle \alpha_1, \alpha_2 \rangle\!\rangle.$$

Thus, if $\lambda_1 \neq \lambda_2$, $\langle\!\langle \alpha_1, \alpha_2 \rangle\!\rangle = 0$, i.e. eigenspaces with different eigenvalues are orthogonal.

(b) Suppose not, i.e. there exists an orthonormal sequence $\alpha_1, \alpha_2, \ldots \in E^p(M)$ of eigenfunctions of Δ with eigenvalue $\lambda \in \mathbb{R}$. Then,

$$\|\alpha_n\| = 1$$
 and $\|\Delta\alpha_n\| = \|\lambda\alpha_n\| = \lambda \|\alpha_n\| = \lambda$.

By Theorem 6.6, the sequence $\{\alpha_n\}$ contains a Cauchy subsequence. However, this is impossible, since it consists of orthonormal elements.

(c) Suppose not, i.e. there exists a sequence of distinct eigenvalues λ_n of Δ that converges to some $\lambda \in \mathbb{R}$. By part (a), it can be assumed that $0 \leq \lambda_n \leq \lambda+1$. Let $\alpha_n \in E^p(M)$ be a normal eigenfunction of Δ with eigenvalue λ_n . Then,

$$\|\alpha_n\| = 1$$
 and $\|\Delta\alpha_n\| = \|\lambda_n\alpha_n\| = \lambda_n\|\alpha_n\| \le \lambda + 1.$

By Theorem 6.6, the sequence $\{\alpha_n\}$ contains a Cauchy subsequence. However, this is impossible, since it consists of orthonormal elements by part (d).

(e) Let $(\mathcal{H}^p)^{\perp}$ be the orthogonal complement of $\mathcal{H}^p \equiv \ker \Delta_p$ in $E^p(M)$ and let

$$G: E^p(M) \longrightarrow (\mathcal{H}^p)^{\perp}$$

be the Green's operator for Δ as in Section 6.9. In particular, G is a bounded linear operator by Theorem 6.6 (or eq4 in Section 6.8),

$$G\Delta \alpha = \Delta G \alpha \quad \forall \; \alpha \in (\mathcal{H}^p)^{\perp} \quad \text{and} \quad G\alpha = 0 \quad \forall \; \alpha \in \mathcal{H}^p \equiv \ker \Delta_p.$$

Furthermore, by the proof of part (a) and Theorem 6.8,

$$\langle\!\langle \Delta \alpha, \alpha \rangle\!\rangle \ge 0 \quad \forall \; \alpha \in E^p(M) \qquad \Longrightarrow \qquad \langle\!\langle \psi, G\psi \rangle\!\rangle \ge 0 \quad \forall \; \psi \in E^p(M). \tag{1}$$

Since G is bounded,

$$\eta \equiv \sup_{\varphi \in (\mathcal{H}^p)^{\perp}, \|\varphi\|=1} \|G\varphi\| < \infty.$$

Since G is nonzero on $(\mathcal{H}^p)^{\perp}$, $\eta > 0$. Furthermore,

$$\|G\varphi\| \le \eta \|\varphi\| \qquad \forall \varphi \in (\mathcal{H}^p)^{\perp}.$$

It will be shown that $1/\eta$ is an eigenvalue of Δ .

Let $\varphi_n \in (\mathcal{H}^p)^{\perp}$ be a sequence such that

$$\|\varphi_n\| = 1$$
 and $\lim_{n \to \infty} \|G\varphi_n\| = \eta.$

Then,

$$||G\varphi_n|| \le \eta ||\varphi_n|| = \eta$$
 and $||\Delta(G\varphi_n)|| = ||\varphi_n|| = 1.$

Thus, by Theorem 6.6, the sequence $\{G\varphi_n\}$ contains a Cauchy subsequence, which we still denote by $\{G\varphi_n\}$. Define

$$L: E^p(M) \longrightarrow \mathbb{R}$$
 by $L(\beta) = \eta \cdot \lim_{n \to \infty} \langle\!\langle G\varphi_n, \beta \rangle\!\rangle \quad \forall \ \beta \in E^p(M).$

Since

$$\left| \langle\!\langle G\varphi_n,\beta\rangle\!\rangle - \langle\!\langle G\varphi_m,\beta\rangle\!\rangle \right| = \left| \langle\!\langle G\varphi_n - G\varphi_m,\beta\rangle\!\rangle \right| \le \|\beta\| \cdot \|G\varphi_n - G\varphi_m\|$$

and $\{G\varphi_n\}$ is Cauchy, the sequence $\langle\!\langle G\varphi_n,\beta\rangle\!\rangle$ is Cauchy in \mathbb{R} . Therefore, the limit above exists and thus L is a well-defined linear functional on $E^p(M)$. This functional is not zero. For, if m is sufficiently large,

$$\begin{aligned} \eta/2 &\leq \|G\varphi_m\| \leq \eta \quad \text{and} \quad \|G\varphi_m - G\varphi_n\| \leq \eta/5 \quad \forall \ n \geq m \implies \\ \left| \langle\!\langle G\varphi_n, G\varphi_m \rangle\!\rangle - \|G\varphi_m\|^2 \right| &= \left| \langle\!\langle G\varphi_n - G\varphi_m, G\varphi_m \rangle\!\rangle \right| \leq \left\|G\varphi_n - G\varphi_m\right\| \cdot \|G\varphi_m\| \leq (\eta/5) \cdot \eta = \eta^2/5 \\ \implies \quad L(G\varphi_m) = \eta \cdot \lim_{n \longrightarrow \infty} \langle\!\langle G\varphi_n, G\varphi_m \rangle\!\rangle \geq \eta \big(\|G\varphi_m\|^2 - \eta^2/5\big) \geq \eta \big(\eta^2/4 - \eta^2/5\big) > 0. \end{aligned}$$

The linear functional L is bounded, since

$$\left|L(\beta)\right| = \eta \cdot \lim_{n \to \infty} \left| \langle\!\langle G\varphi_n, \beta \rangle\!\rangle \right| \le \eta \cdot \lim_{n \to \infty} \|G\varphi_n\| \cdot \|\beta\| \le \eta \cdot \lim_{n \to \infty} \eta \|\varphi_n\| \cdot \|\beta\| = \eta^2 \cdot \|\beta\|.$$

We show below that

$$L((\Delta - 1/\eta)^*\beta) = L((\Delta - 1/\eta)\beta) = 0 = \langle\!\langle 0, \beta \rangle\!\rangle \qquad \forall \ \beta \in E^p(M).$$
⁽²⁾

Thus, L is a weak solution of the equation $(\Delta - 1/\eta)\omega = 0$. Since Δ is an elliptic second-order differential operator by Section 6.35, so is $\Delta - 1/\eta$. Thus, by the generalization of Theorem 6.6 stated in class on 4/22, there exists $\omega \in E^p(M)$ such that $L = L_{\omega}$, i.e.

$$L_{\omega}(\beta) \equiv \langle\!\langle \omega, \beta \rangle\!\rangle = \eta \cdot \lim_{n \to \infty} \langle\!\langle G\varphi_n, \beta \rangle\!\rangle$$

In particular, $(\Delta - 1/\eta)\omega = 0$. Since $L \neq 0$, $\omega \neq 0$. Thus, $\omega \in E^p(M)$ is an eigenfunction of Δ with eigenvalue $1/\eta \in \mathbb{R}^+$.

Remark: If $\{\omega_n\}$ is a Cauchy sequence in an inner-product space A, $\omega \in A$, and

$$\lim_{n \to \infty} \langle\!\langle \omega_n, \beta \rangle\!\rangle = \langle\!\langle \omega, \beta \rangle\!\rangle \qquad \forall \ \beta \in A,$$
(3)

then $\omega_n \longrightarrow \omega$. Given $\epsilon > 0$, choose m > 0 so that $\|\omega_m - \omega_n\| < \epsilon$ for all $n \ge m$. Then,

$$\|\omega - \omega_m\|^2 \le \left| \langle\!\langle \omega - \omega_n, \omega - \omega_m \rangle\!\rangle \right| + \left| \langle\!\langle \omega_n - \omega_m, \omega - \omega_m \rangle\!\rangle \right| \le \left| \langle\!\langle \omega - \omega_n, \omega - \omega_m \rangle\!\rangle \right| + \epsilon \|\omega - \omega_m\|.$$

By the above convergence assumption for $\beta = \omega - \omega_m$,

$$\lim_{n \to \infty} \langle\!\langle \omega - \omega_n, \omega - \omega_m \rangle\!\rangle = 0 \qquad \Longrightarrow \qquad \|\omega - \omega_m\|^2 \le \epsilon \|\omega - \omega_m\| \qquad \Longrightarrow \qquad \|\omega - \omega_m\| \le \epsilon.$$

In our case, this implies that $\eta G \varphi_n \longrightarrow \omega$. The assumption that $\{\omega_n\}$ is a Cauchy sequence is required and does not follow from (3). For example, let

$$A = \ell_2 \equiv \{(x_1, x_2, \ldots) \in \mathbb{R}^{\mathbb{Z}^+} \colon \sum_{i=1}^{\infty} |x_i|^2 < \infty\}, \qquad \langle\!\langle (x_i)_{i \in \mathbb{Z}^+}, (y_i)_{i \in \mathbb{Z}^+} \rangle\!\rangle = \sum_{i=1}^{\infty} x_i y_i,$$

and take $\omega_n = e_n \in \ell_2$ be the vector with the *i*-th coordinate 1 and the rest 0. Then,

$$\lim_{n \to \infty} \langle\!\langle \omega_n, \beta \rangle\!\rangle = \lim_{n \to \infty} x_n = 0 = \langle\!\langle 0, \beta \rangle\!\rangle \qquad \forall \ \beta = (x_1, x_2, \ldots) \in \ell_2 ,$$

but $\omega_n \not\longrightarrow \omega = 0$ since $\|\omega_n - 0\| = 1$ for all n.

We now verify (2). Since

$$\begin{split} \left\| G^2 \varphi_n - \eta^2 \varphi_n \right\|^2 &= \| G^2 \varphi_n \|^2 - 2\eta^2 \langle\!\langle G^2 \varphi_n, \varphi_n \rangle\!\rangle + \eta^4 \|\varphi_n\|^2 \\ &= \| G(G\varphi_n) \|^2 - 2\eta^2 \langle\!\langle G^2 \varphi_n, \varphi_n \rangle\!\rangle + \eta^4, \end{split}$$

it follows that

$$\begin{aligned} \left\| G^{2}\varphi_{n} - \eta^{2}\varphi_{n} \right\|^{2} &\leq \left(\eta \|G\varphi_{n}\| \right)^{2} - 2\eta^{2} \langle\!\langle G^{2}\varphi_{n}, \varphi_{n} \rangle\!\rangle + \eta^{4} = \eta^{2} \left(\|G\varphi_{n}\| - \eta \right)^{2} \\ \implies \lim_{n \to \infty} \left\| G^{2}\varphi_{n} - \eta^{2}\varphi_{n} \right\| = 0. \end{aligned}$$

On the other hand, by equation (1) above

$$\eta \| G\varphi_n - \eta\varphi_n \|^2 \leq \eta \langle \langle G\varphi_n - \eta\varphi_n, G\varphi_n - \eta\varphi_n \rangle \rangle + \langle \langle G\varphi_n - \eta\varphi_n, G(G\varphi_n - \eta\varphi_n) \rangle \rangle$$
$$= \langle \langle G\varphi_n - \eta\varphi_n, G^2\varphi_n - \eta^2\varphi_n \rangle \rangle$$
$$\implies \lim_{n \to \infty} \| G\varphi_n - \eta\varphi_n \| = 0.$$

It follows that for all $\beta \in E^p(M)$,

$$l((\Delta - 1/\eta)\beta) = \eta \cdot \lim_{n \to \infty} \langle \langle G\varphi_n, (\Delta - 1/\eta)\beta \rangle \rangle = \lim_{n \to \infty} \eta \langle \langle (\Delta - 1/\eta)G\varphi_n, \beta \rangle \rangle$$
$$= \lim_{n \to \infty} \langle \langle \eta\varphi_n - G\varphi_n, \beta \rangle \rangle = 0,$$

since

$$\left| \langle\!\langle \eta \varphi_n - G \varphi_n, \beta \rangle\!\rangle \right| \le \|\beta\| \cdot \|G \varphi_n - \eta \varphi_n\|.$$

(f) Suppose $\lambda \in \mathbb{R}^+$. Let \mathcal{H}^p_{λ} be the subspace of $E^p(M)$ spanned by all eigenfunctions of Δ with eigenvalues less than λ , including 0. Since G is bounded,

$$\eta \equiv \sup_{\varphi \in (\mathcal{H}_{\lambda}^{p})^{\perp}, \|\varphi\|=1} \|G\varphi\| < \infty.$$

By (b) and (c) above, \mathcal{H}^p_{λ} is a finite-dimensional subspace of the infinite-dimensional vector space $E^p(M)$. Since G is injective on $(\mathcal{H}^p)^{\perp}$, G is nonzero on $(\mathcal{H}^p_{\lambda})^{\perp} \subset (\mathcal{H}^p)^{\perp}$ and so $\eta > 0$. It is shown below Δ has an eigenfunction $\omega \in (\mathcal{H}^p_{\lambda})^{\perp}$ with eigenvalue $1/\eta$. Since $\omega \notin \mathcal{H}^p_{\lambda}$, $1/\eta \ge \lambda$. This implies the claim.

Similarly to part (e), there exists a sequence $\varphi_n \in (\mathcal{H}^p_{\lambda})^{\perp}$ such that

$$\|\varphi_n\| = 1, \qquad \lim_{n \to \infty} \|G\varphi_n\| = \eta_n$$

and the sequence $\{G\varphi_n\}$ is Cauchy. Define

$$L: E^p(M) \longrightarrow \mathbb{R}$$
 by $L(\beta) = \eta \cdot \lim_{n \longrightarrow \infty} \langle\!\langle G\varphi_n, \beta \rangle\!\rangle \quad \forall \ \beta \in E^p(M).$

For exactly the same reasons as in part (e), L is a well-defined bounded linear functional such that

$$L((\Delta - 1/\eta)^*\beta) = \langle\!\langle 0, \beta \rangle\!\rangle \qquad \forall \ \beta \in E^p(M),$$

i.e. L is a weak solution of the equation $(\Delta - 1/\eta)\omega = 0$. As in part (e), we conclude that there exists an eigenfunction $\omega \in E^p(M)$ of Δ with eigenvalue $1/\eta \in \mathbb{R}^+$ such that $L_\omega = \eta \lim_{n \to \infty} L_{G\varphi_n}$. By *Remark* in part (e), this implies that $\eta G\varphi_n \longrightarrow \omega$ and so $\omega \in (\mathcal{H}^p_\lambda)^{\perp}$.

(g) Let $\lambda_1 \leq \lambda_2 \leq \ldots$ be the eigenvalues of Δ , including 0, listed with multiplicity. Let u_1, u_2, \ldots be an orthonormal set of eigenfunctions of Δ for these eigenvalues. We will show that for every $\alpha \in E^p(M)$,

$$\lim_{n \to \infty} \left\| \alpha - \sum_{i=1}^{n} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\| = \lim_{\lambda \to \infty} \left\| \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\| = 0.$$

The first equality follows from parts (b) and (c).

If $\lambda > 0$, the *p*-form

$$\alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i$$

is the orthogonal projection of α onto the subspace $(\mathcal{H}^p_{\lambda})^{\perp}$; see part (f). In particular, it is an element of $(\mathcal{H}^p_{\lambda})^{\perp}$ of norm less than $\|\alpha\|$. Since $(\mathcal{H}^p_{\lambda})^{\perp} \subset (\mathcal{H}^p)^{\perp}$,

$$\begin{aligned} \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i &= G\Delta \Big(\alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \Big) = G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle \Delta u_i \Big) \\ &= G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle \lambda_i u_i \Big) = G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, \lambda_i u_i \rangle\!\rangle u_i \Big) \\ &= G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, \Delta u_i \rangle\!\rangle u_i \Big) = G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \Delta \alpha, u_i \rangle\!\rangle u_i \Big). \end{aligned}$$

Since this is an element of $(\mathcal{H}^p_{\lambda})^{\perp}$, by part (f)

$$\begin{split} \left\| \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\| &= \left\| G \Big(\Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \Delta \alpha, u_i \rangle\!\rangle u_i \Big) \right\| \le \frac{1}{\lambda} \left\| \Delta \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \Delta \alpha, u_i \rangle\!\rangle u_i \right\| \\ &\le \frac{1}{\lambda} \| \Delta \alpha \|. \end{split}$$

This implies the claim.

(h) With notation as in part (g), we will show that

$$\lim_{n \to \infty} \left\| \alpha - \sum_{i=1}^{n} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\|_{\infty} = \lim_{\lambda \to \infty} \left\| \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\|_{\infty} = 0$$

for every $\alpha \in E^p(M)$. By the Sobolev inequality (6.22-(1)), the Fundamental Inequality (6.29-(1)), ellipticity of Δ , and the compactness of M, there exist $C \in \mathbb{R}^+$ and $k \in \mathbb{Z}^+$ such that

$$\|\beta\|_{\infty} \le C \sum_{m=0}^{m=k} \|\Delta^m \beta\| \qquad \forall \beta \in E^p(M).$$

Thus, by the proof of part (g),

$$\begin{split} \left\| \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right\|_{\infty} &\leq C \sum_{m=0}^{m=k} \left\| \Delta^m \left(\alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \alpha, u_i \rangle\!\rangle u_i \right) \right\| = C \sum_{m=0}^{m=k} \left\| \Delta^m \alpha - \sum_{\lambda_i < \lambda} \langle\!\langle \Delta^m \alpha, u_i \rangle\!\rangle u_i \right\| \\ &\leq C \sum_{m=0}^{m=k} \frac{1}{\lambda} \| \Delta^{m+1} \alpha \| = \frac{1}{\lambda} \Big(C \sum_{m=0}^{m=k} \| \Delta^{m+1} \alpha \| \Big). \end{split}$$

This implies the claim.

Problem 5 (15pts)

Suppose M and N are smooth compact Riemannian manifolds. A differential form γ on $M \times N$ is called decomposable if

$$\gamma = \pi_M^* \alpha \wedge \pi_N^* \beta$$
 for some $\alpha \in E^*(M), \ \beta \in E^*(N).$

(a) Show that

$$\Delta_{M \times N} \left(\pi_M^* \alpha \wedge \pi_N^* \beta \right) = \pi_M^* \Delta_M \alpha \wedge \pi_N^* \beta + \pi_M^* \alpha \wedge \pi_N^* \Delta_N \beta \qquad \forall \ \alpha \in E^*(M), \ \beta \in E^*(N).$$

- (b) Show that the \mathbb{R} -span of the decomposable forms on $M \times N$ is L^2 -dense in $E^*(M \times N)$.
- (c) Conclude that

$$\mathcal{H}^*(M \times N) \approx \mathcal{H}^*(M) \otimes \mathcal{H}^*(N), \qquad \pi_M^* \alpha \wedge \pi_N^* \beta \longleftrightarrow \alpha \otimes \beta.$$

(d) Conclude that

$$H^p_{\mathrm{de}\,\mathrm{R}}(M \times N) \approx \bigoplus_{q+r=p} H^q_{\mathrm{de}\,\mathrm{R}}(M) \otimes H^r_{\mathrm{de}\,\mathrm{R}}(N), \qquad \pi^*_M \alpha \wedge \pi^*_N \beta \longleftrightarrow \alpha \otimes \beta.$$

This is the Kunneth Formula for de Rham cohomology of compact manifolds.

(a) If X is a smooth manifold of dimension k,

$$\Delta = dd^* + d^*d \quad \text{and} \quad d^*\alpha = (-1)^{k(p+1)+1} * d * \alpha \quad \forall \ \alpha \in E^p(X).$$

In the given case, M and N may not oriented, but it is sufficient to check the identity on $U \times V$ for small open subsets U and V of M and N. Let m and n be the dimensions of M and N and suppose $\alpha \in E^p(M)$ and $\beta \in E^q(N)$. On U and V, we can choose orientations, which induce an orientation on $U \times V$. With respect to these orientation,

$$*(\pi_M^* \alpha \wedge \pi_N^* \beta) = (-1)^{(m-p)q} \pi_M^*(*\alpha) \wedge \pi_N^*(*\beta).$$

Since d commutes with pull-backs, it follows that

$$\begin{aligned} d^* \big(\pi_M^* \alpha \wedge \pi_N^* \beta \big) &= (-1)^{(m+n)(p+q+1)+1} * d * \big(\pi_M^* \alpha \wedge \pi_N^* \beta \big) \\ &= (-1)^{(m+n)(p+q+1)+1} (-1)^{(m-p)q} * d \big(\pi_M^* (*\alpha) \wedge \pi_N^* (*\beta) \big) \\ &= (-1)^{(m+n)(p+q+1)+1+(m-p)q} * \big(\pi_M^* (d*\alpha) \wedge \pi_N^* (*\beta) + (-1)^{m-p} \pi_M^* (*\alpha) \wedge \pi_N^* (d*\beta) \big) \\ &= (-1)^{(m+n)(p+q+1)+1+(m-p)q} \Big((-1)^{(p-1)(n-q)} (-1)^{q(n-q)} \pi_M^* (*d*\alpha) \wedge \pi_N^* \beta \\ &\quad + (-1)^{m-p} (-1)^{p(n-q+1)} (-1)^{p(m-p)} \pi_M^* \alpha \wedge \pi_N^* (*d*\beta) \Big) \\ &= (-1)^{m(p+1)+1} \pi_M^* (*d*\alpha) \wedge \pi_N^* \beta + (-1)^{n(q+1)+1+p} \pi_M^* \alpha \wedge \pi_N^* (*d*\beta) \\ &= \pi_M^* (d^*\alpha) \wedge \pi_N^* \beta + (-1)^p \pi_M^* \alpha \wedge \pi_N^* (d^*\beta). \end{aligned}$$

Thus,

$$dd^* \left(\pi_M^* \alpha \wedge \pi_N^* \beta \right) = d \left(\pi_M^* (d^* \alpha) \wedge \pi_N^* \beta + (-1)^p \pi_M^* \alpha \wedge \pi_N^* (d^* \beta) \right)$$

= $\pi_M^* (dd^* \alpha) \wedge \pi_N^* \beta + (-1)^{p-1} \pi_M^* (d^* \alpha) \wedge \pi_N^* (d\beta) + (-1)^p \pi_M^* d\alpha \wedge \pi_N^* (d^* \beta) + \pi_M^* \alpha \wedge \pi_N^* (dd^* \beta).$

Similarly,

$$d^*d\big(\pi_M^*\alpha \wedge \pi_N^*\beta\big) = d^*\big(\pi_M^*(d\alpha) \wedge \pi_N^*\beta + (-1)^p \pi_M^*\alpha \wedge \pi_N^*(d\beta)\big)$$

= $\pi_M^*(d^*d\alpha) \wedge \pi_N^*\beta + (-1)^{p+1} \pi_M^*(d\alpha) \wedge \pi_N^*(d^*\beta) + (-1)^p \pi_M^*(d^*\alpha) \wedge \pi_N^*(d\beta) + \pi_M^*\alpha \wedge \pi_N^*(d^*d\beta).$

From the two expressions, we obtain

$$\Delta_{M\times N}(\pi_M^*\alpha \wedge \pi_N^*\beta) = \pi_M^*(dd^*\alpha) \wedge \pi_N^*\beta + \pi_M^*\alpha \wedge \pi_N^*(dd^*\beta) + \pi_M^*(d^*d\alpha) \wedge \pi_N^*\beta + \pi_M^*\alpha \wedge \pi_N^*(d^*d\beta)$$

= $\pi_M^*\Delta_M\alpha \wedge \pi_N^*\beta + \pi_M^*\alpha \wedge \pi_N^*\Delta_N\beta,$

as claimed.

(b) Let $\{(U_{M;i}, \varphi_{M;i}, \psi_{M;i})\}$ and $\{(U_{N;j}, \varphi_{N;j}, \psi_{N;j})\}$ be finite collections such that

- $\{U_{M;i}\}$ and $\{U_{N;i}\}$ are open covers of M and N, respectively;
- $\varphi_{M;i}: U_{M;i} \longrightarrow W_{M;i} \subset \mathbb{R}^m$ and $\varphi_{N;j}: U_{N;j} \longrightarrow W_{N;j} \subset \mathbb{R}^n$ are measure-preserving charts;
- $\psi_{M;i}: TM|_{U_{M;i}} \longrightarrow W_{M;i} \times \mathbb{R}^m$ and $\psi_{N;j}: TN|_{U_{N;j}} \longrightarrow W_{N;j} \times \mathbb{R}^n$ are bundle isometries covering $\varphi_{M;i}$ and $\varphi_{N;j}$, respectively.

Since $M \times N$ is compact, it is sufficient to show that every $\gamma \in E^*(M \times N)$ such that $\operatorname{supp} \gamma \subset U_{M;i} \times U_{N;j}$ for some i, j lies in the closure of the span of decomposable forms. Via the trivializations induced by $\psi_{M;i}$ and $\psi_{N;j}$ on $\Lambda^*(T^*M)$ and $\Lambda^*(T^*N)$, such a form γ corresponds to a smooth compactly supported function on $\mathbb{R}^m \times \mathbb{R}^n$ with values in \mathbb{R}^p for some p. It is sufficient to show that every component function h = h(x, y) can be approximated by a linear combination of functions of the form $f_k g_k$, where $f_k = f_k(x)$ and $g = g_k(y)$ are compactly supported functions on \mathbb{R}^m and \mathbb{R}^n , respectively.

It can be assumed that $m, n \ge 1$ (otherwise, there is nothing to prove). Let h be as above and $\epsilon > 0$. Choose R > 0 so that h(x, y) = 0 if $|x_i| > R$ or $|y_j| > R$ for any of the components x_i of x or y_j of y (so h is supported inside of the cube $[-R, R]^{m+n}$). Since $[-R, R]^{m+n}$ is compact, there exists $\delta > 0$ such that

$$|h(x,y) - h(x',y')|^2 < \frac{\epsilon}{4(2R)^{m+n}}$$
 if $|x_i - x'_i|, |y_j - y'_j| \le \delta \ \forall i, j.$

It can be assumed that δ divides R (since δ can always be made smaller). Let $\{B_k\}$ be a cover of $[-R, R]^{m+n}$ by some N > 0 closed cubes with side δ so that $B_k \cap B_{k'}$ is either empty or consists of a face of B_k if $k \neq k'$ (so $\{B_k\}$ breaks $[-R, R]^{m+n}$ into N small cubes). Pick a point $(x_k, y_k) \in B_k$. Let h_k be the function which equals $h(x_k, y_k)$ on B_k and 0 everywhere else. By our assumption on δ ,

$$\begin{split} \left\|h - \sum_{k=1}^{k=N} h_k\right\|^2 &= \sum_{k=1}^{k=N} \int_{B_k} \left|h(x, y) - h(x_k, y_k)\right|^2 < \frac{\epsilon}{4(2R)^{m+n}} \sum_{k=1}^{k=N} \int_{B_k} 1 \\ &= \frac{\epsilon}{4(2R)^{m+n}} \sum_{k=1}^{k=N} \int_{[-R, R]^{m+n}} 1 = \frac{\epsilon}{4} \,. \end{split}$$

Let $\delta' \in (0, \delta)$ be such that

$$\max_{k} |h(x_k, y_k)|^2 \cdot \left(\delta^{m+n} - \delta'^{m+n}\right) < \frac{\epsilon}{4N}.$$

For each k, $B_k = B_{m;k} \times B_{n;k}$ for some cubes $B_{m;k} \subset \mathbb{R}^m$ and $B_{n;k} \subset \mathbb{R}^n$ of side δ . Let $B'_{m;k} \subset \text{Int } B_{m;k}$ and $B'_{n;k} \subset \text{Int } B_{n;k}$ be closed cubes with side δ' . For each k, choose smooth functions

$$f_k \colon \mathbb{R}^m \longrightarrow [0,1] \quad \text{and} \quad g'_k \colon \mathbb{R}^n \longrightarrow [0,1] \quad \text{s.t.}$$

supp $f_k \subset B_{m;k}$, supp $g'_k \subset B_{n;k}$, $f_k|_{B'_{m;k}} \equiv 1$, $g'_k|_{B'_{n;k}} \equiv 1$.

Let $g_k = h(x_k, y_k)g'_k$. Then, for every k

$$\left\|h_{k} - f_{k}g_{k}\right\|^{2} = \int_{B_{k} - B'_{m;k} \times B'_{n;k}} \left|h(x_{k}, y_{k}) - f_{k}g_{k}\right|^{2} \le \left|h(x_{k}, y_{k})\right|^{2} \cdot \left(\delta^{m+n} - \delta'^{m+n}\right) < \frac{\epsilon}{4N}.$$

Putting this all together, we obtain

$$\left\|h - \sum_{k=1}^{k=N} f_k g_k\right\|^2 \le 2\left(\left\|h - \sum_{k=1}^{k=N} h_k\right\|^2 + \sum_{k=1}^{k=N} \left\|h_k - f_k g_k\right\|^2\right) < 2\left(\frac{\epsilon}{4} + \frac{\epsilon}{4N} \cdot N\right) = \epsilon,$$

so h is in the closure of the span of decomposable elements $f_k g_k$.

Remark: The argument suggested in Griffiths&Harris, Lemma on p104, is wrong. If A is a subspace of a Hilbert space H (like L^2 -forms), then $\bar{A} = H$ if and only if for every $h \in H-0$ there exists $f \in A$ such that $\langle\!\langle f, h \rangle\!\rangle \neq 0$. The only if part is immediate and does not depend on the completeness of H (if $h \in H-0$ and $\langle\!\langle f, h \rangle\!\rangle = 0$ for all $f \in A$, then $||h-f|| \ge ||h||$ for every $f \in A$ and so $h \notin \bar{A}$). On the other hand, $H = \bar{A} \oplus \bar{A}^{\perp}$ because H is a Hilbert space and $\bar{A} \subset H$ is closed; thus, if $\bar{A} \neq H$, then there exists $h \in H-0$ such that $\langle\!\langle f, h \rangle\!\rangle = 0$ for all $f \in A$. This last implication does not need to hold if H is an inner-product space which is not complete. For example, let

$$H = C^{\infty}(I; \mathbb{R}), \qquad A = \big\{ h \in H \colon \int_{0}^{1/2} h dx = 0 \big\},$$

where I = [0, 1] and H has the L^2 -norm. Since

$$H \longrightarrow \mathbb{R}, \qquad h \longrightarrow \int_0^{1/2} h \mathrm{d}x \,,$$

is a bounded linear functional on H (L^1 -norm is bounded by L^2 -norm), $\bar{A} = A \neq H$. On the other hand, for every $h \in H-0$, there exists $f \in A$ such that $\langle\!\langle f, h \rangle\!\rangle \neq 0$. If $h(x) \neq 0$ for some $x \in [1/2, 1]$, such an f can be constructed using a cut-off function supported on a small neighborhood of some $x_0 \in (1/2, 1)$. Otherwise, we can assume that there exists $x_0 \in (0, 1/2)$ such that $h(x_0) > 0$ (after possibly replacing h by -h) and $h'(x_0) < 0$ (because h(1/2) = 0). Thus, there exists $\delta > 0$ such that

$$(x_0 - \delta, x_0 + \delta) \subset (0, 1/2) \quad \text{and} \quad h(x) > h(x_0) \ \forall x \in (x_0 - \delta, x_0), \quad h(x) < h(x_0) \ \forall x \in (x_0, x_0 + \delta).$$
(4)

Let $f \in C^{\infty}(\mathbb{R}; \mathbb{R})$ be any nonzero function such that

$$\operatorname{supp} f \subset (x_0 - \delta, x_0 + \delta) \quad \text{and} \quad f(x_0 + y) = -f(x_0 - y) \quad \forall y \in \mathbb{R}, \quad f(x) \le 0 \quad \forall x \in (x_0, x_0 + \delta).$$
(5)

Thus, $f|_I \in A$ and

$$\langle\!\langle f|_{I},h\rangle\!\rangle = \int_{x_{0}-\delta}^{x_{0}} f \cdot (h-h(x_{0})) \,\mathrm{d}x + \int_{x_{0}}^{x_{0}+\delta} f \cdot (h-h(x_{0})) \,\mathrm{d}x + h(x_{0}) \int_{0}^{1} f \,\mathrm{d}x > 0,$$

because the integrands in the first two integrals are non-negative and positive somewhere by (4) and (5) and $f \in A$. A quicker way to see that the orthogonal complement of A in H is zero is to pass to $L^2(I; \mathbb{R}) \supset H$. Since

$$L^2(I;\mathbb{R}) \longrightarrow \mathbb{R}, \qquad h \longrightarrow \int_0^{1/2} h \mathrm{d}x \,,$$

is a well-defined bounded linear surjective functional, the orthogonal complement of its kernel is onedimensional (the kernel is the closure of A in $L^2(I;\mathbb{R})$). The orthogonal complement of A in $L^2(I;\mathbb{R})$ thus consists of the functions $h: I \longrightarrow \mathbb{R}$ that are constant on [0, 1/2] and vanish on (1/2, 1] (because these functions are indeed orthogonal to A). Since the only one of these functions that lies in H is the zero function, the orthogonal complement of A in H is zero.

(c) Let $\lambda_1 \leq \lambda_2 \leq \ldots$ and $\tau_1 \leq \tau_2 \leq \ldots$ be the eigenvalues of Δ_M and Δ_N , including zero and listed with multiplicity. Let

$$\alpha_1, \alpha_2, \ldots \in E^*(M)$$
 and $\beta_1, \beta_2, \ldots \in E^*(N)$

be orthonormal eigenfunctions for these eigenvalues. By part (g) of Problem 4, their linear spans are L^2 -dense in $E^*(M)$ and in $E^*(N)$. Thus, the linear span of the vectors $\pi_M^* \alpha_i \wedge \pi_N^* \beta_j$ is dense in the span of the decomposable elements of $E^*(M \times N)$. Since this span is L^2 -dense in $E^*(M \times N)$ by part (b), the linear span of the vectors $\pi_M^* \alpha_i \wedge \pi_N^* \beta_j$ is L^2 -dense in $E^*(M \times N)$. On the other hand, by part (a),

$$\Delta_{M \times N} (\pi_M^* \alpha_i \wedge \pi_N^* \beta_j) = \pi_M^* (\Delta_M \alpha_i) \wedge \pi_N^* \beta_j + \pi_M^* \alpha_i \wedge \pi_N^* (\Delta_N \beta_j)$$

= $\pi_M^* (\lambda_i \alpha_i) \wedge \pi_N^* \beta_j + \pi_M^* \alpha_i \wedge \pi_N^* (\tau_j \beta_j)$
= $(\lambda_i + \tau_j) \cdot (\pi_M^* \alpha_i \wedge \pi_N^* \beta_j),$

i.e. $\pi_M^* \alpha_i \wedge \pi_N^* \beta_j$ is an eigenfunction for $\Delta_{M \times N}$ with eigenvalue $\lambda_i + \tau_j$. Since the sequences

$$0 \le \lambda_1 \le \lambda_2 \le \dots$$
 and $0 \le \tau_1 \le \tau_2 \le \dots$

have no limit points by (b) and (c) of Problem 4, neither does the set $\{\lambda_i + \tau_j : i, j \ge 1\}$. Since the linear span of the vectors $\pi_M^* \alpha_i \wedge \pi_N^* \beta_j$ is L^2 -dense in $E^*(M \times N)$, it follows that $\Delta_{M \times N}$ has no other eigenvalues and all its eigenvectors are linear combinations of the forms $\pi_M^* \alpha_i \wedge \pi_N^* \beta_j$ with the same value of $\lambda_i + \tau_j$. Since $\lambda_i, \tau_j \ge 0$, the zero eigenspace of $\Delta_{M \times N}$ is thus given by

$$\mathcal{H}_{M\times N}^* = \operatorname{Span}\left(\left\{\pi_M^* \alpha \wedge \pi_N^* \beta \colon \alpha \in \mathcal{H}_M^*, \ \beta \in \mathcal{H}_N^*\right\}\right) \approx \mathcal{H}_M^* \otimes \mathcal{H}_N^*.$$

(d) The diagram of graded vector-space homomorphisms¹

commutes. By part (c), the left arrow in the diagram is an isomorphism. By Theorem 6.11, the horizontal arrows are isomorphisms. Thus, so is the right arrow. Restricting to the p-th level, we obtain the desired statement.

¹these are actually algebra homomorphisms with respect to \wedge