MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 10

Problem 1: Chapter 6, \#6 (5pts)

Derive explicit formulas for $d, *, \delta$, and Δ in Euclidean space.
Let x_{1}, \ldots, x_{n} denote the standard coordinate functions on \mathbb{R}^{n}. It is sufficient to describe the action of these linear operators on forms

$$
\alpha=f d y_{1} \wedge \ldots \wedge d y_{p},
$$

where $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and y_{1}, \ldots, y_{n} is a permutation of the coordinates x_{1}, \ldots, x_{n} so that

$$
d y_{1} \wedge \ldots \wedge d y_{n}=d x_{1} \wedge \ldots \wedge d x_{n}
$$

By Section 2.20 and Exercise 13 in Chapter 2,

$$
\begin{gathered}
d \alpha=d f \wedge d y_{1} \wedge \ldots \wedge d y_{p}=\sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_{j}} d y_{j} \wedge d y_{1} \wedge \ldots \wedge d y_{p}=(-1)^{p} \sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_{j}} d y_{1} \wedge \ldots \wedge d y_{p} \wedge d y_{j} \\
* \alpha=f d y_{p+1} \wedge \ldots \wedge d y_{n}
\end{gathered}
$$

Thus, by Section 6.1,

$$
\begin{aligned}
\delta \alpha & =(-1)^{n(p+1)+1} * d * \alpha=(-1)^{n(p+1)+1} * d\left(f d y_{p+1} \wedge \ldots \wedge d y_{n}\right) \\
& =(-1)^{n(p+1)+1} * \sum_{i=1}^{i=p} \frac{\partial f}{\partial y_{i}} d y_{i} \wedge d y_{p+1} \wedge \ldots \wedge d y_{n} \\
& =(-1)^{n(p+1)+1} \sum_{i=1}^{i=p}(-1)^{(n-p)(p-1)+(i-1)} \frac{\partial f}{\partial y_{i}} d y_{1} \wedge \ldots \wedge \widehat{d y_{i}} \wedge \ldots \wedge d y_{p} \\
& =\sum_{i=1}^{i=p}(-1)^{i} \frac{\partial f}{\partial y_{i}} d y_{1} \wedge \ldots \wedge \widehat{d y_{i}} \wedge \ldots \wedge d y_{p} .
\end{aligned}
$$

From this, we find that

$$
\begin{aligned}
\Delta \alpha= & d \delta \alpha+\delta d \alpha=d \sum_{i=1}^{i=p}(-1)^{i} \frac{\partial f}{\partial y_{i}} d y_{1} \wedge \ldots \wedge \widehat{d y_{i}} \wedge \ldots \wedge d y_{p}+(-1)^{p} \delta \sum_{j=p+1}^{j=n} \frac{\partial f}{\partial y_{j}} d y_{1} \wedge \ldots \wedge d y_{p} \wedge d y_{j} \\
= & \sum_{i=1}^{i=p}(-1)^{i}\left((-1)^{i-1} \frac{\partial^{2} f}{\partial y_{i}^{2}} d y_{1} \wedge \ldots \wedge d y_{p}+(-1)^{p-1} \sum_{j=p+1}^{j=n} \frac{\partial^{2} f}{\partial y_{i} \partial y_{j}} d y_{1} \wedge \ldots \wedge \widehat{d y_{i}} \wedge \ldots \wedge d y_{p} \wedge d y_{j}\right) \\
& +(-1)^{p} \sum_{j=p+1}^{j=n}\left((-1)^{p+1} \frac{\partial^{2} f}{\partial y_{j}^{2}} d y_{1} \wedge \ldots \wedge d y_{p}+\sum_{i=1}^{i=p}(-1)^{i} \frac{\partial^{2} f}{\partial y_{i} \partial y_{j}} d y_{1} \wedge \ldots \wedge \widehat{d y_{i}} \wedge \ldots \wedge d y_{p} \wedge d y_{j}\right) \\
= & -\sum_{i=1}^{i=n} \frac{\partial^{2} f}{\partial y_{i}^{2}} d y_{1} \wedge \ldots \wedge d y_{p} .
\end{aligned}
$$

Problem 2 (5pts)

Suppose M is a compact Riemannian manifold. If M is not orientable, the Hodge $*$-operator is defined only up to sign. However, as the definition of δ in Section 6.1 involves two *'s, the linear operator δ is well-defined. Show that δ is the adjoint of d whether or not M is oriented.

The oriented case is dealt with in Proposition 6.2. Thus, it is sufficient to assume that M is connected and non-orientable. Let $\pi: \tilde{M} \longrightarrow M$ be the orientable double cover of M; see solution to Problem 5 on the 06 midterm. The Riemannian metric on M (or inner-product in $T M \longrightarrow M$) induces via the projection map $d \pi$ a Riemannian metric on \tilde{M} so that

$$
\left(d \pi_{x}\right)^{*}: \Lambda^{p} T_{\pi(x)}^{*} M \longrightarrow \Lambda^{p} T_{x}^{*} \tilde{M}
$$

is an isometry for all p and $x \in \tilde{M}$. In particular,

$$
\langle\alpha, \beta\rangle=\left\langle\pi^{*} \alpha, \pi^{*} \beta\right\rangle \quad \forall \alpha, \beta \in \Lambda^{p} T_{m}^{*} M \quad \Longrightarrow \quad\langle\langle\alpha, \beta\rangle\rangle=\frac{1}{2}\left\langle\left\langle\pi^{*} \alpha, \pi^{*} \beta\right\rangle\right\rangle \quad \forall \alpha, \beta \in E^{p}(M),
$$

since π is a double cover. Choose an orientation on \tilde{M} so that $*$ is defined on \tilde{M}. Given $x \in \tilde{M}$, we can compute

$$
(\delta \alpha)_{\pi(x)} \equiv(-1)^{n(p+1)+1}(* d * \alpha)_{\pi(x)}
$$

by using the orientation on a small neighborhood of $\pi(x)$ induced from the orientation on a small neighborhood of x via $d \pi$. Then, π^{*} commutes with $*$ near x and thus with δ everywhere. Therefore, by the above and Proposition 6.2

$$
\begin{aligned}
\langle\langle d \alpha, \beta\rangle\rangle=\frac{1}{2}\left\langle\left\langle\pi^{*} d \alpha, \pi^{*} \beta\right\rangle\right\rangle & =\frac{1}{2}\left\langle\left\langle d \pi^{*} \alpha, \pi^{*} \beta\right\rangle\right\rangle \\
& =\frac{1}{2}\left\langle\left\langle\pi^{*} \alpha, \delta \pi^{*} \beta\right\rangle\right\rangle=\frac{1}{2}\left\langle\left\langle\pi^{*} \alpha, \pi^{*} \delta \beta\right\rangle\right\rangle=\left\langle\left\langle\pi^{*} \alpha, \delta \beta\right\rangle\right\rangle
\end{aligned}
$$

for all $\alpha \in E^{p-1}(M)$ and $\beta \in E^{p}(M)$. Thus, $\delta=d^{*}$ on M.

Problem 3 (5pts)

Suppose M is a compact connected non-orientable n-manifold. Show that $H_{\mathrm{deR}}^{n}(M)=0$.
Remark: In fact, if M is a non-compact connected n-manifold, orientable or not, $H_{\text {deR }}^{n}(M)=0$.
Let $\pi: \tilde{M} \longrightarrow M$ be the orientable double cover of M and let G be the group of covering transformations of π. This group consists of two elements; let g be the non-trivial element. By Problem 5a on PS7,

$$
H_{\mathrm{deR}}^{n}(M)=H_{\mathrm{deR}}^{n}(\tilde{M})^{G}=\left\{[\omega] \in H_{\mathrm{deR}}^{n}(\tilde{M}):\left[g^{*} \omega\right]=[\omega]\right\} .
$$

On the other hand, since \tilde{M} is compact, connected, and orientable, $H_{\mathrm{deR}}^{n}(\tilde{M}) \approx \mathbb{R}$ by Corollary 6.13. Thus, it is sufficient to find a single element $[\omega] \in H_{\text {de }}^{n}(\tilde{M})$ such that $\left[g^{*} \omega\right] \neq[\omega]$.

Let $\omega \in E^{n}(M)$ be a nowhere-zero top form on \tilde{M}. Since M is not orientable, $g^{*} \omega$ belongs to the opposite orientation for \tilde{M}; see solutions to Problem 6 on PS6. In other words, $g^{*} \omega=f \cdot \omega$ for some smooth function $f: \tilde{M} \longrightarrow \mathbb{R}^{-}$. Thus,

$$
\int_{\tilde{M}} g^{*} \omega=\int_{\tilde{M}} f \cdot \omega \neq \int_{\tilde{M}} \omega \quad \Longrightarrow \quad\left[g^{*} \omega\right] \neq[\omega] \in H_{\mathrm{deR}}^{n}(\tilde{M}) ;
$$

the two integrals above are not equal because they have opposite signs.

Problem 4: Chapter 6, \#16 (30pts)

Suppose M is a compact Riemannian manifold and $\Delta: E^{p}(M) \longrightarrow E^{p}(M)$ is the corresponding Laplacian. Show that
(a) all eigenvalues of Δ are non-negative;
(d) eigenfunctions corresponding to distinct eigenvalues are orthogonal;
(b) eigenspaces of Δ are finite-dimensional;
(c) the set of eigenvalues of Δ has no limit point;
(e) Δ has a positive eigenvalue;
(f) Δ has infinitely many positive eigenvalues;
(g) the linear span of eigenfunctions of Δ is L^{2}-dense in $E^{p}(M)$;
(h) the linear span of eigenfunctions of Δ is L^{∞}-dense in $E^{p}(M)$.
(a) Suppose $\alpha \in E^{p}(M)$ is an eigenfunction of Δ with eigenvalue $\lambda \in \mathbb{R}$, i.e. $\alpha \neq 0$ and $\Delta \alpha=\lambda \alpha$. Since $\Delta=d^{*} d+d d^{*}$,

$$
\begin{aligned}
\lambda|\alpha|^{2}=\lambda\langle\langle\alpha, \alpha\rangle\rangle=\langle\langle\lambda \alpha, \alpha\rangle\rangle=\langle\langle\Delta \alpha, \alpha\rangle\rangle & =\left\langle\left\langle d^{*} d \alpha, \alpha\right\rangle\right\rangle+\left\langle\left\langle d d^{*} \alpha, \alpha\right\rangle\right\rangle \\
& =\langle\langle d \alpha, d \alpha\rangle\rangle+\left\langle\left\langle d^{*} \alpha, d^{*} \alpha\right\rangle\right\rangle=|d \alpha|^{2}+\left|d^{*} \alpha\right|^{2} \geq 0 .
\end{aligned}
$$

Since $|\alpha|^{2}>0$, it follows that $\lambda \geq 0$.
(d) Suppose $\alpha_{1}, \alpha_{2} \in E^{p}(M)$ are eigenfunctions of Δ with eigenvalues $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Since $\Delta^{*}=\Delta$,

$$
\begin{aligned}
\lambda_{1}\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle=\left\langle\left\langle\lambda_{1} \alpha_{1}, \alpha_{2}\right\rangle\right\rangle & =\left\langle\left\langle\Delta \alpha_{1}, \alpha_{2}\right\rangle\right\rangle \\
& =\left\langle\left\langle\alpha_{1}, \Delta \alpha_{2}\right\rangle\right\rangle=\left\langle\left\langle\alpha_{1}, \lambda_{2} \alpha_{2}\right\rangle\right\rangle=\lambda_{2}\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle .
\end{aligned}
$$

Thus, if $\lambda_{1} \neq \lambda_{2},\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle=0$, i.e. eigenspaces with different eigenvalues are orthogonal.
(b) Suppose not, i.e. there exists an orthonormal sequence $\alpha_{1}, \alpha_{2}, \ldots \in E^{p}(M)$ of eigenfunctions of Δ with eigenvalue $\lambda \in \mathbb{R}$. Then,

$$
\left\|\alpha_{n}\right\|=1 \quad \text { and } \quad\left\|\Delta \alpha_{n}\right\|=\left\|\lambda \alpha_{n}\right\|=\lambda\left\|\alpha_{n}\right\|=\lambda
$$

By Theorem 6.6, the sequence $\left\{\alpha_{n}\right\}$ contains a Cauchy subsequence. However, this is impossible, since it consists of orthonormal elements.
(c) Suppose not, i.e. there exists a sequence of distinct eigenvalues λ_{n} of Δ that converges to some $\lambda \in \mathbb{R}$. By part (a), it can be assumed that $0 \leq \lambda_{n} \leq \lambda+1$. Let $\alpha_{n} \in E^{p}(M)$ be a normal eigenfunction of Δ with eigenvalue λ_{n}. Then,

$$
\left\|\alpha_{n}\right\|=1 \quad \text { and } \quad\left\|\Delta \alpha_{n}\right\|=\left\|\lambda_{n} \alpha_{n}\right\|=\lambda_{n}\left\|\alpha_{n}\right\| \leq \lambda+1 .
$$

By Theorem 6.6, the sequence $\left\{\alpha_{n}\right\}$ contains a Cauchy subsequence. However, this is impossible, since it consists of orthonormal elements by part (d).
(e) Let $\left(\mathcal{H}^{p}\right)^{\perp}$ be the orthogonal complement of $\mathcal{H}^{p} \equiv \operatorname{ker} \Delta_{p}$ in $E^{p}(M)$ and let

$$
G: E^{p}(M) \longrightarrow\left(\mathcal{H}^{p}\right)^{\perp}
$$

be the Green's operator for Δ as in Section 6.9. In particular, G is a bounded linear operator by Theorem 6.6 (or eq4 in Section 6.8),

$$
G \Delta \alpha=\Delta G \alpha \quad \forall \alpha \in\left(\mathcal{H}^{p}\right)^{\perp} \quad \text { and } \quad G \alpha=0 \quad \forall \alpha \in \mathcal{H}^{p} \equiv \operatorname{ker} \Delta_{p} .
$$

Furthermore, by the proof of part (a) and Theorem 6.8,

$$
\begin{equation*}
\langle\langle\Delta \alpha, \alpha\rangle\rangle \geq 0 \quad \forall \alpha \in E^{p}(M) \quad \Longrightarrow \quad\langle\langle\psi, G \psi\rangle\rangle \geq 0 \quad \forall \psi \in E^{p}(M) . \tag{1}
\end{equation*}
$$

Since G is bounded,

$$
\eta \equiv \sup _{\varphi \in\left(\mathcal{H}^{p}\right)^{\perp},\|\varphi\|=1}\|G \varphi\|<\infty
$$

Since G is nonzero on $\left(\mathcal{H}^{p}\right)^{\perp}, \eta>0$. Furthermore,

$$
\|G \varphi\| \leq \eta\|\varphi\| \quad \forall \varphi \in\left(\mathcal{H}^{p}\right)^{\perp}
$$

It will be shown that $1 / \eta$ is an eigenvalue of Δ.
Let $\varphi_{n} \in\left(\mathcal{H}^{p}\right)^{\perp}$ be a sequence such that

$$
\left\|\varphi_{n}\right\|=1 \quad \text { and } \quad \lim _{n \longrightarrow \infty}\left\|G \varphi_{n}\right\|=\eta .
$$

Then,

$$
\left\|G \varphi_{n}\right\| \leq \eta\left\|\varphi_{n}\right\|=\eta \quad \text { and } \quad\left\|\Delta\left(G \varphi_{n}\right)\right\|=\left\|\varphi_{n}\right\|=1
$$

Thus, by Theorem 6.6, the sequence $\left\{G \varphi_{n}\right\}$ contains a Cauchy subsequence, which we still denote by $\left\{G \varphi_{n}\right\}$. Define

$$
L: E^{p}(M) \longrightarrow \mathbb{R} \quad \text { by } \quad L(\beta)=\eta \cdot \lim _{n \longrightarrow \infty}\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle \quad \forall \beta \in E^{p}(M) .
$$

Since

$$
\left|\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle-\left\langle\left\langle G \varphi_{m}, \beta\right\rangle\right\rangle\right|=\left|\left\langle\left\langle G \varphi_{n}-G \varphi_{m}, \beta\right\rangle\right\rangle\right| \leq\|\beta\| \cdot\left\|G \varphi_{n}-G \varphi_{m}\right\|
$$

and $\left\{G \varphi_{n}\right\}$ is Cauchy, the sequence $\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle$ is Cauchy in \mathbb{R}. Therefore, the limit above exists and thus L is a well-defined linear functional on $E^{p}(M)$. This functional is not zero. For, if m is sufficiently large,

$$
\begin{gathered}
\eta / 2 \leq\left\|G \varphi_{m}\right\| \leq \eta \quad \text { and } \quad\left\|G \varphi_{m}-G \varphi_{n}\right\| \leq \eta / 5 \quad \forall n \geq m \quad \Longrightarrow \\
\left|\left\langle G \varphi_{n}, G \varphi_{m}\right\rangle\right\rangle-\left\|G \varphi_{m}\right\|^{2}\left|=\left|\left\langle\left\langle G \varphi_{n}-G \varphi_{m}, G \varphi_{m}\right\rangle\right\rangle\right| \leq\left\|G \varphi_{n}-G \varphi_{m}\right\| \cdot\left\|G \varphi_{m}\right\| \leq(\eta / 5) \cdot \eta=\eta^{2} / 5\right. \\
\Longrightarrow \quad L\left(G \varphi_{m}\right)=\eta \cdot \lim _{n \longrightarrow \infty}\left\langle\left\langle G \varphi_{n}, G \varphi_{m}\right\rangle\right\rangle \geq \eta\left(\left\|G \varphi_{m}\right\|^{2}-\eta^{2} / 5\right) \geq \eta\left(\eta^{2} / 4-\eta^{2} / 5\right)>0 .
\end{gathered}
$$

The linear functional L is bounded, since

$$
|L(\beta)|=\eta \cdot \lim _{n \longrightarrow \infty}\left|\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle\right| \leq \eta \cdot \lim _{n \longrightarrow \infty}\left\|G \varphi_{n}\right\| \cdot\|\beta\| \leq \eta \cdot \lim _{n \longrightarrow \infty} \eta\left\|\varphi_{n}\right\| \cdot\|\beta\|=\eta^{2} \cdot\|\beta\|
$$

We show below that

$$
\begin{equation*}
L\left((\Delta-1 / \eta)^{*} \beta\right)=L((\Delta-1 / \eta) \beta)=0=\langle\langle 0, \beta\rangle\rangle \quad \forall \beta \in E^{p}(M) \tag{2}
\end{equation*}
$$

Thus, L is a weak solution of the equation $(\Delta-1 / \eta) \omega=0$. Since Δ is an elliptic second-order differential operator by Section 6.35 , so is $\Delta-1 / \eta$. Thus, by the generalization of Theorem 6.6 stated in class on $4 / 22$, there exists $\omega \in E^{p}(M)$ such that $L=L_{\omega}$, i.e.

$$
L_{\omega}(\beta) \equiv\langle\langle\omega, \beta\rangle\rangle=\eta \cdot \lim _{n \longrightarrow \infty}\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle
$$

In particular, $(\Delta-1 / \eta) \omega=0$. Since $L \neq 0, \omega \neq 0$. Thus, $\omega \in E^{p}(M)$ is an eigenfunction of Δ with eigenvalue $1 / \eta \in \mathbb{R}^{+}$.

Remark: If $\left\{\omega_{n}\right\}$ is a Cauchy sequence in an inner-product space $A, \omega \in A$, and

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\langle\left\langle\omega_{n}, \beta\right\rangle\right\rangle=\langle\langle\omega, \beta\rangle\rangle \quad \forall \beta \in A \tag{3}
\end{equation*}
$$

then $\omega_{n} \longrightarrow \omega$. Given $\epsilon>0$, choose $m>0$ so that $\left\|\omega_{m}-\omega_{n}\right\|<\epsilon$ for all $n \geq m$. Then,

$$
\left\|\omega-\omega_{m}\right\|^{2} \leq\left|\left\langle\left\langle\omega-\omega_{n}, \omega-\omega_{m}\right\rangle\right\rangle\right|+\left|\left\langle\left\langle\omega_{n}-\omega_{m}, \omega-\omega_{m}\right\rangle\right\rangle\right| \leq\left|\left\langle\left\langle\omega-\omega_{n}, \omega-\omega_{m}\right\rangle\right\rangle\right|+\epsilon\left\|\omega-\omega_{m}\right\| .
$$

By the above convergence assumption for $\beta=\omega-\omega_{m}$,

$$
\lim _{n \longrightarrow \infty}\left\langle\left\langle\omega-\omega_{n}, \omega-\omega_{m}\right\rangle\right\rangle=0 \quad \Longrightarrow \quad\left\|\omega-\omega_{m}\right\|^{2} \leq \epsilon\left\|\omega-\omega_{m}\right\| \quad \Longrightarrow \quad\left\|\omega-\omega_{m}\right\| \leq \epsilon
$$

In our case, this implies that $\eta G \varphi_{n} \longrightarrow \omega$. The assumption that $\left\{\omega_{n}\right\}$ is a Cauchy sequence is required and does not follow from (3). For example, let

$$
A=\ell_{2} \equiv\left\{\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{Z}^{+}}: \sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty\right\}, \quad\left\langle\left\langle\left(x_{i}\right)_{i \in \mathbb{Z}^{+}},\left(y_{i}\right)_{i \in \mathbb{Z}^{+}}\right\rangle\right\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

and take $\omega_{n}=e_{n} \in \ell_{2}$ be the vector with the i-th coordinate 1 and the rest 0 . Then,

$$
\lim _{n \longrightarrow \infty}\left\langle\left\langle\omega_{n}, \beta\right\rangle\right\rangle=\lim _{n \longrightarrow \infty} x_{n}=0=\langle\langle 0, \beta\rangle\rangle \quad \forall \beta=\left(x_{1}, x_{2}, \ldots\right) \in \ell_{2}
$$

but $\omega_{n} \nrightarrow \omega=0$ since $\left\|\omega_{n}-0\right\|=1$ for all n.
We now verify (2). Since

$$
\begin{aligned}
\left\|G^{2} \varphi_{n}-\eta^{2} \varphi_{n}\right\|^{2} & =\left\|G^{2} \varphi_{n}\right\|^{2}-2 \eta^{2}\left\langle\left\langle G^{2} \varphi_{n}, \varphi_{n}\right\rangle\right\rangle+\eta^{4}\left\|\varphi_{n}\right\|^{2} \\
& =\left\|G\left(G \varphi_{n}\right)\right\|^{2}-2 \eta^{2}\left\langle\left\langle G^{2} \varphi_{n}, \varphi_{n}\right\rangle\right\rangle+\eta^{4}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\left\|G^{2} \varphi_{n}-\eta^{2} \varphi_{n}\right\|^{2} & \leq\left(\eta\left\|G \varphi_{n}\right\|\right)^{2}-2 \eta^{2}\left\langle\left\langle G^{2} \varphi_{n}, \varphi_{n}\right\rangle\right\rangle+\eta^{4}=\eta^{2}\left(\left\|G \varphi_{n}\right\|-\eta\right)^{2} \\
& \Longrightarrow \lim _{n \longrightarrow \infty}\left\|G^{2} \varphi_{n}-\eta^{2} \varphi_{n}\right\|=0
\end{aligned}
$$

On the other hand, by equation (1) above

$$
\begin{aligned}
\eta\left\|G \varphi_{n}-\eta \varphi_{n}\right\|^{2} \leq & \eta\left\langle\left\langle G \varphi_{n}-\eta \varphi_{n}, G \varphi_{n}-\eta \varphi_{n}\right\rangle\right\rangle+\left\langle\left\langle G \varphi_{n}-\eta \varphi_{n}, G\left(G \varphi_{n}-\eta \varphi_{n}\right)\right\rangle\right\rangle \\
= & \left\langle\left\langle G \varphi_{n}-\eta \varphi_{n}, G^{2} \varphi_{n}-\eta^{2} \varphi_{n}\right\rangle\right\rangle \\
& \Longrightarrow \quad \lim _{n \longrightarrow \infty}\left\|G \varphi_{n}-\eta \varphi_{n}\right\|=0 .
\end{aligned}
$$

It follows that for all $\beta \in E^{p}(M)$,

$$
\begin{aligned}
l((\Delta-1 / \eta) \beta)=\eta \cdot \lim _{n \longrightarrow \infty}\left\langle\left\langle G \varphi_{n},(\Delta-1 / \eta) \beta\right\rangle\right\rangle & =\lim _{n \longrightarrow \infty} \eta\left\langle\left\langle(\Delta-1 / \eta) G \varphi_{n}, \beta\right\rangle\right\rangle \\
& =\lim _{n \longrightarrow \infty}\left\langle\left\langle\eta \varphi_{n}-G \varphi_{n}, \beta\right\rangle\right\rangle=0,
\end{aligned}
$$

since

$$
\left|\left\langle\left\langle\eta \varphi_{n}-G \varphi_{n}, \beta\right\rangle\right\rangle\right| \leq\|\beta\| \cdot\left\|G \varphi_{n}-\eta \varphi_{n}\right\| .
$$

(f) Suppose $\lambda \in \mathbb{R}^{+}$. Let $\mathcal{H}_{\lambda}^{p}$ be the subspace of $E^{p}(M)$ spanned by all eigenfunctions of Δ with eigenvalues less than λ, including 0 . Since G is bounded,

$$
\eta \equiv \sup _{\varphi \in\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp},\|\varphi\|=1}\|G \varphi\|<\infty .
$$

By (b) and (c) above, $\mathcal{H}_{\lambda}^{p}$ is a finite-dimensional subspace of the infinite-dimensional vector space $E^{p}(M)$. Since G is injective on $\left(\mathcal{H}^{p}\right)^{\perp}, G$ is nonzero on $\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp} \subset\left(\mathcal{H}^{p}\right)^{\perp}$ and so $\eta>0$. It is shown below Δ has an eigenfunction $\omega \in\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$ with eigenvalue $1 / \eta$. Since $\omega \notin \mathcal{H}_{\lambda}^{p}, 1 / \eta \geq \lambda$. This implies the claim.

Similarly to part (e), there exists a sequence $\varphi_{n} \in\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$ such that

$$
\left\|\varphi_{n}\right\|=1, \quad \lim _{n \longrightarrow \infty}\left\|G \varphi_{n}\right\|=\eta
$$

and the sequence $\left\{G \varphi_{n}\right\}$ is Cauchy. Define

$$
L: E^{p}(M) \longrightarrow \mathbb{R} \quad \text { by } \quad L(\beta)=\eta \cdot \lim _{n \longrightarrow \infty}\left\langle\left\langle G \varphi_{n}, \beta\right\rangle\right\rangle \quad \forall \beta \in E^{p}(M) .
$$

For exactly the same reasons as in part (e), L is a well-defined bounded linear functional such that

$$
L\left((\Delta-1 / \eta)^{*} \beta\right)=\langle\langle 0, \beta\rangle\rangle \quad \forall \beta \in E^{p}(M)
$$

i.e. L is a weak solution of the equation $(\Delta-1 / \eta) \omega=0$. As in part (e), we conclude that there exists an eigenfunction $\omega \in E^{p}(M)$ of Δ with eigenvalue $1 / \eta \in \mathbb{R}^{+}$such that $L_{\omega}=\eta \lim _{n \longrightarrow \infty} L_{G \varphi_{n}}$. By Remark in part (e), this implies that $\eta G \varphi_{n} \longrightarrow \omega$ and so $\omega \in\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$.
(g) Let $\lambda_{1} \leq \lambda_{2} \leq \ldots$ be the eigenvalues of Δ, including 0 , listed with multiplicity. Let u_{1}, u_{2}, \ldots be an orthonormal set of eigenfunctions of Δ for these eigenvalues. We will show that for every $\alpha \in E^{p}(M)$,

$$
\lim _{n \longrightarrow \infty}\left\|\alpha-\sum_{i=1}^{n}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\|=\lim _{\lambda \longrightarrow \infty}\left\|\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\|=0 .
$$

The first equality follows from parts (b) and (c).

If $\lambda>0$, the p-form

$$
\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}
$$

is the orthogonal projection of α onto the subspace $\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$; see part (f). In particular, it is an element of $\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$ of norm less than $\|\alpha\|$. Since $\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp} \subset\left(\mathcal{H}^{p}\right)^{\perp}$,

$$
\begin{aligned}
\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i} & =G \Delta\left(\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right)=G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle \Delta u_{i}\right) \\
& =G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle \lambda_{i} u_{i}\right)=G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, \lambda_{i} u_{i}\right\rangle\right\rangle u_{i}\right) \\
& =G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, \Delta u_{i}\right\rangle\right\rangle u_{i}\right)=G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\Delta \alpha, u_{i}\right\rangle\right\rangle u_{i}\right) .
\end{aligned}
$$

Since this is an element of $\left(\mathcal{H}_{\lambda}^{p}\right)^{\perp}$, by part (f)

$$
\begin{aligned}
\left\|\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\| & =\left\|G\left(\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\Delta \alpha, u_{i}\right\rangle\right\rangle u_{i}\right)\right\| \leq \frac{1}{\lambda}\left\|\Delta \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\Delta \alpha, u_{i}\right\rangle\right\rangle u_{i}\right\| \\
& \leq \frac{1}{\lambda}\|\Delta \alpha\|
\end{aligned}
$$

This implies the claim.
(h) With notation as in part (g), we will show that

$$
\lim _{n \longrightarrow \infty}\left\|\alpha-\sum_{i=1}^{n}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\|_{\infty}=\lim _{\lambda \longrightarrow \infty}\left\|\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\|_{\infty}=0
$$

for every $\alpha \in E^{p}(M)$. By the Sobolev inequality (6.22-(1)), the Fundamental Inequality (6.29-(1)), ellipticity of Δ, and the compactness of M, there exist $C \in \mathbb{R}^{+}$and $k \in \mathbb{Z}^{+}$such that

$$
\|\beta\|_{\infty} \leq C \sum_{m=0}^{m=k}\left\|\Delta^{m} \beta\right\| \quad \forall \beta \in E^{p}(M)
$$

Thus, by the proof of part (g),

$$
\begin{aligned}
\left\|\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right\|_{\infty} & \leq C \sum_{m=0}^{m=k}\left\|\Delta^{m}\left(\alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\alpha, u_{i}\right\rangle\right\rangle u_{i}\right)\right\|=C \sum_{m=0}^{m=k}\left\|\Delta^{m} \alpha-\sum_{\lambda_{i}<\lambda}\left\langle\left\langle\Delta^{m} \alpha, u_{i}\right\rangle\right\rangle u_{i}\right\| \\
& \leq C \sum_{m=0}^{m=k} \frac{1}{\lambda}\left\|\Delta^{m+1} \alpha\right\|=\frac{1}{\lambda}\left(C \sum_{m=0}^{m=k}\left\|\Delta^{m+1} \alpha\right\|\right)
\end{aligned}
$$

This implies the claim.

Problem 5 (15pts)

Suppose M and N are smooth compact Riemannian manifolds. A differential form γ on $M \times N$ is called decomposable if

$$
\gamma=\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta \quad \text { for some } \quad \alpha \in E^{*}(M), \beta \in E^{*}(N) .
$$

(a) Show that

$$
\Delta_{M \times N}\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right)=\pi_{M}^{*} \Delta_{M} \alpha \wedge \pi_{N}^{*} \beta+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \Delta_{N} \beta \quad \forall \alpha \in E^{*}(M), \beta \in E^{*}(N) .
$$

(b) Show that the \mathbb{R}-span of the decomposable forms on $M \times N$ is L^{2}-dense in $E^{*}(M \times N)$.
(c) Conclude that

$$
\mathcal{H}^{*}(M \times N) \approx \mathcal{H}^{*}(M) \otimes \mathcal{H}^{*}(N), \quad \pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta \longleftrightarrow \alpha \otimes \beta
$$

(d) Conclude that

$$
H_{\mathrm{deR}}^{p}(M \times N) \approx \bigoplus_{q+r=p} H_{\mathrm{deR}}^{q}(M) \otimes H_{\mathrm{deR}}^{r}(N), \quad \pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta \longleftrightarrow \alpha \otimes \beta
$$

This is the Kunneth Formula for de Rham cohomology of compact manifolds.
(a) If X is a smooth manifold of dimension k,

$$
\Delta=d d^{*}+d^{*} d \quad \text { and } \quad d^{*} \alpha=(-1)^{k(p+1)+1} * d * \alpha \quad \forall \alpha \in E^{p}(X) .
$$

In the given case, M and N may not oriented, but it is sufficient to check the identity on $U \times V$ for small open subsets U and V of M and N. Let m and n be the dimensions of M and N and suppose $\alpha \in E^{p}(M)$ and $\beta \in E^{q}(N)$. On U and V, we can choose orientations, which induce an orientation on $U \times V$. With respect to these orientation,

$$
\left(\pi_{M}^{} \alpha \wedge \pi_{N}^{*} \beta\right)=(-1)^{(m-p) q} \pi_{M}^{*}(* \alpha) \wedge \pi_{N}^{*}(* \beta) .
$$

Since d commutes with pull-backs, it follows that

$$
\begin{aligned}
& d^{*}\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right)=(-1)^{(m+n)(p+q+1)+1} * d *\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right) \\
& \quad=(-1)^{(m+n)(p+q+1)+1}(-1)^{(m-p) q} * d\left(\pi_{M}^{*}(* \alpha) \wedge \pi_{N}^{*}(* \beta)\right) \\
& =(-1)^{(m+n)(p+q+1)+1+(m-p) q} *\left(\pi_{M}^{*}(d * \alpha) \wedge \pi_{N}^{*}(* \beta)+(-1)^{m-p} \pi_{M}^{*}(* \alpha) \wedge \pi_{N}^{*}(d * \beta)\right) \\
& =(-1)^{(m+n)(p+q+1)+1+(m-p) q}\left((-1)^{(p-1)(n-q)}(-1)^{q(n-q)} \pi_{M}^{*}(* d * \alpha) \wedge \pi_{N}^{*} \beta\right. \\
& \left.\quad \quad+(-1)^{m-p}(-1)^{p(n-q+1)}(-1)^{p(m-p)} \pi_{M}^{*} \alpha \wedge \pi_{N}^{*}(* d * \beta)\right) \\
& =(-1)^{m(p+1)+1} \pi_{M}^{*}(* d * \alpha) \wedge \pi_{N}^{*} \beta+(-1)^{n(q+1)+1+p} \pi_{M}^{*} \alpha \wedge \pi_{N}^{*}(* d * \beta) \\
& =\pi_{M}^{*}\left(d^{*} \alpha\right) \wedge \pi_{N}^{*} \beta+(-1)^{p} \pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d^{*} \beta\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& d d^{*}\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right)=d\left(\pi_{M}^{*}\left(d^{*} \alpha\right) \wedge \pi_{N}^{*} \beta+(-1)^{p} \pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d^{*} \beta\right)\right) \\
& \quad=\pi_{M}^{*}\left(d d^{*} \alpha\right) \wedge \pi_{N}^{*} \beta+(-1)^{p-1} \pi_{M}^{*}\left(d^{*} \alpha\right) \wedge \pi_{N}^{*}(d \beta)+(-1)^{p} \pi_{M}^{*} d \alpha \wedge \pi_{N}^{*}\left(d^{*} \beta\right)+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d d^{*} \beta\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& d^{*} d\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right)=d^{*}\left(\pi_{M}^{*}(d \alpha) \wedge \pi_{N}^{*} \beta+(-1)^{p} \pi_{M}^{*} \alpha \wedge \pi_{N}^{*}(d \beta)\right) \\
& \quad=\pi_{M}^{*}\left(d^{*} d \alpha\right) \wedge \pi_{N}^{*} \beta+(-1)^{p+1} \pi_{M}^{*}(d \alpha) \wedge \pi_{N}^{*}\left(d^{*} \beta\right)+(-1)^{p} \pi_{M}^{*}\left(d^{*} \alpha\right) \wedge \pi_{N}^{*}(d \beta)+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d^{*} d \beta\right)
\end{aligned}
$$

From the two expressions, we obtain

$$
\begin{aligned}
\Delta_{M \times N}\left(\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta\right) & =\pi_{M}^{*}\left(d d^{*} \alpha\right) \wedge \pi_{N}^{*} \beta+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d d^{*} \beta\right)+\pi_{M}^{*}\left(d^{*} d \alpha\right) \wedge \pi_{N}^{*} \beta+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*}\left(d^{*} d \beta\right) \\
& =\pi_{M}^{*} \Delta_{M} \alpha \wedge \pi_{N}^{*} \beta+\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \Delta_{N} \beta
\end{aligned}
$$

as claimed.
(b) Let $\left\{\left(U_{M ; i}, \varphi_{M ; i}, \psi_{M ; i}\right)\right\}$ and $\left\{\left(U_{N ; j}, \varphi_{N ; j}, \psi_{N ; j}\right)\right\}$ be finite collections such that

- $\left\{U_{M ; i}\right\}$ and $\left\{U_{N ; j}\right\}$ are open covers of M and N, respectively;
- $\varphi_{M ; i}: U_{M ; i} \longrightarrow W_{M ; i} \subset \mathbb{R}^{m}$ and $\varphi_{N ; j}: U_{N ; j} \longrightarrow W_{N ; j} \subset \mathbb{R}^{n}$ are measure-preserving charts;
- $\psi_{M ; i}:\left.T M\right|_{U_{M ; i}} \longrightarrow W_{M ; i} \times \mathbb{R}^{m}$ and $\psi_{N ; j}:\left.T N\right|_{U_{N ; j}} \longrightarrow W_{N ; j} \times \mathbb{R}^{n}$ are bundle isometries covering $\varphi_{M ; i}$ and $\varphi_{N ; j}$, respectively.

Since $M \times N$ is compact, it is sufficient to show that every $\gamma \in E^{*}(M \times N)$ such that $\operatorname{supp} \gamma \subset U_{M ; i} \times U_{N ; j}$ for some i, j lies in the closure of the span of decomposable forms. Via the trivializations induced by $\psi_{M ; i}$ and $\psi_{N ; j}$ on $\Lambda^{*}\left(T^{*} M\right)$ and $\Lambda^{*}\left(T^{*} N\right)$, such a form γ corresponds to a smooth compactly supported function on $\mathbb{R}^{m} \times \mathbb{R}^{n}$ with values in \mathbb{R}^{p} for some p. It is sufficient to show that every component function $h=h(x, y)$ can be approximated by a linear combination of functions of the form $f_{k} g_{k}$, where $f_{k}=f_{k}(x)$ and $g=g_{k}(y)$ are compactly supported functions on \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.

It can be assumed that $m, n \geq 1$ (otherwise, there is nothing to prove). Let h be as above and $\epsilon>0$. Choose $R>0$ so that $h(x, y)=0$ if $\left|x_{i}\right|>R$ or $\left|y_{j}\right|>R$ for any of the components x_{i} of x or y_{j} of y (so h is supported inside of the cube $[-R, R]^{m+n}$). Since $[-R, R]^{m+n}$ is compact, there exists $\delta>0$ such that

$$
\left|h(x, y)-h\left(x^{\prime}, y^{\prime}\right)\right|^{2}<\frac{\epsilon}{4(2 R)^{m+n}} \quad \text { if } \quad\left|x_{i}-x_{i}^{\prime}\right|,\left|y_{j}-y_{j}^{\prime}\right| \leq \delta \forall i, j .
$$

It can be assumed that δ divides R (since δ can always be made smaller). Let $\left\{B_{k}\right\}$ be a cover of $[-R, R]^{m+n}$ by some $N>0$ closed cubes with side δ so that $B_{k} \cap B_{k^{\prime}}$ is either empty or consists of a face of B_{k} if $k \neq k^{\prime}$ (so $\left\{B_{k}\right\}$ breaks $[-R, R]^{m+n}$ into N small cubes). Pick a point $\left(x_{k}, y_{k}\right) \in B_{k}$. Let h_{k} be the function which equals $h\left(x_{k}, y_{k}\right)$ on B_{k} and 0 everywhere else. By our assumption on δ,

$$
\begin{aligned}
\left\|h-\sum_{k=1}^{k=N} h_{k}\right\|^{2}=\sum_{k=1}^{k=N} \int_{B_{k}}\left|h(x, y)-h\left(x_{k}, y_{k}\right)\right|^{2} & <\frac{\epsilon}{4(2 R)^{m+n}} \sum_{k=1}^{k=N} \int_{B_{k}} 1 \\
& =\frac{\epsilon}{4(2 R)^{m+n}} \sum_{k=1}^{k=N} \int_{[-R, R]^{m+n}} 1=\frac{\epsilon}{4} .
\end{aligned}
$$

Let $\delta^{\prime} \in(0, \delta)$ be such that

$$
\max _{k}\left|h\left(x_{k}, y_{k}\right)\right|^{2} \cdot\left(\delta^{m+n}-\delta^{\prime m+n}\right)<\frac{\epsilon}{4 N} .
$$

For each $k, B_{k}=B_{m ; k} \times B_{n ; k}$ for some cubes $B_{m ; k} \subset \mathbb{R}^{m}$ and $B_{n ; k} \subset \mathbb{R}^{n}$ of side δ. Let $B_{m ; k}^{\prime} \subset \operatorname{Int} B_{m ; k}$ and $B_{n ; k}^{\prime} \subset \operatorname{Int} B_{n ; k}$ be closed cubes with side δ^{\prime}. For each k, choose smooth functions

$$
\begin{gathered}
f_{k}: \mathbb{R}^{m} \longrightarrow[0,1] \quad \text { and } \quad g_{k}^{\prime}: \mathbb{R}^{n} \longrightarrow[0,1] \quad \text { s.t. } \\
\operatorname{supp} f_{k} \subset B_{m ; k}, \operatorname{supp} g_{k}^{\prime} \subset B_{n ; k},\left.f_{k}\right|_{B_{m ; k}^{\prime}} \equiv 1,\left.g_{k}^{\prime}\right|_{B_{n ; k}^{\prime}} ^{\prime} \equiv 1 .
\end{gathered}
$$

Let $g_{k}=h\left(x_{k}, y_{k}\right) g_{k}^{\prime}$. Then, for every k

$$
\left\|h_{k}-f_{k} g_{k}\right\|^{2}=\int_{B_{k}-B_{m ; k}^{\prime} \times B_{n ; k}^{\prime}}\left|h\left(x_{k}, y_{k}\right)-f_{k} g_{k}\right|^{2} \leq\left|h\left(x_{k}, y_{k}\right)\right|^{2} \cdot\left(\delta^{m+n}-\delta^{\prime m+n}\right)<\frac{\epsilon}{4 N} .
$$

Putting this all together, we obtain

$$
\left\|h-\sum_{k=1}^{k=N} f_{k} g_{k}\right\|^{2} \leq 2\left(\left\|h-\sum_{k=1}^{k=N} h_{k}\right\|^{2}+\sum_{k=1}^{k=N}\left\|h_{k}-f_{k} g_{k}\right\|^{2}\right)<2\left(\frac{\epsilon}{4}+\frac{\epsilon}{4 N} \cdot N\right)=\epsilon,
$$

so h is in the closure of the span of decomposable elements $f_{k} g_{k}$.
Remark: The argument suggested in Griffiths\&Harris, Lemma on p104, is wrong. If A is a subspace of a Hilbert space H (like L^{2}-forms), then $\bar{A}=H$ if and only if for every $h \in H-0$ there exists $f \in A$ such that $\langle\langle f, h\rangle\rangle \neq 0$. The only if part is immediate and does not depend on the completeness of H (if $h \in H-0$ and $\langle\langle f, h\rangle\rangle=0$ for all $f \in A$, then $\|h-f\| \geq\|h\|$ for every $f \in A$ and so $h \notin \bar{A}$). On the other hand, $H=\bar{A} \oplus \bar{A}^{\perp}$ because H is a Hilbert space and $\bar{A} \subset H$ is closed; thus, if $\bar{A} \neq H$, then there exists $h \in H-0$ such that $\langle\langle f, h\rangle\rangle=0$ for all $f \in A$. This last implication does not need to hold if H is an inner-product space which is not complete. For example, let

$$
H=C^{\infty}(I ; \mathbb{R}), \quad A=\left\{h \in H: \int_{0}^{1 / 2} h \mathrm{~d} x=0\right\}
$$

where $I=[0,1]$ and H has the L^{2}-norm. Since

$$
H \longrightarrow \mathbb{R}, \quad h \longrightarrow \int_{0}^{1 / 2} h \mathrm{~d} x
$$

is a bounded linear functional on H (L^{1}-norm is bounded by L^{2}-norm), $\bar{A}=A \neq H$. On the other hand, for every $h \in H-0$, there exists $f \in A$ such that $\langle\langle f, h\rangle\rangle \neq 0$. If $h(x) \neq 0$ for some $x \in[1 / 2,1]$, such an f can be constructed using a cut-off function supported on a small neighborhood of some $x_{0} \in(1 / 2,1)$. Otherwise, we can assume that there exists $x_{0} \in(0,1 / 2)$ such that $h\left(x_{0}\right)>0$ (after possibly replacing h by $-h$) and $h^{\prime}\left(x_{0}\right)<0$ (because $h(1 / 2)=0$). Thus, there exists $\delta>0$ such that

$$
\begin{equation*}
\left(x_{0}-\delta, x_{0}+\delta\right) \subset(0,1 / 2) \quad \text { and } \quad h(x)>h\left(x_{0}\right) \forall x \in\left(x_{0}-\delta, x_{0}\right), \quad h(x)<h\left(x_{0}\right) \forall x \in\left(x_{0}, x_{0}+\delta\right) . \tag{4}
\end{equation*}
$$

Let $f \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ be any nonzero function such that

$$
\begin{equation*}
\operatorname{supp} f \subset\left(x_{0}-\delta, x_{0}+\delta\right) \quad \text { and } \quad f\left(x_{0}+y\right)=-f\left(x_{0}-y\right) \quad \forall y \in \mathbb{R}, \quad f(x) \leq 0 \quad \forall x \in\left(x_{0}, x_{0}+\delta\right) \tag{5}
\end{equation*}
$$

Thus, $\left.f\right|_{I \in A}$ and

$$
\left\langle\left\langle\left. f\right|_{I}, h\right\rangle\right\rangle=\int_{x_{0}-\delta}^{x_{0}} f \cdot\left(h-h\left(x_{0}\right)\right) \mathrm{d} x+\int_{x_{0}}^{x_{0}+\delta} f \cdot\left(h-h\left(x_{0}\right)\right) \mathrm{d} x+h\left(x_{0}\right) \int_{0}^{1} f \mathrm{~d} x>0
$$

because the integrands in the first two integrals are non-negative and positive somewhere by (4) and (5) and $f \in A$. A quicker way to see that the orthogonal complement of A in H is zero is to pass to $L^{2}(I ; \mathbb{R}) \supset H$. Since

$$
L^{2}(I ; \mathbb{R}) \longrightarrow \mathbb{R}, \quad h \longrightarrow \int_{0}^{1 / 2} h \mathrm{~d} x
$$

is a well-defined bounded linear surjective functional, the orthogonal complement of its kernel is onedimensional (the kernel is the closure of A in $L^{2}(I ; \mathbb{R})$). The orthogonal complement of A in $L^{2}(I ; \mathbb{R})$ thus consists of the functions $h: I \longrightarrow \mathbb{R}$ that are constant on $[0,1 / 2]$ and vanish on $(1 / 2,1]$ (because these functions are indeed orthogonal to A). Since the only one of these functions that lies in H is the zero function, the orthogonal complement of A in H is zero.
(c) Let $\lambda_{1} \leq \lambda_{2} \leq \ldots$ and $\tau_{1} \leq \tau_{2} \leq \ldots$ be the eigenvalues of Δ_{M} and Δ_{N}, including zero and listed with multiplicity. Let

$$
\alpha_{1}, \alpha_{2}, \ldots \in E^{*}(M) \quad \text { and } \quad \beta_{1}, \beta_{2}, \ldots \in E^{*}(N)
$$

be orthonormal eigenfunctions for these eigenvalues. By part (g) of Problem 4, their linear spans are L^{2}-dense in $E^{*}(M)$ and in $E^{*}(N)$. Thus, the linear span of the vectors $\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}$ is dense in the span of the decomposable elements of $E^{*}(M \times N)$. Since this span is L^{2}-dense in $E^{*}(M \times N)$ by part (b), the linear span of the vectors $\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}$ is L^{2}-dense in $E^{*}(M \times N)$. On the other hand, by part (a),

$$
\begin{aligned}
\Delta_{M \times N}\left(\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}\right) & =\pi_{M}^{*}\left(\Delta_{M} \alpha_{i}\right) \wedge \pi_{N}^{*} \beta_{j}+\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*}\left(\Delta_{N} \beta_{j}\right) \\
& =\pi_{M}^{*}\left(\lambda_{i} \alpha_{i}\right) \wedge \pi_{N}^{*} \beta_{j}+\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*}\left(\tau_{j} \beta_{j}\right) \\
& =\left(\lambda_{i}+\tau_{j}\right) \cdot\left(\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}\right),
\end{aligned}
$$

i.e. $\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}$ is an eigenfunction for $\Delta_{M \times N}$ with eigenvalue $\lambda_{i}+\tau_{j}$. Since the sequences

$$
0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \quad \text { and } \quad 0 \leq \tau_{1} \leq \tau_{2} \leq \ldots
$$

have no limit points by (b) and (c) of Problem 4, neither does the set $\left\{\lambda_{i}+\tau_{j}: i, j \geq 1\right\}$. Since the linear span of the vectors $\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}$ is L^{2}-dense in $E^{*}(M \times N)$, it follows that $\Delta_{M \times N}$ has no other eigenvalues and all its eigenvectors are linear combinations of the forms $\pi_{M}^{*} \alpha_{i} \wedge \pi_{N}^{*} \beta_{j}$ with the same value of $\lambda_{i}+\tau_{j}$. Since $\lambda_{i}, \tau_{j} \geq 0$, the zero eigenspace of $\Delta_{M \times N}$ is thus given by

$$
\mathcal{H}_{M \times N}^{*}=\operatorname{Span}\left(\left\{\pi_{M}^{*} \alpha \wedge \pi_{N}^{*} \beta: \alpha \in \mathcal{H}_{M}^{*}, \beta \in \mathcal{H}_{N}^{*}\right\}\right) \approx \mathcal{H}_{M}^{*} \otimes \mathcal{H}_{N}^{*}
$$

(d) The diagram of graded vector-space homomorphisms ${ }^{1}$

commutes. By part (c), the left arrow in the diagram is an isomorphism. By Theorem 6.11, the horizontal arrows are isomorphisms. Thus, so is the right arrow. Restricting to the p-th level, we obtain the desired statement.

[^0]
[^0]: ${ }^{1}$ these are actually algebra homomorphisms with respect to \wedge

