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Solutions to Problem Set 10

Problem 1: Chapter 6, #6 (5pts)

Derive explicit formulas for d, ∗, δ, and ∆ in Euclidean space.

Let x1, . . . , xn denote the standard coordinate functions on Rn. It is sufficient to describe the action
of these linear operators on forms

α = f dy1 ∧ . . . ∧ dyp,

where f ∈C∞(Rn) and y1, . . . , yn is a permutation of the coordinates x1, . . . , xn so that

dy1 ∧ . . . ∧ dyn = dx1 ∧ . . . ∧ dxn.

By Section 2.20 and Exercise 13 in Chapter 2,

dα = df ∧ dy1 ∧ . . . ∧ dyp =

j=n∑
j=p+1

∂f

∂yj
dyj ∧ dy1 ∧ . . . ∧ dyp = (−1)p

j=n∑
j=p+1

∂f

∂yj
dy1 ∧ . . . ∧ dyp ∧ dyj ;

∗α = f dyp+1 ∧ . . . ∧ dyn.

Thus, by Section 6.1,

δα = (−1)n(p+1)+1 ∗ d ∗ α = (−1)n(p+1)+1 ∗ d
(
f dyp+1 ∧ . . . ∧ dyn

)
= (−1)n(p+1)+1 ∗

i=p∑
i=1

∂f

∂yi
dyi ∧ dyp+1 ∧ . . . ∧ dyn

= (−1)n(p+1)+1
i=p∑
i=1

(−1)(n−p)(p−1)+(i−1) ∂f

∂yi
dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyp

=

i=p∑
i=1

(−1)i
∂f

∂yi
dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyp.

From this, we find that

∆α = dδα+ δdα = d

i=p∑
i=1

(−1)i
∂f

∂yi
dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyp + (−1)pδ

j=n∑
j=p+1

∂f

∂yj
dy1 ∧ . . . ∧ dyp ∧ dyj

=

i=p∑
i=1

(−1)i
(

(−1)i−1
∂2f

∂y2i
dy1 ∧ . . . ∧ dyp + (−1)p−1

j=n∑
j=p+1

∂2f

∂yi∂yj
dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyp ∧ dyj

)

+ (−1)p
j=n∑
j=p+1

(
(−1)p+1∂

2f

∂y2j
dy1 ∧ . . . ∧ dyp +

i=p∑
i=1

(−1)i
∂2f

∂yi∂yj
dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyp ∧ dyj

)

= −
i=n∑
i=1

∂2f

∂y2i
dy1 ∧ . . . ∧ dyp.



Problem 2 (5pts)

Suppose M is a compact Riemannian manifold. If M is not orientable, the Hodge ∗-operator is defined
only up to sign. However, as the definition of δ in Section 6.1 involves two ∗’s, the linear operator δ
is well-defined. Show that δ is the adjoint of d whether or not M is oriented.

The oriented case is dealt with in Proposition 6.2. Thus, it is sufficient to assume that M is connected
and non-orientable. Let π : M̃ −→M be the orientable double cover of M ; see solution to Problem 5
on the 06 midterm. The Riemannian metric on M (or inner-product in TM −→M) induces via the
projection map dπ a Riemannian metric on M̃ so that

(dπx)∗ : ΛpT ∗π(x)M −→ ΛpT ∗xM̃

is an isometry for all p and x∈M̃ . In particular,

〈α, β〉 = 〈π∗α, π∗β〉 ∀ α, β ∈ ΛpT ∗mM =⇒ 〈〈α, β〉〉 =
1

2
〈〈π∗α, π∗β〉〉 ∀ α, β ∈ Ep(M),

since π is a double cover. Choose an orientation on M̃ so that ∗ is defined on M̃ . Given x∈ M̃ , we
can compute

(δα)π(x) ≡ (−1)n(p+1)+1(∗d ∗ α)π(x)

by using the orientation on a small neighborhood of π(x) induced from the orientation on a small
neighborhood of x via dπ. Then, π∗ commutes with ∗ near x and thus with δ everywhere. Therefore,
by the above and Proposition 6.2

〈〈dα, β〉〉 =
1

2
〈〈π∗dα, π∗β〉〉 =

1

2
〈〈d π∗α, π∗β〉〉

=
1

2
〈〈π∗α, δ π∗β〉〉 =

1

2
〈〈π∗α, π∗δβ〉〉 = 〈〈π∗α, δβ〉〉

for all α∈Ep−1(M) and β∈Ep(M). Thus, δ=d∗ on M .

Problem 3 (5pts)

Suppose M is a compact connected non-orientable n-manifold. Show that Hn
deR(M)=0.

Remark: In fact, if M is a non-compact connected n-manifold, orientable or not, Hn
deR(M)=0.

Let π : M̃−→M be the orientable double cover ofM and letG be the group of covering transformations
of π. This group consists of two elements; let g be the non-trivial element. By Problem 5a on PS7,

Hn
deR(M) = Hn

deR(M̃)G =
{

[ω]∈Hn
deR(M̃) : [g∗ω]=[ω]

}
.

On the other hand, since M̃ is compact, connected, and orientable, Hn
deR(M̃) ≈ R by Corollary 6.13.

Thus, it is sufficient to find a single element [ω]∈Hn
deR(M̃) such that [g∗ω] 6=[ω].

Let ω ∈ En(M) be a nowhere-zero top form on M̃ . Since M is not orientable, g∗ω belongs to the
opposite orientation for M̃ ; see solutions to Problem 6 on PS6. In other words, g∗ω=f · ω for some
smooth function f : M̃−→R−. Thus,∫

M̃
g∗ω =

∫
M̃
f · ω 6=

∫
M̃
ω =⇒ [g∗ω] 6= [ω] ∈ Hn

deR(M̃) ;
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the two integrals above are not equal because they have opposite signs.

Problem 4: Chapter 6, #16 (30pts)

Suppose M is a compact Riemannian manifold and ∆ : Ep(M) −→ Ep(M) is the corresponding
Laplacian. Show that

(a) all eigenvalues of ∆ are non-negative;

(d) eigenfunctions corresponding to distinct eigenvalues are orthogonal;

(b) eigenspaces of ∆ are finite-dimensional;

(c) the set of eigenvalues of ∆ has no limit point;

(e) ∆ has a positive eigenvalue;

(f) ∆ has infinitely many positive eigenvalues;

(g) the linear span of eigenfunctions of ∆ is L2-dense in Ep(M);

(h) the linear span of eigenfunctions of ∆ is L∞-dense in Ep(M).

(a) Suppose α∈Ep(M) is an eigenfunction of ∆ with eigenvalue λ∈R, i.e. α 6=0 and ∆α=λα. Since
∆ = d∗d+dd∗,

λ|α|2 = λ〈〈α, α〉〉 = 〈〈λα, α〉〉 = 〈〈∆α, α〉〉 = 〈〈d∗dα, α〉〉+ 〈〈dd∗α, α〉〉
= 〈〈dα, dα〉〉+ 〈〈d∗α, d∗α〉〉 = |dα|2 + |d∗α|2 ≥ 0.

Since |α|2>0, it follows that λ≥0.

(d) Suppose α1, α2∈Ep(M) are eigenfunctions of ∆ with eigenvalues λ1, λ2∈R. Since ∆∗=∆,

λ1〈〈α1, α2〉〉 = 〈〈λ1α1, α2〉〉 = 〈〈∆α1, α2〉〉
= 〈〈α1,∆α2〉〉 = 〈〈α1, λ2α2〉〉 = λ2〈〈α1, α2〉〉.

Thus, if λ1 6=λ2, 〈〈α1, α2〉〉=0, i.e. eigenspaces with different eigenvalues are orthogonal.

(b) Suppose not, i.e. there exists an orthonormal sequence α1, α2, . . .∈Ep(M) of eigenfunctions of ∆
with eigenvalue λ∈R. Then,

‖αn‖ = 1 and ‖∆αn‖ = ‖λαn‖ = λ‖αn‖ = λ.

By Theorem 6.6, the sequence {αn} contains a Cauchy subsequence. However, this is impossible, since
it consists of orthonormal elements.

(c) Suppose not, i.e. there exists a sequence of distinct eigenvalues λn of ∆ that converges to some
λ∈R. By part (a), it can be assumed that 0 ≤ λn ≤ λ+1. Let αn∈Ep(M) be a normal eigenfunction
of ∆ with eigenvalue λn. Then,

‖αn‖ = 1 and ‖∆αn‖ = ‖λnαn‖ = λn‖αn‖ ≤ λ+1.
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By Theorem 6.6, the sequence {αn} contains a Cauchy subsequence. However, this is impossible, since
it consists of orthonormal elements by part (d).

(e) Let (Hp)⊥ be the orthogonal complement of Hp≡ker ∆p in Ep(M) and let

G : Ep(M) −→ (Hp)⊥

be the Green’s operator for ∆ as in Section 6.9. In particular, G is a bounded linear operator by
Theorem 6.6 (or eq4 in Section 6.8),

G∆α = ∆Gα ∀ α∈(Hp)⊥ and Gα = 0 ∀ α ∈ Hp≡ker ∆p.

Furthermore, by the proof of part (a) and Theorem 6.8,

〈〈∆α, α〉〉 ≥ 0 ∀ α ∈ Ep(M) =⇒ 〈〈ψ,Gψ〉〉 ≥ 0 ∀ ψ ∈ Ep(M). (1)

Since G is bounded,
η ≡ sup

ϕ∈(Hp)⊥,‖ϕ‖=1

‖Gϕ‖ <∞.

Since G is nonzero on (Hp)⊥, η>0. Furthermore,

‖Gϕ‖ ≤ η‖ϕ‖ ∀ ϕ ∈ (Hp)⊥.

It will be shown that 1/η is an eigenvalue of ∆.

Let ϕn∈(Hp)⊥ be a sequence such that

‖ϕn‖ = 1 and lim
n−→∞

‖Gϕn‖ = η.

Then,
‖Gϕn‖ ≤ η‖ϕn‖ = η and ‖∆(Gϕn)‖ = ‖ϕn‖ = 1.

Thus, by Theorem 6.6, the sequence {Gϕn} contains a Cauchy subsequence, which we still denote
by {Gϕn}. Define

L : Ep(M) −→ R by L(β) = η · lim
n−→∞

〈〈Gϕn, β〉〉 ∀ β ∈ Ep(M).

Since ∣∣〈〈Gϕn, β〉〉 − 〈〈Gϕm, β〉〉∣∣ =
∣∣〈〈Gϕn−Gϕm, β〉〉∣∣ ≤ ‖β‖ · ‖Gϕn−Gϕm‖

and {Gϕn} is Cauchy, the sequence 〈〈Gϕn, β〉〉 is Cauchy in R. Therefore, the limit above exists and
thus L is a well-defined linear functional on Ep(M). This functional is not zero. For, if m is sufficiently
large,

η/2 ≤ ‖Gϕm‖ ≤ η and ‖Gϕm−Gϕn‖ ≤ η/5 ∀ n≥m =⇒∣∣〈〈Gϕn, Gϕm〉〉 − ‖Gϕm‖2∣∣ =
∣∣〈〈Gϕn−Gϕm, Gϕm〉〉∣∣ ≤ ∥∥Gϕn−Gϕm∥∥ · ‖Gϕm∥∥ ≤ (η/5) · η = η2/5

=⇒ L(Gϕm) = η · lim
n−→∞

〈〈Gϕn, Gϕm〉〉 ≥ η
(
‖Gϕm‖2 − η2/5

)
≥ η

(
η2/4− η2/5

)
> 0.
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The linear functional L is bounded, since∣∣L(β)
∣∣ = η · lim

n−→∞

∣∣〈〈Gϕn, β〉〉∣∣ ≤ η · lim
n−→∞

‖Gϕn‖ · ‖β‖ ≤ η · lim
n−→∞

η‖ϕn‖ · ‖β‖ = η2 · ‖β‖.

We show below that

L
(
(∆−1/η)∗β

)
= L

(
(∆−1/η)β

)
= 0 = 〈〈0, β〉〉 ∀ β∈Ep(M). (2)

Thus, L is a weak solution of the equation (∆−1/η)ω=0. Since ∆ is an elliptic second-order differential
operator by Section 6.35, so is ∆−1/η. Thus, by the generalization of Theorem 6.6 stated in class
on 4/22, there exists ω∈Ep(M) such that L=Lω, i.e.

Lω(β) ≡ 〈〈ω, β〉〉 = η · lim
n−→∞

〈〈Gϕn, β〉〉.

In particular, (∆−1/η)ω = 0. Since L 6≡ 0, ω 6= 0. Thus, ω ∈ Ep(M) is an eigenfunction of ∆ with
eigenvalue 1/η∈R+.

Remark: If {ωn} is a Cauchy sequence in an inner-product space A, ω∈A, and

lim
n−→∞

〈〈ωn, β〉〉 = 〈〈ω, β〉〉 ∀ β∈A, (3)

then ωn−→ω. Given ε>0, choose m>0 so that ‖ωm−ωn‖ <ε for all n≥m. Then,

‖ω−ωm‖2 ≤
∣∣〈〈ω−ωn, ω−ωm〉〉∣∣+

∣∣〈〈ωn−ωm, ω−ωm〉〉∣∣ ≤ ∣∣〈〈ω−ωn, ω−ωm〉〉∣∣+ ε‖ω−ωm‖.

By the above convergence assumption for β=ω−ωm,

lim
n−→∞

〈〈ω−ωn, ω−ωm〉〉 = 0 =⇒ ‖ω−ωm‖2 ≤ ε‖ω−ωm‖ =⇒ ‖ω−ωm‖ ≤ ε.

In our case, this implies that ηGϕn−→ω. The assumption that {ωn} is a Cauchy sequence is required
and does not follow from (3). For example, let

A = `2 ≡
{

(x1, x2, . . .)∈RZ+
:

∞∑
i=1

|xi|2<∞
}
, 〈〈(xi)i∈Z+ , (yi)i∈Z+〉〉 =

∞∑
i=1

xiyi ,

and take ωn=en∈`2 be the vector with the i-th coordinate 1 and the rest 0. Then,

lim
n−→∞

〈〈ωn, β〉〉 = lim
n−→∞

xn = 0 = 〈〈0, β〉〉 ∀ β=(x1, x2, . . .)∈`2 ,

but ωn 6−→ω=0 since ‖ωn−0‖=1 for all n.

We now verify (2). Since∥∥G2ϕn − η2ϕn
∥∥2 = ‖G2ϕn‖2 − 2η2〈〈G2ϕn, ϕn〉〉+ η4‖ϕn‖2

= ‖G(Gϕn)‖2 − 2η2〈〈G2ϕn, ϕn〉〉+ η4,

it follows that∥∥G2ϕn − η2ϕn
∥∥2 ≤ (η‖Gϕn‖)2 − 2η2〈〈G2ϕn, ϕn〉〉+ η4 = η2

(
‖Gϕn‖−η

)2
=⇒ lim

n−→∞

∥∥G2ϕn − η2ϕn
∥∥ = 0.
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On the other hand, by equation (1) above

η
∥∥Gϕn−ηϕn∥∥2 ≤ η〈〈Gϕn−ηϕn, Gϕn−ηϕn〉〉+

〈〈
Gϕn−ηϕn, G(Gϕn−ηϕn)

〉〉
=
〈〈
Gϕn−ηϕn, G2ϕn−η2ϕn

〉〉
=⇒ lim

n−→∞

∥∥Gϕn − ηϕn∥∥ = 0.

It follows that for all β∈Ep(M),

l
(
(∆−1/η)β

)
= η · lim

n−→∞

〈〈
Gϕn, (∆−1/η)β

〉〉
= lim

n−→∞
η
〈〈

(∆−1/η)Gϕn, β
〉〉

= lim
n−→∞

〈〈ηϕn−Gϕn, β〉〉 = 0,

since ∣∣〈〈ηϕn−Gϕn, β〉〉∣∣ ≤ ‖β‖ · ‖Gϕn−ηϕn‖.
(f) Suppose λ ∈ R+. Let Hpλ be the subspace of Ep(M) spanned by all eigenfunctions of ∆ with
eigenvalues less than λ, including 0. Since G is bounded,

η ≡ sup
ϕ∈(Hpλ)⊥,‖ϕ‖=1

‖Gϕ‖ <∞.

By (b) and (c) above,Hpλ is a finite-dimensional subspace of the infinite-dimensional vector space Ep(M).
Since G is injective on (Hp)⊥, G is nonzero on (Hpλ)⊥⊂ (Hp)⊥ and so η>0. It is shown below ∆ has
an eigenfunction ω∈(Hpλ)⊥ with eigenvalue 1/η. Since ω 6∈Hpλ, 1/η≥λ. This implies the claim.

Similarly to part (e), there exists a sequence ϕn∈(Hpλ)⊥ such that

‖ϕn‖ = 1, lim
n−→∞

‖Gϕn‖ = η,

and the sequence {Gϕn} is Cauchy. Define

L : Ep(M) −→ R by L(β) = η · lim
n−→∞

〈〈Gϕn, β〉〉 ∀ β ∈ Ep(M).

For exactly the same reasons as in part (e), L is a well-defined bounded linear functional such that

L
(
(∆−1/η)∗β

)
= 〈〈0, β〉〉 ∀ β∈Ep(M),

i.e. L is a weak solution of the equation (∆−1/η)ω=0. As in part (e), we conclude that there exists
an eigenfunction ω∈Ep(M) of ∆ with eigenvalue 1/η∈R+ such that Lω=η lim

n−→∞
LGϕn . By Remark

in part (e), this implies that ηGϕn−→ω and so ω∈(Hpλ)⊥.

(g) Let λ1≤λ2≤ . . . be the eigenvalues of ∆, including 0, listed with multiplicity. Let u1, u2, . . . be an
orthonormal set of eigenfunctions of ∆ for these eigenvalues. We will show that for every α∈Ep(M),

lim
n−→∞

∥∥∥α− n∑
i=1

〈〈α, ui〉〉ui
∥∥∥ = lim

λ−→∞

∥∥∥α−∑
λi<λ

〈〈α, ui〉〉ui
∥∥∥ = 0.
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The first equality follows from parts (b) and (c).

If λ>0, the p-form

α−
∑
λi<λ

〈〈α, ui〉〉ui

is the orthogonal projection of α onto the subspace (Hpλ)⊥; see part (f). In particular, it is an element
of (Hpλ)⊥ of norm less than ‖α‖. Since (Hpλ)⊥⊂ (Hp)⊥,

α−
∑
λi<λ

〈〈α, ui〉〉ui = G∆
(
α−

∑
λi<λ

〈〈α, ui〉〉ui
)

= G
(

∆α−
∑
λi<λ

〈〈α, ui〉〉∆ui
)

= G
(

∆α−
∑
λi<λ

〈〈α, ui〉〉λiui
)

= G
(

∆α−
∑
λi<λ

〈〈α, λiui〉〉ui
)

= G
(

∆α−
∑
λi<λ

〈〈α,∆ui〉〉ui
)

= G
(

∆α−
∑
λi<λ

〈〈∆α, ui〉〉ui
)
.

Since this is an element of (Hpλ)⊥, by part (f)∥∥∥α−∑
λi<λ

〈〈α, ui〉〉ui
∥∥∥ =

∥∥∥G(∆α−
∑
λi<λ

〈〈∆α, ui〉〉ui
)∥∥∥ ≤ 1

λ

∥∥∥∆α−
∑
λi<λ

〈〈∆α, ui〉〉ui
∥∥∥

≤ 1

λ
‖∆α‖.

This implies the claim.

(h) With notation as in part (g), we will show that

lim
n−→∞

∥∥∥α− n∑
i=1

〈〈α, ui〉〉ui
∥∥∥
∞

= lim
λ−→∞

∥∥∥α−∑
λi<λ

〈〈α, ui〉〉ui
∥∥∥
∞

= 0

for every α ∈ Ep(M). By the Sobolev inequality (6.22-(1)), the Fundamental Inequality (6.29-(1)),
ellipticity of ∆, and the compactness of M , there exist C∈R+ and k∈Z+ such that

‖β‖∞ ≤ C
m=k∑
m=0

‖∆mβ‖ ∀β∈Ep(M).

Thus, by the proof of part (g),

∥∥∥α−∑
λi<λ

〈〈α, ui〉〉ui
∥∥∥
∞
≤ C

m=k∑
m=0

∥∥∥∆m
(
α−

∑
λi<λ

〈〈α, ui〉〉ui
)∥∥∥ = C

m=k∑
m=0

∥∥∥∆mα−
∑
λi<λ

〈〈∆mα, ui〉〉ui
∥∥∥

≤ C
m=k∑
m=0

1

λ
‖∆m+1α‖ =

1

λ

(
C

m=k∑
m=0

‖∆m+1α‖
)
.

This implies the claim.
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Problem 5 (15pts)

Suppose M and N are smooth compact Riemannian manifolds. A differential form γ on M×N is
called decomposable if

γ = π∗Mα ∧ π∗Nβ for some α ∈ E∗(M), β ∈ E∗(N).

(a) Show that

∆M×N
(
π∗Mα∧π∗Nβ

)
= π∗M∆Mα ∧ π∗Nβ + π∗Mα ∧ π∗N∆Nβ ∀ α ∈ E∗(M), β ∈ E∗(N).

(b) Show that the R-span of the decomposable forms on M×N is L2-dense in E∗(M×N).

(c) Conclude that

H∗(M×N) ≈ H∗(M)⊗H∗(N), π∗Mα ∧ π∗Nβ ←→ α⊗ β.

(d) Conclude that

Hp
deR(M×N) ≈

⊕
q+r=p

Hq
deR(M)⊗Hr

deR(N), π∗Mα ∧ π∗Nβ ←→ α⊗ β.

This is the Kunneth Formula for de Rham cohomology of compact manifolds.

(a) If X is a smooth manifold of dimension k,

∆ = dd∗ + d∗d and d∗α = (−1)k(p+1)+1 ∗ d ∗ α ∀ α∈Ep(X).

In the given case, M and N may not oriented, but it is sufficient to check the identity on U×V for
small open subsets U and V of M and N . Let m and n be the dimensions of M and N and suppose
α∈Ep(M) and β∈Eq(N). On U and V , we can choose orientations, which induce an orientation on
U×V . With respect to these orientation,

∗
(
π∗Mα∧ π∗Nβ

)
= (−1)(m−p)qπ∗M (∗α) ∧ π∗N (∗β).

Since d commutes with pull-backs, it follows that

d∗
(
π∗Mα∧ π∗Nβ

)
= (−1)(m+n)(p+q+1)+1 ∗d∗

(
π∗Mα∧ π∗Nβ

)
= (−1)(m+n)(p+q+1)+1(−1)(m−p)q ∗d

(
π∗M (∗α) ∧ π∗N (∗β)

)
= (−1)(m+n)(p+q+1)+1+(m−p)q ∗

(
π∗M (d∗α) ∧ π∗N (∗β) + (−1)m−pπ∗M (∗α) ∧ π∗N (d∗β)

)
= (−1)(m+n)(p+q+1)+1+(m−p)q

(
(−1)(p−1)(n−q)(−1)q(n−q)π∗M (∗d∗α) ∧ π∗Nβ

+ (−1)m−p(−1)p(n−q+1)(−1)p(m−p)π∗Mα ∧ π∗N (∗d∗β)
)

= (−1)m(p+1)+1 π∗M (∗d∗α) ∧ π∗Nβ + (−1)n(q+1)+1+pπ∗Mα ∧ π∗N (∗d∗β)

= π∗M (d∗α) ∧ π∗Nβ + (−1)pπ∗Mα ∧ π∗N (d∗β).

Thus,

dd∗
(
π∗Mα∧ π∗Nβ

)
= d
(
π∗M (d∗α) ∧ π∗Nβ + (−1)pπ∗Mα ∧ π∗N (d∗β)

)
= π∗M (dd∗α) ∧ π∗Nβ + (−1)p−1π∗M (d∗α) ∧ π∗N (dβ) + (−1)pπ∗Mdα ∧ π∗N (d∗β) + π∗Mα ∧ π∗N (dd∗β).

8



Similarly,

d∗d
(
π∗Mα∧ π∗Nβ

)
= d∗

(
π∗M (dα) ∧ π∗Nβ + (−1)pπ∗Mα ∧ π∗N (dβ)

)
= π∗M (d∗dα) ∧ π∗Nβ + (−1)p+1π∗M (dα) ∧ π∗N (d∗β) + (−1)pπ∗M (d∗α) ∧ π∗N (dβ) + π∗Mα ∧ π∗N (d∗dβ).

From the two expressions, we obtain

∆M×N
(
π∗Mα∧π∗Nβ

)
= π∗M (dd∗α) ∧ π∗Nβ + π∗Mα ∧ π∗N (dd∗β) + π∗M (d∗dα) ∧ π∗Nβ + π∗Mα ∧ π∗N (d∗dβ)

= π∗M∆Mα ∧ π∗Nβ + π∗Mα ∧ π∗N∆Nβ,

as claimed.

(b) Let {(UM ;i, ϕM ;i, ψM ;i)} and {(UN ;j , ϕN ;j , ψN ;j)} be finite collections such that

• {UM ;i} and {UN ;j} are open covers of M and N , respectively;

• ϕM ;i : UM ;i−→WM ;i⊂Rm and ϕN ;j : UN ;j−→WN ;j⊂Rn are measure-preserving charts;

• ψM ;i : TM |UM ;i
−→WM ;i×Rm and ψN ;j : TN |UN ;j

−→WN ;j×Rn are bundle isometries covering
ϕM ;i and ϕN ;j , respectively.

Since M×N is compact, it is sufficient to show that every γ∈E∗(M×N) such that supp γ ⊂UM ;i×UN ;j

for some i, j lies in the closure of the span of decomposable forms. Via the trivializations induced by
ψM ;i and ψN ;j on Λ∗(T ∗M) and Λ∗(T ∗N), such a form γ corresponds to a smooth compactly sup-
ported function on Rm×Rn with values in Rp for some p. It is sufficient to show that every component
function h=h(x, y) can be approximated by a linear combination of functions of the form fkgk, where
fk=fk(x) and g=gk(y) are compactly supported functions on Rm and Rn, respectively.

It can be assumed that m,n≥1 (otherwise, there is nothing to prove). Let h be as above and ε>0.
Choose R> 0 so that h(x, y) = 0 if |xi|>R or |yj |>R for any of the components xi of x or yj of y
(so h is supported inside of the cube [−R,R]m+n). Since [−R,R]m+n is compact, there exists δ > 0
such that ∣∣h(x, y)− h(x′, y′)

∣∣2 < ε

4(2R)m+n
if |xi−x′i|, |yj−y′j |≤δ ∀ i, j.

It can be assumed that δ divides R (since δ can always be made smaller). Let {Bk} be a cover of
[−R,R]m+n by some N > 0 closed cubes with side δ so that Bk∩Bk′ is either empty or consists of a
face of Bk if k 6=k′ (so {Bk} breaks [−R,R]m+n into N small cubes). Pick a point (xk, yk)∈Bk. Let
hk be the function which equals h(xk, yk) on Bk and 0 everywhere else. By our assumption on δ,

∥∥∥h− k=N∑
k=1

hk

∥∥∥2 =

k=N∑
k=1

∫
Bk

∣∣h(x, y)−h(xk, yk)
∣∣2 < ε

4(2R)m+n

k=N∑
k=1

∫
Bk

1

=
ε

4(2R)m+n

k=N∑
k=1

∫
[−R,R]m+n

1 =
ε

4
.

Let δ′∈(0, δ) be such that

max
k
|h(xk, yk)|2 ·

(
δm+n − δ′m+n

)
<

ε

4N
.
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For each k, Bk =Bm;k×Bn;k for some cubes Bm;k⊂Rm and Bn;k⊂Rn of side δ. Let B′m;k⊂ IntBm;k

and B′n;k⊂ IntBn;k be closed cubes with side δ′. For each k, choose smooth functions

fk : Rm −→ [0, 1] and g′k : Rn −→ [0, 1] s.t.

supp fk ⊂ Bm;k, supp g′k ⊂ Bn;k, fk|B′
m;k
≡ 1, g′k|B′

n;k
≡ 1.

Let gk=h(xk, yk)g
′
k. Then, for every k∥∥∥hk − fkgk∥∥∥2 =

∫
Bk−B′

m;k×B
′
n;k

∣∣h(xk, yk)− fkgk
∣∣2 ≤ ∣∣h(xk, yk)

∣∣2 · (δm+n − δ′m+n
)
<

ε

4N
.

Putting this all together, we obtain∥∥∥h− k=N∑
k=1

fkgk

∥∥∥2 ≤ 2

(∥∥∥h− k=N∑
k=1

hk

∥∥∥2 +

k=N∑
k=1

∥∥∥hk − fkgk∥∥∥2) < 2

(
ε

4
+

ε

4N
·N
)

= ε,

so h is in the closure of the span of decomposable elements fkgk.

Remark: The argument suggested in Griffiths&Harris, Lemma on p104, is wrong. If A is a subspace
of a Hilbert space H (like L2-forms), then Ā=H if and only if for every h∈H−0 there exists f ∈A
such that 〈〈f, h〉〉 6= 0. The only if part is immediate and does not depend on the completeness of H
(if h∈H−0 and 〈〈f, h〉〉= 0 for all f ∈A, then ‖h−f‖≥ ‖h‖ for every f ∈A and so h 6∈ Ā). On the
other hand, H= Ā⊕Ā⊥ because H is a Hilbert space and Ā⊂H is closed; thus, if Ā 6=H, then there
exists h∈H−0 such that 〈〈f, h〉〉=0 for all f ∈A. This last implication does not need to hold if H is
an inner-product space which is not complete. For example, let

H = C∞(I;R), A =
{
h∈H :

∫ 1/2

0
hdx=0

}
,

where I=[0, 1] and H has the L2-norm. Since

H −→ R, h −→
∫ 1/2

0
hdx ,

is a bounded linear functional on H (L1-norm is bounded by L2-norm), Ā = A 6= H. On the other
hand, for every h ∈H−0, there exists f ∈A such that 〈〈f, h〉〉 6= 0. If h(x) 6= 0 for some x ∈ [1/2, 1],
such an f can be constructed using a cut-off function supported on a small neighborhood of some
x0 ∈ (1/2, 1). Otherwise, we can assume that there exists x0 ∈ (0, 1/2) such that h(x0) > 0 (after
possibly replacing h by −h) and h′(x0)<0 (because h(1/2)=0). Thus, there exists δ>0 such that

(x0−δ, x0+δ) ⊂ (0, 1/2) and h(x)>h(x0) ∀x∈(x0−δ, x0), h(x)<h(x0) ∀x∈(x0, x0+δ). (4)

Let f ∈C∞(R;R) be any nonzero function such that

supp f ⊂ (x0−δ, x0+δ) and f(x0+y) = −f(x0−y) ∀ y∈R, f(x)≤0 ∀x∈(x0, x0+δ). (5)

Thus, f |I ∈A and

〈〈f |I , h〉〉 =

∫ x0

x0−δ
f · (h−h(x0)) dx+

∫ x0+δ

x0

f · (h−h(x0)) dx+ h(x0)

∫ 1

0
fdx > 0,
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because the integrands in the first two integrals are non-negative and positive somewhere by (4)
and (5) and f ∈A. A quicker way to see that the orthogonal complement of A in H is zero is to pass
to L2(I;R)⊃H. Since

L2(I;R) −→ R, h −→
∫ 1/2

0
hdx ,

is a well-defined bounded linear surjective functional, the orthogonal complement of its kernel is one-
dimensional (the kernel is the closure of A in L2(I;R)). The orthogonal complement of A in L2(I;R)
thus consists of the functions h : I−→R that are constant on [0, 1/2] and vanish on (1/2, 1] (because
these functions are indeed orthogonal to A). Since the only one of these functions that lies in H is
the zero function, the orthogonal complement of A in H is zero.

(c) Let λ1≤λ2≤ . . . and τ1≤τ2≤ . . . be the eigenvalues of ∆M and ∆N , including zero and listed with
multiplicity. Let

α1, α2, . . . ∈ E∗(M) and β1, β2, . . . ∈ E∗(N)

be orthonormal eigenfunctions for these eigenvalues. By part (g) of Problem 4, their linear spans
are L2-dense in E∗(M) and in E∗(N). Thus, the linear span of the vectors π∗Mαi∧π∗Nβj is dense in
the span of the decomposable elements of E∗(M×N). Since this span is L2-dense in E∗(M×N) by
part (b), the linear span of the vectors π∗Mαi∧π∗Nβj is L2-dense in E∗(M×N). On the other hand,
by part (a),

∆M×N
(
π∗Mαi∧π∗Nβj

)
= π∗M (∆Mαi) ∧ π∗Nβj + π∗Mαi ∧ π∗N (∆Nβj)

= π∗M (λiαi) ∧ π∗Nβj + π∗Mαi∧π∗N (τjβj)

= (λi+τj) ·
(
π∗Mαi∧π∗Nβj

)
,

i.e. π∗Mαi∧π∗Nβj is an eigenfunction for ∆M×N with eigenvalue λi+τj . Since the sequences

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ τ1 ≤ τ2 ≤ . . .

have no limit points by (b) and (c) of Problem 4, neither does the set {λi+τj : i, j ≥ 1}. Since the
linear span of the vectors π∗Mαi∧π∗Nβj is L2-dense in E∗(M×N), it follows that ∆M×N has no other
eigenvalues and all its eigenvectors are linear combinations of the forms π∗Mαi∧π∗Nβj with the same
value of λi+τj . Since λi, τj≥0, the zero eigenspace of ∆M×N is thus given by

H∗M×N = Span
({
π∗Mα∧π∗Nβ : α ∈H∗M , β∈H∗N

})
≈ H∗M⊗H∗N .

(d) The diagram of graded vector-space homomorphisms1

H∗M⊗H∗N //

��

H∗deR(M)⊗H∗deR(N)

��
H∗M×N // H∗deR(M×N)

α⊗β //

��

[α]⊗[β]

��
π∗Mα ∧ π∗Nβ //

[
π∗Mα ∧ π∗Nβ

]
commutes. By part (c), the left arrow in the diagram is an isomorphism. By Theorem 6.11, the
horizontal arrows are isomorphisms. Thus, so is the right arrow. Restricting to the p-th level, we
obtain the desired statement.

1these are actually algebra homomorphisms with respect to ∧
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