MAT 531: Topology& Geometry, 11
Spring 2011

Final Exam Solutions

Part I (choose 2 problems from 1,2, and 3)

1. Let f: RP? — T3=(S')3 be a smooth map. Show that f is not an immersion.
Suppose f is an immersion. Since RP? and T have the same dimension, the differential

. 3 3
dof : T,RP® — Ty T

is an isomorphism for every x € RP3. By the Inverse Function Theorem, f is thus a local diffeo-
morphism, and so its image is open in 73. Since RP? is compact and 7% is Hausdorff, f(RP3) is
closed in T3. Since T° is connected, it follows that f is surjective. Since RP3 is compact and f is a
local diffeomorphism, f~!(y) CRP? is finite for every y € T3. Thus, f is a covering projection (the
intersection of the images of neighborhoods of elements of f~!(y) on which f is a diffeomorphism is
an evenly covered neighborhood of y), and

fe: 7T1(RP3,JJ0) — 771(T3, f(z0))

is an injective homomorphism. However, this is impossible, since 71 (RP3, 2¢) & Zs has torsion, while
71 (T3, f(z0)) = Z3 is torsion-free.

2. Let X andY be the vector fields on R given by

X—ﬁ—i-mg—i- 9 Y = ﬁ—i—zg—i-g
C Ox oy Yoz ~You dy 0z

(a) Compute the flows ps and vy of X andY (give formulas).
(b) Do these flows commute?

(a) The time s-flow of X through (z,yo, 20) is the solution to the initial-value problem

{x’(s) =1, Jy(s)=z, 2(s)=y,
z(0),y(0), 2(0)) = (0, Yo, 20)-

Solving the first equation, then the second, and finally the third, we find that
2 2 ¢

S S
(z(s),y(s),2(s)) = (560+5,yo+$08+5,20+y05+9305+€)~

Thus, the time s-flow of X is given by
2 2 3
s s s
ps(,y,2) = (s, ytset+ o, 2 hsy+ 5ot 2).
Similarly, the time t-flow of Y is given by
2 3 2

t
¢t(xa Y, Z) = (I‘ + t?/+§z+€vy+t2+§, Z+t)a



as the roles of x and z in X and Y are interchanged.

(b) Since the Lie bracket of coordinate vector fields is 0,

X,Y] = (X(y)a‘l + X(z)aay + X(l)(i) _ (Yu)‘l tv 2+ Y(y)a>

= x£+ £+0 -0+ g—l—zg —332—22
-\ ox yay y@y 0z) "oz 0z
Since [X,Y]#0, the flows of X and Y do not commute by PS4 #5.

Alternatively, the first coordinates of ps01); and Y04 are given by
2 43 2 2 2 g3 3

(x,y,2) — =+ ty—i—Ez—i-g +s,(x+s)+ t(y—i—sx—i—%) + 5(z+sy+5x+€) + 5

respectively. Since these are not the same (unless s=0 or t=0), the flows do not commute.

3. Let M and N be smooth oriented connected manifolds and H: M x[0,1] — N a smooth map.
For each t€|0,1], define
Hy: M — N, Hy(p) = H(p, ).

(a) Suppose Hy is a diffeomorphism for every t € [0,1]. Show that Hy is orientation-preserving if
and only if Hy 1s.

(b) Suppose instead that M is compact and Hy, Hy are diffeomorphisms. Show that Hy is orientation-
preserving if and only if Hy is.

(¢) Give an example so that Hy and Hy are diffeomorphisms, with Hy orientation-preserving and
H; orientation-reversing.

It can be assumed that the manifolds M and N have the same dimension n. Let wy € E™(M)
and wy € E™(N) be oriented volume forms (nowhere 0 top forms). Let f € C*°(M x[0,1]) and
y€ E"Y(M x[0,1]) be such that

H'wy = f-miwy +y Ampdt = Hjwn = fiwm,
where f,€C™(M), fi(p)=f(p.t).
(a) Since Hy is a diffeomorphism for all ¢, f(¢,p) = fi(p) € R*. Since M x |0, 1] is connected, either
f(t,p) eRT for all (¢t,p) or f(t,p) R~ for all (¢,p). Thus, Hy is orientation-preserving (i.e. fo(p)>0
for all pe M) if and only if H; is (i.e. f1(p)>0 for all pe M).
(b) Since the maps Hy, H;: M — N are smoothly homotopic,

(Hiwy] = [Hiwy] — —> / Hiwy = / Hiwn .
M M

Since M is connected, either fy(p)>0 for all p€ M or fy(p) <0 for all p€ M; in the first case

/ Hjwn :/ fownr >0,
M M
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while in the second case this integral is negative. The same applies to f; and H;. Since the two
integrals are the same, Hy is orientation-preserving (i.e. fo(p) >0 for all p€ M) if and only if H; is
(i.e. fi(p)>0 for all pe M).

(c) Let H: Rx[0,1] — R be given by
H(p,t) =—tp+ (1 —1t)p.
Then, Hy=idg is orientation-preserving, while H; = —idg is orientation-reversing.

Note: In this case, M =R is not compact and Hy; is the constant map sending R to 0 and so is not
a diffeomorphism.

Part II (choose 2 problems from 4,5, and 6)

4. Let M be a smooth manifold obtained by identifying two copies of a Mobius Band, My and M>,
along their boundary circles. Compute Hj g (M).

Since M is 2-manifold, HY o (M)=0 for k#0,1,2. Since M is connected, H) z(M)~R. Since the
interior of M is a non-orientable open subset of M, M is also non-orientable, and so Hc21eR(M )~0.
It remains to compute H} g (M).

This can be done using Mayer-Vietoris. Let U C M be a small tubular neighborhood of M; (or
the complement of the “equator” in Ms) and V C M a small tubular neighborhood of My (or the
complement of the “equator” in Mj). Thus, U and V are open Mobius Bands, while UNV is an
open cylinder. Since all three are homotopic to a circle, by the homotopy invariance of de Rham
cohomology,

R, if k=0,1;

Hir(U), Hir (V) Hier(UNV) = Hgg(S) ~ .
0, otherwise.

The MV long sequence in this case is
0 — Hier(M) — Hr(U)®HGer(V) — Hir(UNV)
22 Hip(M) — Hig(U)&HE (V) — Hg(UNV) — Hig(M).
Plugging in for the known groups, we obtain
0—R-—R&R — R 2% L (M) — RER — R — 0.
Thus, §g is the zero homomorphism, and the sequence
0 — Hig(M) — RER —R —0

is exact. So, H} (M) =~ R.

Alternatively, the manifold M is homeomorphic to the Klein bottle, as can be seen from the following
diagram (see Chapter 8 in Munkres):



c c b
a a
C
a a o a — o > ) —_ a
/ /
a a
b b b
b

By the last diagram, Hurewicz Theorem, Universal Coefficient Theorem, and de Rham Theorem,

m (M) = <a,b|abab_1> = H{(M;Z) = Abel(m1(M)) =~ Zo ®Z
—  H(M;R)~ H|(M;Z)®zR~R = Hig(M)=~ H(M;R)*~R.

5. Let M be a smooth manifold admitting an open cover {U;}i=1,.. m such that every intersection
Ui, N...NU;, is either empty or diffeomorphic to R™. Show that

(a) if m=2, HY (M) =0 for all p£0;
(b) if m>2, H} (M) =0 for all p>m—1.
(a) By Mayer-Vietoris, there is a long exact
0 — Hier(M) — Hier (U1)® Her (Uz) — Haor (U1NU5)
2 Hign(M) — Hion (U2)® Hion(U2) — Hjen (UiNT2)
s HER (M) — G (U)@ R (U2) — HER (UinU2)

Since HY . (U1NUs), HY L (Uy), HY L (Us) =0 for all p>1, HEE (M) =0 for all p>1. If UyNUs =0,
then this statement applies for p=0 as well. If UyNUs#(), M is connected, and the sequence

0—R—ROGR — R % HL (M) —0

is exact. So, =0 and H} (M)=0.

(b) Suppose the statement holds for some m >2 (part (a) is the m =2 case); we use Mayer-Vietoris
to show that it holds for m+1. Let

U=U,0U0U...UU,, V=Unt1.
By MV, the sequence
é
Hjn (UNV) =5 B (M) — Hily (U)@HLR (V)

is exact. By the inductive assumption, H?(U), HP(UNV) =0 for all p>m—1. Since H} (V) =0

for p > 1, the outer terms of the above exact sequence vanish if p > m—1. Thus, Hg:Pi(M )=0 if

p+1>(m+1)—1, as needed for the inductive step.



6. (a) Explain why RP?xRP* is not orientable.
(b) Describe the orientable double cover M of RP?xRP*.
(c) Determine the de Rham cohomology of M.

(a) If M and N are smooth nonempty manifolds, M x N is orientable if and only if M and N are
orientable; see MT06 #5. The even-dimensional projective spaces, RP? and RP*, are not orientable.

(b) The universal cover of RP?xRP* is M = 5% x S* (because the latter is connected and simply
connected and admits a covering map to the former). The group of deck transformations is

G = {idXid, aq Xid, idxag,alxag} ~~ Wl(M):ZQ@ZQ,

where a1: S? — 5% and ay: S* — 5% are the antipodal maps. The orientable double cover M is the
quotient of M by a subgroup of G of index 2 and thus of order 2. There are three such subgroups.
The quotients of M by {id xid,a; xid} and {id xid,id x ag} are RP?xS* and 52 x RP*; these are
non-orientable manifolds, since one of the components in each product is non-orientable. Thus,

M = ]\Zf/{idxid,al xagy = S*x S, (z,y) ~ (—z,—y).

(c) Since M is a 6-manifold, H (M) =0 unless 0 < k < 6. Since M is compact connected and
orientable, H{. (M), HS r(M)~R. By PS7 #5,

Hip(M) ~ Hfr(M)™ = = {la )€ Hip(M): {a1 xaz}*|a]=[al}.
By Kunneth’s formula, the homomorphism

D Hy R (SH@H(SY) — HER(S*xSY, (Bl h] — [7i8 Am3nl,
p+q=Fk

is an isomorphism. In particular,
HdleR(M)’ngR(M)7H§)eR(M) =0 = HéeR(M)7Hc?i)eR(M)7Hd56R(M) =0.

On the other hand, let [w;] and [wo] be the generators of H3  (S?)~R and Hj  (S*) ~R, respectively.
By the solution to PS6 #6a, al[wi] = (—1)?*[w;] and so

{a1 xag} i |wi] = {m o a1 xaz}*[wi] = {a1 o w1} [w1] = wlai[wi] = —7][w1].
Similarly, {a1 X a2 }*7}[wa] =—m5[ws]. Thus,

H(EER(M) ~ ngR(M)ZQ = 07 H(ZileR(M) ~ H(élLeR(M)Z2 =0.



Part IITI (choose 1 problem from 7 and 8)
7. Let V,W — S be smooth real vector bundles. Show that at least one of the vector bundles
V,W,VeWw — St
is orientable.

This is equivalent to showing that at least one of the real line bundles
APV, APV AP (VW) & APV @ AP — St

is trivial; see Lemma 15.1 in Lecture Notes. The set of isomorphism classes of real line bundles
with the tensor product is an abelian group isomorphic to H'(S';Zs), with the trivial line bundle
corresponding to 0€ H'(S';Zs); see PS9 #2a. The latter group is isomorphic to

HY(S';Zs) ~ Hom (H:(S"; Zs), Zs) ~ Hom (H;(S";Z), Zs) ~ Hom(Z, Zs) =~ Zs,

since Hy(S';Z)~ Abel(n1(S')). Thus, for any v,we H'(S';Zs), at least one of the three elements
v, w,v+w is zero.

Here is a direct argument. Let {U;};=12, . %, with k>4, be a cover of S1 by open intervals such that
UiNU;j= () unless i=j or i=j+1 mod n,

h Vg, — UixR! and BV Wy, — U;xR™
trivializations of V and W, and
9. UinU; — GLR  and g : UinU; — GL,,R
the corresponding transition data. The maps
gl W =gl @ gl UinU; — GLitmR

are then transition data for V@ W. By our assumptions, U;NU; is a connected interval and thus
det g;; does not change sign on U;NU;. By negating the first component of hXH and hK/H if necessary,
we can assume that

detgl, y,detglV,, >0 Vi=1,2,...,n—L

If det g%l >0, then V is orientable; see Lemma 15.1 in Lecture Notes. If det 97‘1/,17 det g}f{l <0, then

detglyﬁw :dethj-deth‘; >0 Vi,j=1,2,...,n.

So, if V, W — S are not orientable, then V@&W —» S is orientable.



8. Letm: V—M be a smooth vector bundle. A connection in V is an R-linear map
V:T'(M;V) —T(M;T*"M®V) st. V(fs)=df®s+ fVs V feC>®(M), seT'(M;V).

(a) Show that V is a first-order differential operator.

(b) What is the symbol of V2

(¢) Under what conditions (on M and/or V') is V elliptic?

(a) First, V is a local operator, i.e. the value of Vs at a point p€ M depends only on the restriction
of s to any neighborhood U of p. If f is a smooth function on M supported in U such that f(p)=1,
then

Vs|, = V(f5)], - dpf@s(p).

by the product-rule condition. The right-hand side of this expression depends only on s|¢.

Let o = (21,...,2,) : U —R" be a chart on M. An isomorphism ¢ : V|y — R" x R¥ of vector
bundles covering ¢ induces such an isomorphism for the bundle T*M ®V:

U TMeV], — R'x R, p— <p,n(a
€T

0 0
e RN | oz,

>> VneT,M®V,, pel.
p

For each 1=1,2,...,k, define

s, eN(U; V) by si(p) = wil(goi(p),ei) VpeU,

where e; €R” is the i-th standard coordinate vector. The homomorphisms

b: C®(R™RY) — T(U;V) {&(fr- o)} Zfz
Jj=nl=k
U: C®°RY (RM)") — DU T MV)  {8((f50)j=1,mi=1,2,.6) }(B) = DD Fi1(6(p))dpz;@51(p),
j=1j=1

are then isomorphisms. By definition of V, there exist

j=nl=k
05, €C®(WU) st Vsi| =33 0(p)dpr;@s(p)  VpeU.
j=11=1
By the product-rule condition on V,
) i=k i=k j=nl=k
V(@1 |, =D do(fied)@si(p) + > D > 054(p) fi(0(p)) dpj@s1(p)
i=1 i=1 j=1 j=1
j=n l=k
_ZZ< +Z (P )dp$j®81(]0)-

j=1j=1



Thus, the operator V|y in the local coordinates (p, 1, ¥) on (U, V |y, T*M ®@V|y) is given by

T 1oVor: C®R";RF) — C®°(R™; (]Rk)”)

dfi
(fi)i=1,2,. 6 — <(‘9 Z o9 L 1) :
Ly §=1,2,..,n:0=1,2,....k

=1

Since this is a first-order differential operator on functions on R", V is a first-order differential op-
erator on vector-bundle sections over M.

(b) Let pe M, a €Ty M, f€C>®(M) be such that f(p)=0 and d,,f =a, and s €['(M;V). By the
product-rule condition on V,

V(fs)], = dpf @5+ f(p) @ (Vs)lp = a @ s(p).
Thus, the symbol of V is given by

oy:T*M — Hom(V, T*M®V), {av(a)}(v) =a®v YaeT,M, veV,, pe M.

(c¢) The operator V is elliptic if and only if the homomorphism
ov(a): V, — TyM®V,
is an isomorphism for all « €Ty M —0 and p€ M. If this is the case (and V has positive rank), then
tkV =1tk T*"M®V = dim M = 1.

Conversely, if dim M =1, oy («) is an isomorphism for all a« € Ty M—0 and p€ M. Thus, V is elliptic
if and only if dim M =1 (or rk V=0).

Bonus Problem

Let v—CP! be the tautological (complex) line bundle. Compute

/@pl a (),

where CP! has its canonical orientation as a complex manifold and c1(v*) is the image of v* under
the composition

HY(CP';¢>(C*)) — H*(CP';Z) — H?*(CP';C) — H3R(CP%;0),

€>®(C*) — CP! is the sheaf of germs of C*-valued smooth functions, the first homomorphism is
induced by the exponential short exact sequence of sheaves, and the last homomorphism is the de
Rham isomorphism (using C instead of R-coefficients simplifies the computation).



We find a representative w € E*(CP') for ¢1(v*) € Hi.z (CP') by unwinding the definitions. Let
Up = {[Xo, X1]€CP': Xo#0}, Uy = {[Xo,X1]€CP': X;#0},

be the usual open subsets isomorphic to C. The bundle maps

h

fy‘Uo —0> UOXC; (£7 C(),Cl) — Co,
h

7|U1 —1> Ul XCa (€> COacl) — Cq,

are the trivializations of v with the overlap map
hoohi': UpNUy x C — UyNU; % C, ([Xo0, X1], 1) — ([Xo, X1], co=(Xo/X1)c1).

Thus, the corresponding transition data for « is given by

X
UpnU; — C*, [X(),Xl] — 70
X1
The induced transition data for v* is described by
~1 00 [ ik Xl
g € Z'({Uo, Uy }; €>(C")), g ([Xo, X1]) = X,

with g10=1/901, goo, 911 =1 (as functions on UyNUy and U;NU}). It determines elements

l9) € H'({Uo, U1 };€%(C)),  [lg]] € H'(CP';€%(C)).

The short exact sequence of sheaves inducing the first arrow in the statement of the problem is

0—2Z—¢®(C) 2B ¢>C*) —0

f SN eQTrif

In order to find the image of v* (or equivalently of [[g]]) in H?>(CP';Z), apply the Snake Lemma
construction to the diagram

€XPoy

0 —= C2(W; Z) —2= C2(W; €2(C)) C2 (805 €2(C*)) —=0
| d |
0 — C(W; Z) —2= O (W; €2(C)) =24 1 (W; €(C*)) —=0

for a refinement 4’ of {Up, U1}. Since go1 € C°(UyNUy; C*) does not have a well-defined logarithm
(go1 corresponds to z— z on C* under the usual identification of Uy with C),

g € Z'({Uo, U1};€%(C")) € C'({Up, U1}; €(C"))

is not in the image of the homomorphism exp;. Thus, we need to take a proper refinement ' of
{Up, U} and choose a refining map u. Let
U(/) = {[X(]:Xl] GCP:[: ’X0’ > ’X1’}7
U, =U —{[r,1]€U;: re[l,00)},
U =U, - {[r, 1]eU;: re(—oo,—1]},

U= {U(’),U:L,U’ },

w: (0,4,—) — (0,1,1).



Thus, (1*g)ox = go1 lugnuy» (1°9)+— =1, and p'g =exp;(g), with g€ C!(4;€(C)) described by

1 X4

o+ ([Xo, X1]) = Q—mln <X0> Im gos € (0,1), Imgo_ € (—=1/2,1/2),

J+0 = —Jo+, Joo, g++ = 0.

By the proof of the Snake Lemma, there exists h € Z2(4'; Z) such that io(h)=81(§). By the Snake
Lemma construction, the image of [[g]] € H*(CP';€>(C*)) under the boundary homomorphism in
the corresponding long exact sequence of modules is [[h]] € H*(CP*;Z).

Via the inclusion Z — C, [[h]] € H*(CP;C). It remains to compute its image in H3 . (CP';C)
under the de Rham isomorphism. In this case, this involves going through two boundary homomor-
phisms. The first arises from the Snake Lemma construction for the diagram

0 — C2(W;C) — C?(W; €®(C)) L= C2(W; Z2) —>0

| d d

0 — C1(;C) — C}(W;e=(C)) L CH(W; 2Y) —0

where Z; C €' is the sheaf of germs of closed C-valued 1-forms. By the previous paragraph, the
construction of the Snake Lemma maps the element

aeZ' (W, ZH cCHW 2, s = dGu,
to h. Let B€ Z'({Uy, U1 }; Z') be given by

1 dz X
Bor € E'(UpNU1), Boi(z) = Sy where z= 21

Since p*f = «, the boundary homomorphism for the short exact sequence

d 1

0—C—¢e®C)— 2" —0

takes [[3]] € HY(CP'; Z1) to [[h]] € H2(CPL;C).

Finally, we need to find a preimage w € H°(CP'; 22) = Z%(CP') = E?(CP') of [[8]] under the
boundary homomorphism for the short exact sequence

0— 2t —et 422 50
of sheaves over CP!. This involves applying the Snake Lemma to the diagram

00— C ({Up, U1 }; 21) —= C ({Up, U1 }; €Y) —L= C ({Up, U1 }; 22) — 0

d d d

0 —= CO'({Up, U1 }; 21) — CO({Up, U1 }; €Y) —4> CO({Uy, U1 }; 22) —0

10



Let ¢ € C*°(CP') be such that ¢([Xo, X1]) =1 if |Xo| < |X1| and ¢([Xo, X1]) =0 if | Xo| > 2| X1/
Thus,
ne CO({Uy, Uh}; EY), no = —¢Bo1 € E'(Uo), m = (1-¢)Bo € E'(Uh),
is well-defined. Since dng =dn; on UyNUj, there is a unique 2-form w € E?(CP') such w|y, = dn;
on U;. Since
(6mor = m |y, — 0| gy, = Bots

we Z%({Uy, U1 }; 2?) is mapped to 3 by the Snake Lemma. Thus,

E*(CPY)  HO(CP';z?)

2 1y — _
Wl e HaenlCP) = EiepTy = qiocrt e

corresponds to [[4]] € HY(CP'; 2" and [[n]] € H?(CP';C) under the isomorphisms factoring the
de Rham isomorphism and to the image of v*.

Using Stokes’ Theorem, we now obtain
. 1 dz 1 dz 1 dz
L= L= fe=am [,10F) = am hoT =am f, T =1
cpl cpl f 2mi gy z 2m Jo1 2 2mi Jo1 2

Remark: With the “correct” definition of ¢;, the answer should be 1. Thus, ¢;(L) should really be
defined to be the negative of the image of L under the above composition of homomorphism. In the
note for PS9 #2, I repeated a mistake from G&H. Their proof that their incorrect definition of ¢; (L)
is the correct one (i.e. satisfies 2. in Proposition on p141) contains an error. The relation between 6,
and 0g worked out in Section 5 Chapter 0 (the last displayed expression on p72) is the opposite of
the third equation in the proof on p141; this would change the sign in the relation. The seemingly
natural isomorphism between the Cech and de Rham cohomologies in G&H and Warner is actually
not the natural one from a certain perspective. In particular, there is a separate isomorphism on each
level, i.e. between H? and H her- They can be unified by forming a double complex, CP(4U; £9), with
the differential D), , =+ (—1)Pd, where § and d are the usual Cech and de Rham differentials; the
sign is needed to insure that D?=0. The Cech and de Rham complexes then inject into this double
complex, inducing isomorphisms in cohomology. The induced isomorphism between H? and H é’eR is
then (—1)?®+1)/2 times the isomorphism in G&H, correcting the sign error in the definition of ¢; (L)
in the de Rham cohomology.
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