MAT 531: Topology\&Geometry, II Spring 2011

Solutions to Problem Set 1

Problem 1: Chapter 1, \#2 (10pts)
Let \mathcal{F} be the (standard) differentiable structure on \mathbb{R} generated by the one-element collection of charts $\mathcal{F}_{0}=\{(\mathbb{R}, \mathrm{id})\}$. Let \mathcal{F}^{\prime} be the differentiable structure on \mathbb{R} generated by the one-element collection of charts

$$
\mathcal{F}_{0}^{\prime}=\{(\mathbb{R}, f)\}, \quad \text { where } \quad f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(t)=t^{3} .
$$

Show that $\mathcal{F} \neq \mathcal{F}^{\prime}$, but the smooth manifolds $(\mathbb{R}, \mathcal{F})$ and $\left(\mathbb{R}, \mathcal{F}^{\prime}\right)$ are diffeomorphic.
(a) We begin by showing that $\mathcal{F} \neq \mathcal{F}^{\prime}$. Since id $\in \mathcal{F}_{0} \subset \mathcal{F}$, it is sufficient to show that $\operatorname{id} \notin \mathcal{F}^{\prime}$, i.e. the overlap map

$$
\operatorname{id} \circ f^{-1}: f(\mathbb{R} \cap \mathbb{R})=\mathbb{R} \longrightarrow \operatorname{id}(\mathbb{R} \cap \mathbb{R})=\mathbb{R}
$$

from $f \in \mathcal{F}_{0}^{\prime}$ to id is not smooth, in the usual (i.e. calculus) sense:

Since $f(t)=t^{3}, f^{-1}(s)=s^{1 / 3}$, and

$$
\operatorname{id} \circ f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \text { id } \circ f^{-1}(s)=s^{1 / 3}
$$

This is not a smooth map.
(b) Let $h: \mathbb{R} \longrightarrow \mathbb{R}$ be given by $h(t)=t^{1 / 3}$. It is immediate that h is a homeomorphism. We will show that the map

$$
h:(\mathbb{R}, \mathcal{F}) \longrightarrow\left(\mathbb{R}, \mathcal{F}^{\prime}\right)
$$

is a diffeomorphism, i.e. the maps

$$
h:(\mathbb{R}, \mathcal{F}) \longrightarrow\left(\mathbb{R}, \mathcal{F}^{\prime}\right) \quad \text { and } \quad h^{-1}:\left(\mathbb{R}, \mathcal{F}^{\prime}\right) \longrightarrow(\mathbb{R}, \mathcal{F})
$$

are smooth. To show that h is smooth, we need to show that it induces smooth maps between the charts in \mathcal{F}_{0} and \mathcal{F}_{0}^{\prime}. In this case, there is only one chart in each. So we need to show that the map

$$
f \circ h \circ \operatorname{id}^{-1}: \operatorname{id}\left(h^{-1}(\mathbb{R}) \cap \mathbb{R}\right)=\mathbb{R} \longrightarrow \mathbb{R}
$$

is smooth:

Since

$$
f \circ h \circ \operatorname{id}^{-1}(t)=f(h(t))=f\left(t^{1 / 3}\right)=\left(t^{1 / 3}\right)^{3}=t,
$$

this map is indeed smooth, and so is h. To check that h^{-1} is smooth, we need to show that it induces smooth maps between the charts in \mathcal{F}_{0}^{\prime} and \mathcal{F}_{0}, i.e. that the map

$$
\text { id } \circ h^{-1} \circ f^{-1}: f(h(\mathbb{R}) \cap \mathbb{R})=\mathbb{R} \longrightarrow \mathbb{R}
$$

is smooth:

Since

$$
\text { id } \circ h^{-1} \circ f^{-1}(t)=h^{-1}(f(t))=h^{-1}\left(t^{3}\right)=\left(t^{3}\right)^{1 / 3}=t,
$$

this map is indeed smooth, and so is h^{-1}. Since h and h^{-1} are smooth maps, we conclude that h is diffeomorphism from $(\mathbb{R}, \mathcal{F})$ to $\left(\mathbb{R}, \mathcal{F}^{\prime}\right)$.

Remarks: (1) Since we know that h is a homeomorphism, it is sufficient to show that h induces diffeomorphisms on all charts in \mathcal{F}_{0} and \mathcal{F}_{0}^{\prime}. This would imply that h^{-1} is smooth as well, since the maps between charts induced by h^{-1} are inverses of those induced by h.
(2) More generally, every topological manifold of dimension 1, 2, or 3 admits a differentiable structure and any two such structures are diffeomorphic. Up to diffeomorphism, the only connected 1-dimensional manifolds are \mathbb{R} and S^{1}, with their standard differentiable structures (you can find a proof in the 2.5 -page appendix in Milnor's Topology from Differentiable Viewpoint). Starting in dimension 4, things get more complicated. Not every topological 4-manifold admits a smooth structure. In a seven-page paper in 1956 (cited in his Fields medal award), Milnor showed that S^{7} admits non-diffeomorphic smooth structures. Since then the situation for manifolds in dimensions five and higher has been sorted out; amazingly, 4 is the hard dimension.

Problem 2 (10pts)

Suppose a group G acts properly discontinuously on a smooth n-manifold \tilde{M} by diffeomorphisms. Show that the quotient topological space $M=\tilde{M} / G$ admits a unique smooth structure such that the projection map $\tilde{M} \longrightarrow M$ is a local diffeomorphism.

Since G acts properly discontinuously on \tilde{M}, the quotient projection map $\pi: \tilde{M} \longrightarrow M$ is a covering projection. The assumption that G acts by diffeomorphism leads to the following key property.

Claim: If V, W are open subset of \tilde{M} such that $\left.\pi\right|_{V}$ and $\left.\pi\right|_{W}$ are injective, then

$$
\pi_{V W} \equiv\left\{\left.\pi\right|_{V}\right\}^{-1} \circ \pi:\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V)) \longrightarrow\left\{\left.\pi\right|_{V}\right\}^{-1}(\pi(W))
$$

is a diffeomorphism.
Proof. By assumption, $\pi: V \longrightarrow \pi(V)$ and $\pi: W \longrightarrow \pi(W)$ are homeomorphisms; thus, so is the map $\pi_{V W}$ (with the specified domain and range, which are open subsets of \tilde{M}). Thus, it is sufficient to show each point $p \in\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))$ has a neighborhood W_{p} in $\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))$ such that $\left.\pi_{V W}\right|_{W_{p}}$ is smooth. Let $p^{\prime}=\left\{\left.\pi\right|_{V}\right\}^{-1}(\pi(p))$; then $p^{\prime}=g p$ for a unique $g \in G$. Since $g: \tilde{M} \longrightarrow \tilde{M}$ is continuous, $W_{p}=g^{-1}(V) \cap W$ is an open neighborhood of p in $\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))$ and $\left.\pi_{V W}\right|_{W_{p}}=\left.g\right|_{W_{p}}$ (for each $q \in W_{p}, \pi_{V W}(q)=g_{q} q \in V$ for some $g_{q} \in G, g q \in V$, and there exists (at most) a unique $g^{\prime} \in G$ such that $\left.g^{\prime} q \in V\right)$. Since G acts by diffeomorphisms, $\left.g\right|_{W_{p}}$ is smooth.

Let $\mathcal{F}_{\tilde{M}}$ be the smooth structure on \tilde{M} and

$$
\mathcal{F}_{0}=\left\{\left(\pi(V), \varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1}\right):(V, \varphi) \in \mathcal{F}_{\tilde{M}},\left.\pi\right|_{V} \text { is injective }\right\} .
$$

Since π is a covering map, $\pi(V) \subset M$ is open whenever $V \subset \tilde{M}$ is. Since for every $p \in \tilde{M}$ there exists $(V, \varphi) \in \mathcal{F}_{\tilde{M}}$ such that $\left.\pi\right|_{V}$ is injective, the union of the sets $\pi(V)$ with $\left(\pi(V), \varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1}\right) \in \mathcal{F}_{0}$ covers M. If $\left(\pi(V), \varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1}\right),\left(\pi(W), \psi \circ\left\{\left.\pi\right|_{W}\right\}^{-1}\right) \in \mathcal{F}_{0}$,

$$
\varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1} \circ\left(\psi \circ\left\{\left.\pi\right|_{W}\right\}^{-1}\right)^{-1}=\varphi \circ \pi_{V W} \circ \psi^{-1}: \psi\left(\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))\right) \longrightarrow \varphi\left(\left\{\left.\pi\right|_{V}\right\}^{-1}(\pi(W))\right)
$$

is smooth, because $\pi_{V W}$ is smooth by the claim and φ and ψ are charts. Thus, \mathcal{F}_{0} satisfies (i) and (ii) on p5 and thus gives rise to a smooth structure on M.

With respect to this smooth structure, the map $\pi: \tilde{M} \longrightarrow M$ is a local diffeomorphism because

$$
\left.\varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1} \circ \pi\right|_{W} \circ \psi^{-1}=\varphi \circ \pi_{V W} \circ \psi^{-1}: \psi\left(\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))\right) \longrightarrow \varphi\left(\left\{\left.\pi\right|_{V}\right\}^{-1}(\pi(W))\right)
$$

is a diffeomorphism whenever $\left(\pi(V), \varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1}\right),\left(\pi(W), \psi \circ\left\{\left.\pi\right|_{W}\right\}^{-1}\right) \in \mathcal{F}_{0}$. Conversely, if $\tilde{\mathcal{F}}^{\prime}$ is any smooth structure on M such that $\pi: \tilde{M} \longrightarrow M$ is a local diffeomorphism, then
$\varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1} \circ\left(\psi \circ\left\{\left.\pi\right|_{W}\right\}^{-1}\right)^{-1}=\left.\varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1} \circ \pi\right|_{W} \circ \psi^{-1}: \psi\left(\left\{\left.\pi\right|_{W}\right\}^{-1}(\pi(V))\right) \longrightarrow \varphi\left(\left\{\left.\pi\right|_{V}\right\}^{-1}(\pi(W))\right)$
is a diffeomorphism whenever $\left(\pi(V), \varphi \circ\left\{\left.\pi\right|_{V}\right\}^{-1}\right),\left(\pi(W), \psi \circ\left\{\left.\pi\right|_{W}\right\}^{-1}\right) \in \mathcal{F}_{0}$, and so $\mathcal{F}_{0} \subset \mathcal{F}^{\prime}$ and thus $\mathcal{F}^{\prime}=\mathcal{F}$ by the maximality condition.

Note: this implies that the circle, the infinite Mobius band, the Lens spaces (that are important in 3-manifold topology), the real projective space, and the tautological line bundle over it,

$$
\begin{gathered}
S^{1}=\mathbb{R} / \mathbb{Z}, \quad s \sim s+1, \quad M B=(\mathbb{R} \times \mathbb{R}) / \mathbb{Z}, \quad(s, t) \sim(s+1,-t), \\
L(n, k)=S^{3} / \mathbb{Z}_{n}, \quad\left(z_{1}, z_{2}\right) \sim\left(\mathrm{e}^{2 \pi \mathrm{i} / n} z_{1}, \mathrm{e}^{2 \pi \mathrm{i} k / n} z_{2}\right) \in \mathbb{C}^{2}, \\
\mathbb{R} P^{n}=S^{n} / \mathbb{Z}_{2}, \quad x \sim-x, \quad \gamma_{n}=\left(S^{n} \times \mathbb{R}\right) / \mathbb{Z}_{2}, \quad(x, t) \sim(-x,-t),
\end{gathered}
$$

are smooth manifolds in a natural way (k and n are relatively prime in the definition of $L(n, k)$).

Problem 3 (15pts)

(a) Show that the quotient topologies on $\mathbb{C} P^{n}$ given by $\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}$ and $S^{2 n+1} / S^{1}$ are the same. (b) Show that $\mathbb{C} P^{n}$ is a compact topological $2 n$-manifold. Furthermore, it admits a structure of a complex (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose overlap maps, $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$, are holomorphic maps between open subsets of \mathbb{C}^{n} (and rational functions on \mathbb{C}^{n}).
(c) Show that $\mathbb{C} P^{n}$ contains \mathbb{C}^{n}, with its complex structure, as a dense open subset.
(a) Let

$$
p: S^{2 n+1} \longrightarrow S^{2 n+1} / S^{1} \quad \text { and } \quad q: \mathbb{C}^{n+1}-0 \longrightarrow\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}
$$

be the quotient projection maps. Denote by

$$
\tilde{i}: S^{2 n+1} \longrightarrow \mathbb{C}^{n+1}-0 \quad \text { and } \quad \tilde{r}: \mathbb{C}^{n+1}-0 \longrightarrow S^{2 n+1}
$$

the inclusion map and the natural retraction map, i.e. $\tilde{r}(v)=v /|v|$. We will show that these maps descend to continuous maps on the quotients, i and r,

that are inverses of each other. The map $q \circ \tilde{i}$ is constant on the fibers of p, since if $v, w \in S^{2 n+1}$ and $w=g \cdot v$ for some $g \in S^{1}$, then $\tilde{i}(w)=g^{\prime} \cdot \tilde{i}(v)$ for some $g^{\prime} \in \mathbb{C}^{*}$ (in fact, $g^{\prime}=g$). Thus, $q \circ \tilde{i}$ induces a map i from the quotient space $S^{2 n+1} / S^{1}$ (so that the first diagram commutes); since the $\operatorname{map} q \circ \tilde{i}$ is continuous, so is the induced map i. Similarly, the map $p \circ \tilde{r}$ is constant on the fibers of q, since if $v, w \in \mathbb{C}^{n+1}-0$ and $w=g \cdot v$ for some $g \in \mathbb{C}^{*}$, then $\tilde{r}(w)=g^{\prime} \cdot \tilde{r}(v)$ for some $g^{\prime} \in S^{1}$ (in fact, $\left.g^{\prime}=g /|g|\right)$. Thus, $p \circ \tilde{r}$ induces a map r from the quotient space $\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}$; since the map $p \circ \tilde{r}$ is continuous, so is the induced map r. Since $\tilde{r} \circ \tilde{i}=\mathrm{id}_{S^{2 n+1}}, r \circ i=\mathrm{id}_{S^{2 n+1} / S^{1}}$. Similarly, for all $v \in \mathbb{C}^{n+1}-0$,

$$
\tilde{i} \circ \tilde{r}(v)=(1 /|v|) v, \quad 1 /|v| \in \mathbb{C}^{*} \quad \Longrightarrow \quad q(\tilde{i} \circ \tilde{r}(v))=q(v) \quad \Longrightarrow \quad i \circ r=\operatorname{id}_{\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}}
$$

(b-i) Since $S^{2 n+1}$ is compact, so is the quotient space $\mathbb{C} P^{n}=S^{2 n+1} / S^{1}$ (being the image of $S^{2 n+1}$ under the continuous map p). Suppose next that $A \subset S^{2 n+1}$ is a closed subset. Then,

$$
p^{-1}(p(A))=S^{1} \cdot A \equiv\left\{g \cdot v: v \in A, g \in S^{1}\right\}
$$

Thus, $p^{-1}(p(A))$ is the image of the closed subset $S^{1} \times A$ in $S^{2 n+1}$ under the continuous multiplication map

$$
S^{1} \times S^{2 n+1} \longrightarrow S^{2 n+1}
$$

Since A is closed in $S^{2 n+1}, S^{1} \times A$ is closed in the compact space $S^{1} \times S^{2 n+1}$ and thus compact. It follows that $p^{-1}(p(A))$ is a compact subset of the Hausdorff space $S^{2 n+1}$ and thus closed. We conclude that $p(A) \subset S^{2 n+1} / S^{1}$ is closed for all closed subsets $A \subset S^{2 n+1}$, i.e. the quotient map p is a closed map. Since $S^{2 n+1}$ is normal, by Lemma 73.3 in Munkres's Topology the quotient space
$\mathbb{C} P^{n}$ is normal as well (and in particular, Hausdorff).
(b-ii) We will now construct a collection of charts $\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i=0,1, \ldots, n}$ on $\mathbb{C} P^{n}$ that covers $\mathbb{C} P^{n}$. Given a point $\left(X_{0}, \ldots, X_{n}\right) \in \mathbb{C}^{n+1}-0$, we denote its equivalence class in

$$
\mathbb{C} P^{n}=\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}
$$

by $\left[X_{0}, \ldots, X_{n}\right]$. For $i=0,1, \ldots, n$, let

$$
\mathcal{U}_{i}=\left\{\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}: X_{i} \neq 0\right\}
$$

Since

$$
q^{-1}\left(\mathcal{U}_{i}\right)=\left\{\left(X_{0}, \ldots, X_{n}\right) \in \mathbb{C}^{n+1}-0: X_{i} \neq 0\right\} \equiv \tilde{\mathcal{U}}_{i}
$$

is an open subset of $\mathbb{C}^{n+1}-0, \mathcal{U}_{i}$ is an open subset of $\mathbb{C} P^{n}$. Define

$$
\begin{gathered}
\tilde{\varphi}_{i}: \tilde{\mathcal{U}}_{i} \longrightarrow \mathbb{C}^{n}=\mathbb{R}^{2 n} \text { by } \\
\tilde{\varphi}_{i}\left(X_{0}, \ldots, X_{n}\right)=\left(X_{0} / X_{i}, X_{1} / X_{i}, \ldots, X_{i-1} / X_{i}, X_{i+1} / X_{i}, \ldots, X_{n} / X_{i}\right)
\end{gathered}
$$

Since $\tilde{\varphi}_{i}(c \cdot v)=\tilde{\varphi}_{i}(v)$, the map $\tilde{\varphi}_{i}$ induces a map φ_{i} from the quotient space \mathcal{U}_{i} of $\tilde{\mathcal{U}}_{i}$:

Since $\tilde{\varphi}_{i}$ is continuous, so is φ_{i}. Define

$$
\psi_{i}: \mathbb{C}^{n} \longrightarrow \mathcal{U}_{i} \quad \text { by } \quad \psi_{i}\left(z_{1}, \ldots, z_{n}\right)=\left[z_{1}, \ldots, z_{i}, X_{i}=1, z_{i+1}, \ldots, z_{n}\right]
$$

Since ψ_{i} is a composition of two continuous maps, ψ_{i} is continuous. Since $\psi_{i} \circ \varphi_{i}=\operatorname{id} \mathcal{U}_{i}$ and $\varphi_{i} \circ \psi_{i}=\mathrm{id}_{\mathbb{C}^{n}}$, the map

$$
\varphi_{i}: \mathcal{U}_{i} \longrightarrow \mathbb{C}^{n}
$$

is a homeomorphism. Note that for every $p \equiv\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}$, there exists $i=0,1, \ldots, n$ such that $X_{i} \neq 0$, i.e. $p \in \mathcal{U}_{i}$. Thus, $\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i=0,1, \ldots, n}$ is a collection of charts on $\mathbb{C} P^{n}$ that covers $\mathbb{C} P^{n}$. In particular, $\mathbb{C} P^{n}$ is locally Euclidean of dimension $2 n$. Since this collection of charts is countable (actually, finite), it follows that $\mathbb{C} P^{n}$ is 2 nd-countable (since each open subset \mathcal{U}_{i} is 2 nd-countable).
(b-iii) We now determine the overlap maps

$$
\varphi_{i} \circ \varphi_{j}^{-1}=\varphi_{i} \circ \psi_{j}: \varphi_{j}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \longrightarrow \varphi_{i}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right)
$$

Assume that $j<i$. Then,

$$
\begin{gathered}
\mathcal{U}_{i} \cap \mathcal{U}_{j}=\left\{\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{C} P^{n}: X_{i}, X_{j} \neq 0\right\} \quad \Longrightarrow \\
\varphi_{j}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{i} \neq 0\right\} \equiv \mathbb{C}_{i}^{n}, \quad \varphi_{i}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{j+1} \neq 0\right\} \equiv \mathbb{C}_{j+1}^{n}
\end{gathered}
$$

the assumption $j<i$ is used on the second line. By (b-ii), the map

$$
\varphi_{i} \circ \varphi_{j}^{-1}: \mathbb{C}_{i}^{n} \longrightarrow \mathbb{C}_{j+1}^{n}
$$

is given by

$$
\begin{aligned}
\varphi_{i} \circ \varphi_{j}^{-1}\left(z_{1}, \ldots, z_{n}\right) & =\varphi_{i} \circ \psi_{j}\left(z_{1}, \ldots, z_{n}\right)=\varphi_{i}\left(\left[z_{1}, \ldots, z_{j}, X_{j}=1, z_{j+1}, \ldots, z_{n}\right]\right) \\
& =\left(z_{1} / z_{i}, \ldots, z_{j} / z_{i}, 1 / z_{i}, z_{j+1} / z_{i}, \ldots, z_{i-1} / z_{i}, z_{i+1} / z_{i}, \ldots, z_{n} / z_{i}\right)
\end{aligned}
$$

Thus, the overlap map $\varphi_{i} \circ \varphi_{j}^{-1}$ is holomorphic on its domain, as is its inverse, $\varphi_{j} \circ \varphi_{i}^{-1}$; both maps are given by rational functions on \mathbb{C}^{n}. We conclude that the collection $\mathcal{F}_{0}=\left\{\left(\mathcal{U}_{i}, \varphi_{i}\right)\right\}_{i=0,1, \ldots, n}$ determines a complex structure on $\mathbb{C} P^{n}$.
(c) By part (b), the map

$$
\psi_{0}: \mathbb{C}^{n} \longrightarrow \mathcal{U}_{0} \subset \mathbb{C} P^{n}, \quad\left(z_{1}, \ldots, z_{n}\right) \longrightarrow\left[1, z_{1}, \ldots, z_{n}\right]
$$

is a homeomorphism and

$$
\varphi_{0}^{-1} \circ \psi_{0}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}
$$

is the identity map (and thus holomorphic). Since $\left(\mathcal{U}_{0}, \varphi_{0}\right) \in \mathcal{F}_{0}, \psi_{0}$ is a holomorphic embedding. So, $\mathbb{C} P^{n}$ contains $\mathbb{C}^{n}\left(\right.$ as $\left.\mathcal{U}_{0}\right)$ with its complex structure as an open subset. The subset \mathcal{U}_{0} is dense in $\mathbb{C} P^{n}$, since $\tilde{\mathcal{U}}_{0}=q^{-1}\left(\mathcal{U}_{0}\right)$ is dense in $\mathbb{C}^{n+1}-0$.

Remark: We can of course use any of the maps ψ_{i} in part (c). By part (c), $\mathbb{C} P^{n}$ is a compactification of \mathbb{C}^{n} (i.e. \mathbb{C}^{n} is a dense open subset of the compact Hausdorff space $\left.\mathbb{C} P^{n}\right)$. In contrast to the one-point compactification $S^{2 n}$ of \mathbb{C}^{n} (for $n>1$), $\mathbb{C} P^{n}$ has complex and algebraic structure. If $n=1$, the two compactifications are the same; $\mathbb{C} P^{1}$ is the Riemann sphere.

Problem 4: Chapter 1, $\# 6$, via 2nd suggested approach (5pts)

Suppose $f: M \longrightarrow N$ is a bijective immersion. Show that f is a diffeomorphism.

Let $n=\operatorname{dim} M$ and $k=\operatorname{dim} N$. Since f is an immersion, the differential

$$
\left.d f\right|_{m}: T_{m} M \longrightarrow T_{f(m)} N
$$

is injective for all $m \in M$. In particular, $n \leq k$. If $n=k$, then $\left.d f\right|_{m}$ is an isomorphism for all $m \in M$ and f is a local diffeomorphism by the Inverse Function Theorem. Since f is bijective, it then follows that f is a (global) diffeomorphism if $n=k$. Below we show that the case $n<k$ cannot arise.

Suppose $n<k$ and (W, φ) is a coordinate chart on N such that $\varphi(W)=\mathbb{R}^{k}$. Then, $f^{-1}(W)$ is a smooth n-manifold. It is sufficient to show that the image of $f^{-1}(W)$ under f is not all of W, or equivalently that the smooth map

$$
g \equiv \varphi \circ f: W \longrightarrow \mathbb{R}^{n}
$$

is not surjective. Let $\left\{\psi_{i}: \mathcal{U}_{i} \longrightarrow V_{i}\right\}_{i \in \mathbb{Z}}$ be a collection of charts on $f^{-1}(W)$ that covers $f^{-1}(W)$. Then,

$$
g\left(f^{-1}(W)\right)=g\left(\bigcup_{i \in \mathbb{Z}} \psi_{i}^{-1}\left(V_{i}\right)\right)=\bigcup_{i \in \mathbb{Z}} g\left(\psi_{i}^{-1}\left(V_{i}\right)\right) \subset \mathbb{R}^{k}
$$

Since V_{i} is an open subset of $\mathbb{R}^{n}, g \circ \psi_{i}^{-1}: V_{i} \longrightarrow \mathbb{R}^{k}$ is a smooth map, and $n<k$, the k-measure of $g\left(\psi_{i}^{-1}\left(V_{i}\right)\right)$ in \mathbb{R}^{k} is 0 (for reasons described in detail in the statement of the exercise in the book). Since a countable union of measure 0 subsets of \mathbb{R}^{k} is of measure 0 , it follows that $g\left(f^{-1}(W)\right)$ is a subset of \mathbb{R}^{k} of measure 0 . In particular,

$$
g\left(f^{-1}(W)\right) \subsetneq \mathbb{R}^{k}
$$

as needed.

Remark: This argument implies that there exist no smooth surjective map $f: \mathbb{R} \longrightarrow \mathbb{R}^{k}$ if $k>1$. Recall from 530 that there does exist a continuous surjective map $f: \mathbb{R} \longrightarrow \mathbb{R}^{k}$ (it can be constructed from the Peano curve).

Problem 5 (5pts)

If $\psi: M \longrightarrow N$ is a smooth map and $m \in M$, the differential of ψ at m,

$$
\left.d \psi\right|_{m}: T_{m} M \longrightarrow T_{\psi(m)} N
$$

is defined by

$$
\begin{equation*}
\left\{\left.d \psi\right|_{m} v\right\}(f)=v(f \circ \psi) \in \mathbb{R} \quad \forall v \in T_{m} M, \mathbf{f} \in \tilde{F}_{\psi(m)} \tag{1}
\end{equation*}
$$

Show that $\left.d \psi\right|_{m} v$ is indeed a well-defined element of $T_{\psi(m)} N$ for all $v \in T_{m} M$.
We need to show that $\left.d \psi\right|_{m} v$ induces a linear derivation on $\tilde{F}_{\psi(m)}$, i.e. a linear map

$$
\tilde{F}_{\psi(m)} \longrightarrow \mathbb{R}
$$

satisfying the product rule. Suppose \mathcal{U} and V are (open) neighborhoods of $\psi(m)$ in $N, f: \mathcal{U} \longrightarrow \mathbb{R}$ and $g: V \longrightarrow \mathbb{R}$ are smooth functions, and $W \subset U \cap V$ is a neighborhood of $\psi(m)$ such that $\left.f\right|_{W}=\left.g\right|_{W}$, i.e. $\mathbf{f}=\mathbf{g} \in \tilde{F}_{\psi(m)}$. Then, $\psi^{-1}(U)$ and $\psi^{-1}(V)$ are neighborhood of m in M,

$$
f \circ \psi: \psi^{-1}(U) \longrightarrow \mathbb{R} \quad \text { and } \quad g \circ \psi: \psi^{-1}(V) \longrightarrow \mathbb{R}
$$

are smooth functions, and $\psi^{-1}(W) \subset f^{-1}(U) \cap f^{-1}(V)$ is a neighborhood of m such that

$$
\begin{aligned}
\left.(f \circ \psi)\right|_{\psi^{-1}(W)}=\left.(g \circ \psi)\right|_{\psi^{-1}(W)} & \Longrightarrow \quad[f \circ \psi]=[g \circ \psi] \in \tilde{F}_{m} \\
& \Longrightarrow \quad v(f \circ \psi)=v([f \circ \psi])=v([g \circ \psi])=v(g \circ \psi)
\end{aligned}
$$

since $v \in T_{m} M$. It follows that (1) induces a well-defined map $\tilde{F}_{m} \longrightarrow \mathbb{R}$ (independent of the choice of representative f for the equivalence class $\left.\mathbf{f} \in \tilde{F}_{\psi(m)}\right)$. If f and g are smooth functions on neighborhoods of $\psi(m)$ in M and $\alpha, \beta \in \mathbb{R}$, then

$$
\begin{aligned}
\left\{\left.d \psi\right|_{m} v\right\}(\alpha f+\beta g) & \equiv v((\alpha f+\beta g) \circ \psi)=v(\alpha(f \circ \psi)+\beta(g \circ \psi)) \\
& =\alpha v(f \circ \psi)+\beta v(g \circ \psi) \equiv \alpha\left\{\left.d \psi\right|_{m} v\right\}(f)+\beta\left\{\left.d \psi\right|_{m} v\right\}(g)
\end{aligned}
$$

i.e. $\left.d \psi\right|_{m} v$ is a linear map. Finally, with f and g as above,

$$
\begin{aligned}
\left\{\left.d \psi\right|_{m} v\right\}(f \cdot g) & \equiv v((f \cdot g) \circ \psi)=v((f \circ \psi) \cdot(g \circ \psi)) \\
& =f \circ \psi(m) v(g \circ \psi)+g \circ \psi(m) v(f \circ \psi) \\
& \equiv f(\psi(m))\left\{\left.d \psi\right|_{m} v\right\}(g)+g(\psi(m))\left\{\left.d \psi\right|_{m} v\right\}(f)
\end{aligned}
$$

i.e. $\left.d \psi\right|_{m} v$ satisfies the product rule.

