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Spring 2011

Solutions to Problem Set 10
Problem 1: Chapter 6, #6 (5pts)

Derive explicit formulas for d, *, 6, and A in Fuclidean space.

Let x1,...,z, denote the standard coordinate functions on R”. It is sufficient to describe the action
of these linear operators on forms
a= fdyi N...\dyp,

where feC*>®(R"™) and y1,...,y, is a permutation of the coordinates x1,...,x, so that
Ay N ... Ndy, =dzi N\ ... Ndxy,.

By Section 2.20 and Exercise 13 in Chapter 2,

j=n j=n
da=df Ndyy A ... Adyy = Y gfdyjAdylA.../\dyp: Y
j=p+1 = j=p+1

xao = fdypy1 N ... Adyp.

87fdyl Ao Ndyp N dyj;

0y,

Thus, by Section 6.1,
Sov = (_1)n(p+1)+1 xd*oq = (_1)n(p+1)+1 * d(f dypr1 N ... A dyn)

af
= (=1)MptD+1 E “Ldy; Adypiq A ... A dyn
(-1 *i_l B Y Yp+1 Y

Of —
n( +1)+1 (n— D+(i=1) i
P E p)(p— yidyl/\.../\dyl/\.../\dyp

i=p

=2

Ay AL A dy,.

From this, we find that

1=p
) —
Aa = déa + dda = dZ(—l)Zaf'dyl A ANdyi A N dyy + (—1)P8 Z dy1 A Adyy A dy;
i=1 Yi J p+1
i=p 2 =n g2
. .0 _ 0 —
=) (~1){ (~1) 1—'§dy1A.../\dyp+(—1)p Y / dyy A ANdyi A .. N dyp, A dy;
i=1 v Jj=p+1
+(=P > ((—1)?*12@1 Ao Ndyp + > (-1 di /\.../\dyi/\.../\dyp/\dyj>
j=p+1 Oy; i=1 0yidy;



Problem 2 (5pts)

Suppose M is a compact Riemannian manifold. If M is not orientable, the Hodge x-operator is defined
only up to sign. However, as the definition of 6 in Section 6.1 involves two *’s, the linear operator &
is well-defined. Show that § is the adjoint of d whether or not M is oriented.

The oriented case is dealt with in Proposition 6.2. Thus, it is sufficient to assume that M is connected
and non-orientable. Let m: M — M be the orientable double cover of M ; see solution to Problem 5
on the 06 midterm. The Riemannian metric on M (or inner-product in 7'M — M) induces via the
projection map dn a Riemannian metric on M so that

(dme)*: NPT M — NPTy M
is an isometry for all p and € M. In particular,

(a, B) = (T, 7" B) YV a,p € NPT M = (o, B) = %«71'*04,7['*5» YV a,B € EP(M),

since 7 is a double cover. Choose an orientation on M so that * is defined on M. Given x € M, we
can compute

(00) r(zy = (—1)" P (kd 5 ) )

by using the orientation on a small neighborhood of 7 (z) induced from the orientation on a small
neighborhood of x via dm. Then, 7* commutes with * near x and thus with ¢ everywhere. Therefore,
by the above and Proposition 6.2

(da, B) = 3 {(m*da,1*B) = 3 (dn"0r 7" B)
= Sfr*a,677B) = "o, 7*56) = (a0, 56)
for all a€ EP~1(M) and B€ EP(M). Thus, §=d* on M.
Problem 3 (5pts)

Suppose M is a compact connected non-orientable n-manifold. Show that HY, (M)=0.
Remark: In fact, if M is a non-compact connected n-manifold, orientable or not, H}, (M) =0.

Let 7m: M —> M be the orientable double cover of M and let G be the group of covering transformations
of . This group consists of two elements; let g be the non-trivial element. By Problem 5a on PS7,

Hier(M) = Hi, g (M) = {[w]€ Hi,g(M): [g"w] = [w]}.

On the other hand, since M is compact, connected, and orientable, ngR(M ) = R by Corollary 6.13.

Thus, it is sufficient to find a single element [w]€ H\, (M) such that [g*w]# [w].
Let we E™(M) be a nowhere-zero top form on M. Since M is not orientable, g*w belongs to the

opposite orientation for M; see solutions to Problem 6 on PS6. In other words, g*w=f - w for some
smooth function f: M — R™. Thus,

Joo=[ fwz o = ulkle Ml



the two integrals above are not equal because they have opposite signs.

Problem 4: Chapter 6, #16 (30pts)

Suppose M is a compact Riemannian manifold and A : EP(M) — EP(M) is the corresponding
Laplacian. Show that

(a) all eigenvalues of A are non-negative;
(d
(b

eigenfunctions corresponding to distinct eigenvalues are orthogonal;
eigenspaces of A are finite-dimensional;

c) the set of eigenvalues of A has no limit point;
f

A has infinitely many positive eigenvalues;

)
)
(c)
(e) A has a positive eigenvalue;
(f)
g) the linear span of eigenfunctions of A is L%-dense in EP(M);
)

(
(h) the linear span of eigenfunctions of A is L>-dense in EP(M).

(a) Suppose a€ EP(M) is an eigenfunction of A with eigenvalue AeR, i.e. «#0 and Aa=Aa. Since
A = d*d+dd*,

Mal? = Ma, ) = (Ao, a)) = (Aa, a)) = (d*da, ) + (dd*a, a))
(da, da)) + (d* o, d*a)) = |da)® + |d*al® > 0.

Since |a|? >0, it follows that A>0.

(d) Suppose aq,as € EP(M) are eigenfunctions of A with eigenvalues Aj, A2 €R. Since A*=A,

Ar{{ar, ag)) = (Mai, ag) = (A, az))
= (a1, Aag)) = (a1, Aaaz)) = A ((a1, a2)).

Thus, if A1 # A2, (a1, a2)) =0, i.e. eigenspaces with different eigenvalues are orthogonal.

(b) Suppose not, i.e. there exists an orthonormal sequence aq, o, ...€ EP(M) of eigenfunctions of A
with eigenvalue A€R. Then,

lom[ =1 and  [|Aan| = [[Aan[l = Allan]| = A.

By Theorem 6.6, the sequence {«,, } contains a Cauchy subsequence. However, this is impossible, since
it consists of orthonormal elements.

(c) Suppose not, i.e. there exists a sequence of distinct eigenvalues A, of A that converges to some
A€R. By part (a), it can be assumed that 0 < A\, < A+1. Let «, € EP(M) be a normal eigenfunction
of A with eigenvalue A,. Then,

loml[ =1 and  [[Aan[| = [|Ananll = Anllan] < A+1.



By Theorem 6.6, the sequence {«,, } contains a Cauchy subsequence. However, this is impossible, since
it consists of orthonormal elements by part (d).

(e) Let (HP)* be the orthogonal complement of HP =ker A, in EP(M) and let
G: EP(M) — (HP)*

be the Green’s operator for A as in Section 6.9. In particular, G is a bounded linear operator by
Theorem 6.6 (or eq4 in Section 6.8),

GAa = AGa Y ac(HP)* and Ga=0 VaecH =kerA,.
Furthermore, by the proof of part (a) and Theorem 6.8,
(Aa,a) 20 VaeE/(M) =  (0,Go)>0 ¥yeEr(M). 1)
Since G is bounded,

n= sup [|Gy|l < cc.
pe(HP)L pll=1

Since G is nonzero on (H?)*, n>0. Furthermore,

IGell <nllel Ve #)
It will be shown that 1/7 is an eigenvalue of A.
Let ¢, € (HP)* be a sequence such that
leal =1 and  tim Gl =

Then,
1Genll <mllenll=n  and  [|A(Gen)ll = [lenll = 1.

Thus, by Theorem 6.6, the sequence {G¢,} contains a Cauchy subsequence, which we still denote
by {Gyn}. Define

L:EY(M)—R by L) =n- lim (GpnB) V5 eE(M).

Since

[(Gon, BY) = (Gom, BY| = [{Gpn—Gom, BY| < 18]l - [|Gpn—Gonl
and {Gpy} is Cauchy, the sequence (G, 8)) is Cauchy in R. Therefore, the limit above exists and

thus L is a well-defined linear functional on EP(M). This functional is not zero. For, if m is sufficiently
large,
n/2<||Gomll < and  {|Gom—Genll <n/5 Ynzm =
‘«G@na G‘Pm» - HGSOmHQ‘ = ‘<<G90n_G(Pma G‘Pm>>| < HGSOn_GSOmH : HGSOmH < (77/5) "N = 772/5
= L(Gpm) =n- lim (Gen,Gom) = n(|Goml* —1?/5) = n(n*/4 = n*/5) > 0.



The linear functional L is bounded, since
f— . 1 . 1 . . 1 . f— 2 .
L) =n- lim [(Gen,B)| <n- lm ||Genl -8 <n- lim nllen] - [I8]=7u"-[5].
We show below that

L((A=1/n)*B) = L((A-1/n)B) =0=(0,8) ¥ BeEP(M). (2)

Thus, L is a weak solution of the equation (A—1/n)w=0. Since A is an elliptic second-order differential
operator by Section 6.35, so is A—1/n. Thus, by the generalization of Theorem 6.6 stated in class
on 4/22, there exists we EP(M) such that L=1L,, i.e.

Lo(B) = (. 8) =1~ lim (G, B).

In particular, (A—1/n)w =0. Since L Z0, w # 0. Thus, w € EP(M) is an eigenfunction of A with
eigenvalue 1/neRT.

Remark: If {w,} is a Cauchy sequence in an inner-product space A, we€ A, and

im (wn, B)) = (w,B)  VBEA, (3)

n—-oo

then w, —w. Given e€>0, choose m >0 so that ||w,, —wy|| <€ for all n>m. Then,
Jlw—wm|1? < [{w—wn, w—wmh)]| + | (wn—wm, w—wn)| < [{w=wn,w—wm)]| + €lw—wnl.
By the above convergence assumption for f=w—wy,,

lim (w—wp,w—wp) =0 = Hw—meZ < €||w—wn] = lw—wml <e.
n—-oo

In our case, this implies that nG¢,, —> w. The assumption that {w,} is a Cauchy sequence is required
and does not follow from (3). For example, let

A=ty ={(z1,29,.. E]RZ Z |zi]* < oo}, ((zi)icz+> Wi)icz+ ) szyz,

and take w, =e, € be the vector with the i-th coordinate 1 and the rest 0. Then,

lim <<wn,ﬁ>> = lim z,=0= <<0,5>> v ,32(331,332, .. .)662,

n—aoo n—-~ao0

but wy, A= w=0 since ||w,—0||=1 for all n.

We now verify (2). Since

1G%0n — Ponl|” = GPonl® = 202(GP0n, o) + 0 llonl?
= [|G(Gen)lI> = 202 (G*on, o) +1*,

it follows that

1G?0n — 120> < (1 Gonl)? = 202(G?on, on) + 1 = 12 (| Gnll—1)
= lim [|G%n — nen]| = 0.



On the other hand, by equation (1) above

1]|Gon—n¢n|” < 1{Gon =190, Gon—100)) + {Gon—110n, G(Gpn—101)))
= {Gpn—1pn, G2on—1"pn))
= nli_r)nooHchn—ncan =0.

It follows that for all € EP(M),

H((A=1/mB) =n- lim (Gen, (A=1/n)B)) = lim n{((A=1/n)Gpn,B))

n——aoo

= nh;ﬂw<<ﬁwn—G¢n7 ﬁ» =0,

since

|(nen—Gen, BY| < 18Il - |Gn—nenl|-

(f) Suppose A € R*. Let ’H§ be the subspace of EP(M) spanned by all eigenfunctions of A with
eigenvalues less than A, including 0. Since G is bounded,

n= sup  [|Gy|| < oc.
pe(HR)L pll=1

By (b) and (c) above, HY, is a finite-dimensional subspace of the infinite-dimensional vector space E?(M).
Since G is injective on (HP)1, G is nonzero on (H})* C (HP)* and so n>0. It is shown below A has
an eigenfunction w € (7—[:’;)l with eigenvalue 1/7. Since wgH%, 1/n>X. This implies the claim.

Similarly to part (e), there exists a sequence ¢, € (Hz))\)l such that
leul =1, lim (Gl =,
and the sequence {Gy,,} is Cauchy. Define
L:EP(M) —R by  L(B) =7 lim (GpnB) VpeEP(M).
n o0
For exactly the same reasons as in part (e), L is a well-defined bounded linear functional such that

L((A=1/n)*B8) = (0,8)  V BeEF(M),
i.e. L is a weak solution of the equation (A—1/n)w=0. As in part (e), we conclude that there exists
an eigenfunction w € EP(M) of A with eigenvalue 1/np€R™ such that L,=n h_}m Lgy,- By Remark
in part (e), this implies that nGy, —w and so we (HY)*.

(g) Let Ay <A2<... be the eigenvalues of A, including 0, listed with multiplicity. Let u1,us,... be an
orthonormal set of eigenfunctions of A for these eigenvalues. We will show that for every a € EP(M),

n

lim Ha - Z((a,ui»ui

n——~oo

=0.

= lim Ha— Z«a,ui»ui

‘ A—00
i=1 A<




The first equality follows from parts (b) and (c).

If A>0, the p-form

o — Z (v, wi)yu;

Ai<A

is the orthogonal projection of a onto the subspace (7—[7;\)1-; see part (f). In particular, it is an element
of (H%)* of norm less than [a|. Since (H5)*cC (HP)*,

a— Z (o, uihu; = GA (a - Z (v, u,>>uz> = G(Aa — Z (v, uz>>AuZ>

Xi<A Xi<A Xi<A
= G(Aa — Z (v, uz>>)\zu7,) = G<A06 - Z {a, )\zuz»“z)
Ai<A Ai<A
= G(Aa - Z (v, Auz»uz) = G(Aa — Z (Aa, uz>>uz>
Ai<A Ai<A

Since this is an element of (H%)+, by part (f)

o= 3 o wipu]| = [l (80 — 3 (0w | < ]|Aa— 3 (A0 uihu

Ai <A Ai <A Ai <A

1
< XHAQH‘
This implies the claim.

(h) With notation as in part (g), we will show that

=0

o0

lim Ha - zn:«a,ui»ui

n——aoo

= lim Ha - Z((oz,ui))ui

A—
i=1 > o <A

for every a € EP(M). By the Sobolev inequality (6.22-(1)), the Fundamental Inequality (6.29-(1)),
ellipticity of A, and the compactness of M, there exist C €RT and k€Z™" such that

m=k
1Bl <C Y IIA™B]  ¥VBeEP(M).
m=0

Thus, by the proof of part (g),

<C HAm (a — /\z:}\«a, uz»u,)

7

‘ = sz::k HAma - Z (A o, uYu;
m=0 A

i<\

m=k
<03 518l = 5 (0 3 147 al)

This implies the claim.



Problem 5 (15pts)

Suppose M and N are smooth compact Riemannian manifolds. A differential form v on M x N s
called decomposable if

v =mya ATNS for some « € E*(M), € E*(N).
(a) Show that

Apixn (ThranayB) = Ty Apya ATy + o ATANS VaeE*(M), e E*(N).

(b) Show that the R-span of the decomposable forms on M x N is L?-dense in E*(M x N).
(c¢) Conclude that

H (MxN)~H (M) ®H(N), Ty ATNS +— a® B.
(d) Conclude that

HY ((MxN)~ P HLg(M)®Hg(N),  myaATyf < a® b,
q+r=p

This is the Kunneth Formula for de Rham cohomology of compact manifolds.
(a) If X is a smooth manifold of dimension k,
A=dd*+d'd and d'a= (D vdxa VaeEP(X).

In the given case, M and N may not oriented, but it is sufficient to check the identity on U xV for
small open subsets U and V of M and N. Let m and n be the dimensions of M and N and suppose
a€ EP(M) and € E4(N). On U and V, we can choose orientations, which induce an orientation on
U xV. With respect to these orientation,

#(rhran Ty B) = (=1)" P (xa) ATk (+5)-
Since d commutes with pull-backs, it follows that
d* (mhran wyB) = (=1)mFMEHEEDTL y gy (7 an 7 B)
= ()L ) (3 (k) A R (45))
= ()R DRTR (1 (da) Ay (+8) + (=1)" Py (xa) Ay (d5))
= (_1)(m+n)(p+q+1)+1+(m—p)q((_1)(p—1)(n—Q)(_1)11(”—61)777\4(*61*&) AT
4 (=1)mP(—1)Pmat D ()Pl o A W;‘V(*d*ﬁ)>

= (=)D 2 (wdxa) A iy B+ (—1)"aFDFAPEE o A ks (xd % )
=my(d o) Aoy + (—1)Pmyra Ay (d*B).
Thus,
dd* (myran oy B) = d(my(dia) AmyB + (—1)Prya Ay (dB))
= (dd*a) AT B+ (1P Iad (dFa) A (dB) + (—1)Prh da A i (A B) + mhpa A iy (dd*B).

8



Similarly,

d*d(myan 7y B) = d* (my(da) Ay B+ (—1)Prha ATy (dB))
= my(d*da) AT B + (—1)PT Ik (de) A T (d*B) + (—1)Pri (d*a) AT (dB) + mhpa A Ty (d*dB).

From the two expressions, we obtain

Anxn (ThanayB) = mip(dd ) ATy B + e A (dd'B) + mhy (dFda) ATy B + mhra ATy (d dB)
=Ty Apa ATNS + Ty ATNANS,

as claimed.

(b) Let {(Untiis orr:, ¥arz) } and {(Unj, i, ¥n:j) } be finite collections such that
o {Un} and {Un;} are open covers of M and N, respectively;
o ouiit Uy — Wi CR™ and ¢n.j: Uy,; — Wy, CR™ are measure-preserving charts;

o Ynri: TM|y,,, — Wari xR™ and ¢n,j: TN|yy,, — Wi,; xR" are bundle isometries covering
©my and @y, respectively.

Since MxN is compact, it is sufficient to show that every v € E*(MxN) such that suppy CUpr,ixUpj
for some %, j lies in the closure of the span of decomposable forms. Via the trivializations induced by
Yari and Yy on A*(T*M) and A*(T*N), such a form v corresponds to a smooth compactly sup-
ported function on R™xR" with values in RP for some p. It is sufficient to show that every component
function h=h(z,y) can be approximated by a linear combination of functions of the form fxgy, where
fr=fr(z) and g=gi(y) are compactly supported functions on R™ and R", respectively.

It can be assumed that m,n>1 (otherwise, there is nothing to prove). Let h be as above and e > 0.
Choose R>0 so that h(z,y) =0 if |2;| > R or |y;| > R for any of the components z; of = or y; of y
(so h is supported inside of the cube [—R, R]™*™). Since [—R, R]™" is compact, there exists § >0
such that ) .
\h(z,y) — h(z',y)|" < TR if |z =], |y —y;| <O Vi, j.

It can be assumed that ¢ divides R (since 0 can always be made smaller). Let {By} be a cover of
[ R, R by some N >0 closed cubes with side § so that ByN By is either empty or consists of a
face of By, if k#k' (so {By} breaks [—R, R]™*™ into N small cubes). Pick a point (xy,yx) € Bg. Let

hi be the function which equals h(zg,yr) on By and 0 everywhere else. By our assumption on 4,

k=N 9 k=N ) ¢ k=N
h — h H = / h(z,y) =h(@k, yk)|” < omomts / 1
H ; ¥ ; Bk‘ i) 4(2R)m+ ; By

€ h=N €
4(2R)m+n ; /[\R’R]m-&-n 4

Let 6’ €(0,0) be such that

2 (smtn _ g/m+n L
m’?xlh(:nk,ykﬂ (6 ) ) < v



For each k, By, = By, X By, for some cubes By, CR™ and B, CR™ of side 6. Let B/ , CInt By,
and B), . CInt By, be closed cubes with side ¢’. For each k, choose smooth functions

fr: R™ —[0,1] and g,:R"™ —[0,1] s.t.
supp fi C Bk, SUpP gy C Bups felpy , =1 gklpy, = 1.

Let g =h(zk, yk)g),- Then, for every k

2
Hhk - fkng :/ ’h(xk,yk) — fkgk’Q S }h(xkayk)‘Q X (5m+n . 5/m+n) < m
By—B’ ><B;l;k

Putting this all together, we obtain

5 sl <2 S 5 e ) <2 ) =

so h is in the closure of the span of decomposable elements f1gx.

Remark: The argument suggested in Griffiths&Harris, Lemma on p104, is wrong. If A is a subspace
of a Hilbert space H (like L?-forms), then A= H if and only if for every h € H—0 there exists f € A
such that ((f,h)) #0. The only if part is immediate and does not depend on the completeness of H
(if h€ H—0 and ((f,h)) =0 for all f € A, then ||h— f|| >|/h| for every f€ A and so h & A). On the
other hand, H=A® A" because H is a Hilbert space and AC H is closed; thus, if A# H, then there
exists h€ H—0 such that ((f, h))=0 for all f€ A. This last implication does not need to hold if H is
an inner-product space which is not complete. For example, let

1/2
H=C>(L;R), A={heH: / hdz=0},
0
where I=[0, 1] and H has the L?-norm. Since
1/2
H — R, h — / hdz,
0

is a bounded linear functional on H (L!'-norm is bounded by L?norm), A = A # H. On the other
hand, for every h € H—0, there exists f € A such that (f,h)) #0. If h(x)#0 for some z € [1/2,1],
such an f can be constructed using a cut-off function supported on a small neighborhood of some
xo € (1/2,1). Otherwise, we can assume that there exists x¢ € (0,1/2) such that h(xzg) > 0 (after
possibly replacing h by —h) and h'(z) <0 (because h(1/2)=0). Thus, there exists § >0 such that

(xo—0,20+6) C (0,1/2) and h(z)>h(zo) Vo€ (xg—0,20), h(x)<h(xzo) Vae(zo,x0+d). (4)
Let fe€C>(R;R) be any nonzero function such that
supp f C (zg—0,z9+9) and f(xo+y)=—f(zo—y) YyeR, f(z)<0 Vze(xg,x0+0). (5)
Thus, f|;€ A and

zo+9 1
(/11,2 / £+ (h=h(zo)) dz + +f'(h—h($0))dif+h($o)/0 fdo >0,

x0

10



because the integrands in the first two integrals are non-negative and positive somewhere by (4)
and (5) and f€ A. A quicker way to see that the orthogonal complement of A in H is zero is to pass
to L*>(I;R)D H. Since

1/2
L*(I;R) — R, h—>/ hdz,
0

is a well-defined bounded linear surjective functional, the orthogonal complement of its kernel is one-
dimensional (the kernel is the closure of A in L?(I;R)). The orthogonal complement of A in L?(I;R)
thus consists of the functions h: I — R that are constant on [0,1/2] and vanish on (1/2,1] (because
these functions are indeed orthogonal to A). Since the only one of these functions that lies in H is
the zero function, the orthogonal complement of A in H is zero.

(c¢) Let Ay <X2<...and 71 <7 <... be the eigenvalues of Ay; and Ay, including zero and listed with
multiplicity. Let
Oél,OéQ,...EE*(M) and Bl,ﬂg,...GE*(N)

be orthonormal eigenfunctions for these eigenvalues. By part (g) of Problem 4, their linear spans
are L?-dense in E*(M) and in E*(N). Thus, the linear span of the vectors m5,a; A7} 3; is dense in
the span of the decomposable elements of E*(M x N). Since this span is L?-dense in E*(M x N) by
part (b), the linear span of the vectors 7} a; Amy 3; is L?-dense in E*(M x N). On the other hand,
by part (a),

AMXN(TFX/[CMZ‘/\TF}'(Vﬂj) = F}'(\/[(AMOAZ) N W}kvﬂj + F}k\/[ai A F}kV(ANﬂj)
= W}k\/l(kiai) A W}kvﬁj + W}k\/lai/\ﬂ}k\[(’rjﬁj)
= ()\Z'—i-’rj) . (W}k\/lai/\ﬂf\fﬁj),
i.e. my a5 ATy B is an eigenfunction for Apsyn with eigenvalue A;+7;. Since the sequences

0§)\1§)\2§ and OSTlgTQS...

have no limit points by (b) and (c) of Problem 4, neither does the set {\;+7;:4,j>1}. Since the
linear span of the vectors m},a; ATy B35 is L?-dense in E*(M x N), it follows that Ajsxy has no other
eigenvalues and all its eigenvectors are linear combinations of the forms 7},a; A7y 3; with the same
value of \;+7;. Since \;, 7; >0, the zero eigenspace of Ajrxn is thus given by

Hirxn = Span({mijanayB: a €My, BEHN}) = Hiy@H -

(d) The diagram of graded vector-space homomorphisms'

Hy @Hy Hi,g(M)®Hj, g(N) aTﬂ [a]® (8]
Hirxn Hi r(MXN) T AT B [“?\404/\”7\1@

commutes. By part (c), the left arrow in the diagram is an isomorphism. By Theorem 6.11, the
horizontal arrows are isomorphisms. Thus, so is the right arrow. Restricting to the p-th level, we
obtain the desired statement.

Lthese are actually algebra homomorphisms with respect to A
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