MAT 531: Topology\&Geometry, II Spring 2011

Final Exam Solutions

Part I (choose 2 problems from 1,2, and 3)

1. Let $f: \mathbb{R} P^{3} \longrightarrow T^{3} \equiv\left(S^{1}\right)^{3}$ be a smooth map. Show that f is not an immersion. Suppose f is an immersion. Since $\mathbb{R} P^{3}$ and T^{3} have the same dimension, the differential

$$
\mathrm{d}_{x} f: T_{x} \mathbb{R} P^{3} \longrightarrow T_{f(x)} T^{3}
$$

is an isomorphism for every $x \in \mathbb{R} P^{3}$. By the Inverse Function Theorem, f is thus a local diffeomorphism, and so its image is open in T^{3}. Since $\mathbb{R} P^{3}$ is compact and T^{3} is Hausdorff, $f\left(\mathbb{R} P^{3}\right)$ is closed in T^{3}. Since T^{3} is connected, it follows that f is surjective. Since $\mathbb{R} P^{3}$ is compact and f is a local diffeomorphism, $f^{-1}(y) \subset \mathbb{R} P^{3}$ is finite for every $y \in T^{3}$. Thus, f is a covering projection (the intersection of the images of neighborhoods of elements of $f^{-1}(y)$ on which f is a diffeomorphism is an evenly covered neighborhood of y), and

$$
f_{*}: \pi_{1}\left(\mathbb{R} P^{3}, x_{0}\right) \longrightarrow \pi_{1}\left(T^{3}, f\left(x_{0}\right)\right)
$$

is an injective homomorphism. However, this is impossible, since $\pi_{1}\left(\mathbb{R} P^{3}, x_{0}\right) \approx \mathbb{Z}_{2}$ has torsion, while $\pi_{1}\left(T^{3}, f\left(x_{0}\right)\right) \approx \mathbb{Z}^{3}$ is torsion-free.
2. Let X and Y be the vector fields on \mathbb{R}^{3} given by

$$
X=\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}, \quad Y=y \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}+\frac{\partial}{\partial z}
$$

(a) Compute the flows φ_{s} and ψ_{t} of X and Y (give formulas).
(b) Do these flows commute?
(a) The time s-flow of X through $\left(x_{0}, y_{0}, z_{0}\right)$ is the solution to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}(s)=1, \quad y^{\prime}(s)=x, \quad z^{\prime}(s)=y \\
(x(0), y(0), z(0))=\left(x_{0}, y_{0}, z_{0}\right)
\end{array}\right.
$$

Solving the first equation, then the second, and finally the third, we find that

$$
(x(s), y(s), z(s))=\left(x_{0}+s, y_{0}+x_{0} s+\frac{s^{2}}{2}, z_{0}+y_{0} s+x_{0} \frac{s^{2}}{2}+\frac{s^{3}}{6}\right) .
$$

Thus, the time s-flow of X is given by

$$
\varphi_{s}(x, y, z)=\left(x+s, y+s x+\frac{s^{2}}{2}, z+s y+\frac{s^{2}}{2} x+\frac{s^{3}}{6}\right) .
$$

Similarly, the time t-flow of Y is given by

$$
\psi_{t}(x, y, z)=\left(x+t y+\frac{t^{2}}{2} z+\frac{t^{3}}{6}, y+t z+\frac{t^{2}}{2}, z+t\right)
$$

as the roles of x and z in X and Y are interchanged.
(b) Since the Lie bracket of coordinate vector fields is 0 ,

$$
\begin{aligned}
{[X, Y] } & =\left(X(y) \frac{\partial}{\partial x}+X(z) \frac{\partial}{\partial y}+X(1) \frac{\partial}{\partial z}\right)-\left(Y(1) \frac{\partial}{\partial x}+Y(x) \frac{\partial}{\partial y}+Y(y) \frac{\partial}{\partial z}\right) \\
& =\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+0\right)-\left(0+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)=x \frac{\partial}{\partial x}-z \frac{\partial}{\partial z} .
\end{aligned}
$$

Since $[X, Y] \neq 0$, the flows of X and Y do not commute by PS4 $\# 5$.
Alternatively, the first coordinates of $\varphi_{s} \circ \psi_{t}$ and $\psi_{t} \circ \varphi_{s}$ are given by

$$
(x, y, z) \longrightarrow x+t y+\frac{t^{2}}{2} z+\frac{t^{3}}{6}+s,(x+s)+t\left(y+s x+\frac{s^{2}}{2}\right)+\frac{t^{2}}{2}\left(z+s y+\frac{s^{2}}{2} x+\frac{s^{3}}{6}\right)+\frac{t^{3}}{6},
$$

respectively. Since these are not the same (unless $s=0$ or $t=0$), the flows do not commute.
3. Let M and N be smooth oriented connected manifolds and $H: M \times[0,1] \longrightarrow N$ a smooth map. For each $t \in[0,1]$, define

$$
H_{t}: M \longrightarrow N, \quad H_{t}(p)=H(p, t) .
$$

(a) Suppose H_{t} is a diffeomorphism for every $t \in[0,1]$. Show that H_{0} is orientation-preserving if and only if H_{1} is.
(b) Suppose instead that M is compact and H_{0}, H_{1} are diffeomorphisms. Show that H_{0} is orientationpreserving if and only if H_{1} is.
(c) Give an example so that H_{0} and H_{1} are diffeomorphisms, with H_{0} orientation-preserving and H_{1} orientation-reversing.

It can be assumed that the manifolds M and N have the same dimension n. Let $\omega_{M} \in E^{n}(M)$ and $\omega_{N} \in E^{n}(N)$ be oriented volume forms (nowhere 0 top forms). Let $f \in C^{\infty}(M \times[0,1])$ and $\gamma \in E^{n-1}(M \times[0,1])$ be such that

$$
H^{*} \omega_{N}=f \cdot \pi_{1}^{*} \omega_{M}+\gamma \wedge \pi_{2}^{*} \mathrm{~d} t \quad \Longrightarrow \quad H_{t}^{*} \omega_{N}=f_{t} \omega_{M}
$$

where $f_{t} \in C^{\infty}(M), f_{t}(p)=f(p, t)$.
(a) Since H_{t} is a diffeomorphism for all $t, f(t, p)=f_{t}(p) \in \mathbb{R}^{*}$. Since $M \times[0,1]$ is connected, either $f(t, p) \in \mathbb{R}^{+}$for all (t, p) or $f(t, p) \in \mathbb{R}^{-}$for all (t, p). Thus, H_{0} is orientation-preserving (i.e. $f_{0}(p)>0$ for all $p \in M$) if and only if H_{1} is (i.e. $f_{1}(p)>0$ for all $p \in M$).
(b) Since the maps $H_{0}, H_{1}: M \longrightarrow N$ are smoothly homotopic,

$$
\left[H_{0}^{*} \omega_{N}\right]=\left[H_{1}^{*} \omega_{N}\right] \quad \Longrightarrow \quad \int_{M} H_{0}^{*} \omega_{N}=\int_{M} H_{1}^{*} \omega_{N}
$$

Since M is connected, either $f_{0}(p)>0$ for all $p \in M$ or $f_{0}(p)<0$ for all $p \in M$; in the first case

$$
\int_{M} H_{0}^{*} \omega_{N}=\int_{M} f_{0} \omega_{M}>0
$$

while in the second case this integral is negative. The same applies to f_{1} and H_{1}. Since the two integrals are the same, H_{0} is orientation-preserving (i.e. $f_{0}(p)>0$ for all $p \in M$) if and only if H_{1} is (i.e. $f_{1}(p)>0$ for all $p \in M$).
(c) Let $H: \mathbb{R} \times[0,1] \longrightarrow \mathbb{R}$ be given by

$$
H(p, t)=-t p+(1-t) p
$$

Then, $H_{0}=\mathrm{id}_{\mathbb{R}}$ is orientation-preserving, while $H_{1}=-\mathrm{id}_{\mathbb{R}}$ is orientation-reversing.
Note: In this case, $M=\mathbb{R}$ is not compact and $H_{1 / 2}$ is the constant map sending \mathbb{R} to 0 and so is not a diffeomorphism.

Part II (choose 2 problems from 4,5, and 6)

4. Let M be a smooth manifold obtained by identifying two copies of a Mobius Band, M_{1} and M_{2}, along their boundary circles. Compute $H_{\text {deR }}^{*}(M)$.

Since M is 2-manifold, $H_{\mathrm{deR}}^{k}(M)=0$ for $k \neq 0,1,2$. Since M is connected, $H_{\mathrm{deR}}^{0}(M) \approx \mathbb{R}$. Since the interior of M_{1} is a non-orientable open subset of M, M is also non-orientable, and so $H_{\mathrm{deR}}^{2}(M) \approx 0$. It remains to compute $H_{\mathrm{deR}}^{1}(M)$.

This can be done using Mayer-Vietoris. Let $U \subset M$ be a small tubular neighborhood of M_{1} (or the complement of the "equator" in M_{2}) and $V \subset M$ a small tubular neighborhood of M_{2} (or the complement of the "equator" in M_{1}). Thus, U and V are open Mobius Bands, while $U \cap V$ is an open cylinder. Since all three are homotopic to a circle, by the homotopy invariance of de Rham cohomology,

$$
H_{\mathrm{deR}}^{k}(U), H_{\mathrm{deR}}^{k}(V), H_{\mathrm{deR}}^{k}(U \cap V) \approx H_{\mathrm{deR}}^{k}\left(S^{1}\right) \approx \begin{cases}\mathbb{R}, & \text { if } k=0,1 \\ 0, & \text { otherwise }\end{cases}
$$

The MV long sequence in this case is

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}(M) \longrightarrow H_{\mathrm{deR}}^{0}(U) \oplus H_{\mathrm{deR}}^{0}(V) \longrightarrow H_{\mathrm{deR}}^{0}(U \cap V) \\
& \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}(M) \longrightarrow H_{\mathrm{deR}}^{1}(U) \oplus H_{\mathrm{deR}}^{1}(V) \longrightarrow H_{\mathrm{deR}}^{1}(U \cap V) \longrightarrow H_{\mathrm{deR}}^{2}(M) .
\end{aligned}
$$

Plugging in for the known groups, we obtain

$$
0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}(M) \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow 0
$$

Thus, δ_{0} is the zero homomorphism, and the sequence

$$
0 \longrightarrow H_{\mathrm{deR}}^{1}(M) \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow 0
$$

is exact. So, $H_{\mathrm{deR}}^{1}(M) \approx \mathbb{R}$.
Alternatively, the manifold M is homeomorphic to the Klein bottle, as can be seen from the following diagram (see Chapter 8 in Munkres):

By the last diagram, Hurewicz Theorem, Universal Coefficient Theorem, and de Rham Theorem,

$$
\begin{aligned}
\pi_{1}(M)=\left\langle a, b \mid a b a b^{-1}\right\rangle & \Longrightarrow H_{1}(M ; \mathbb{Z}) \approx \operatorname{Abel}\left(\pi_{1}(M)\right) \approx \mathbb{Z}_{2} \oplus \mathbb{Z} \\
& \Longrightarrow H_{1}(M ; \mathbb{R}) \approx H_{1}(M ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} \approx \mathbb{R} \quad \Longrightarrow \quad H_{\mathrm{deR}}^{1}(M) \approx H_{1}(M ; \mathbb{R})^{*} \approx \mathbb{R} .
\end{aligned}
$$

5. Let M be a smooth manifold admitting an open cover $\left\{U_{i}\right\}_{i=1, \ldots, m}$ such that every intersection $U_{i_{1}} \cap \ldots \cap U_{i_{k}}$ is either empty or diffeomorphic to \mathbb{R}^{n}. Show that
(a) if $m=2, H_{d e R}^{p}(M)=0$ for all $p \neq 0$;
(b) if $m \geq 2, H_{d e R}^{p}(M)=0$ for all $p \geq m-1$.
(a) By Mayer-Vietoris, there is a long exact

$$
\begin{aligned}
& 0 \longrightarrow H_{\mathrm{deR}}^{0}(M) \longrightarrow H_{\mathrm{deR}}^{0}\left(U_{1}\right) \oplus H_{\mathrm{deR}}^{0}\left(U_{2}\right) \longrightarrow H_{\mathrm{deR}}^{0}\left(U_{1} \cap U_{2}\right) \\
& \stackrel{\delta_{0}}{\longrightarrow} H_{\mathrm{deR}}^{1}(M) \longrightarrow H_{\mathrm{deR}}^{1}\left(U_{1}\right) \oplus H_{\mathrm{deR}}^{1}\left(U_{2}\right) \longrightarrow H_{\mathrm{deR}}^{1}\left(U_{1} \cap U_{2}\right) \\
& \vdots \\
& \xrightarrow{\delta_{p}} H_{\mathrm{deR}}^{p+1}(M) \longrightarrow H_{\mathrm{deR}}^{p+1}\left(U_{1}\right) \oplus H_{\mathrm{deR}}^{p+1}\left(U_{2}\right) \longrightarrow H_{\mathrm{deR}}^{p+1}\left(U_{1} \cap U_{2}\right)
\end{aligned}
$$

Since $H_{\mathrm{deR}}^{p}\left(U_{1} \cap U_{2}\right), H_{\mathrm{deR}}^{p+1}\left(U_{1}\right), H_{\mathrm{deR}}^{p+1}\left(U_{2}\right)=0$ for all $p \geq 1, H_{\mathrm{deR}}^{p+1}(M)=0$ for all $p \geq 1$. If $U_{1} \cap U_{2}=\emptyset$, then this statement applies for $p=0$ as well. If $U_{1} \cap U_{2} \neq \emptyset, M$ is connected, and the sequence

$$
0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \xrightarrow{\delta_{0}} H_{\mathrm{deR}}^{1}(M) \longrightarrow 0
$$

is exact. So, $\delta_{0}=0$ and $H_{\mathrm{deR}}^{1}(M)=0$.
(b) Suppose the statement holds for some $m \geq 2$ (part (a) is the $m=2$ case); we use Mayer-Vietoris to show that it holds for $m+1$. Let

$$
U=U_{1} \cup U_{2} \cup \ldots \cup U_{m}, \quad V=U_{m+1}
$$

By MV, the sequence

$$
H_{\mathrm{deR}}^{p}(U \cap V) \xrightarrow{\delta_{p}} H_{\mathrm{deR}}^{p+1}(M) \longrightarrow H_{\mathrm{deR}}^{p+1}(U) \oplus H_{\mathrm{deR}}^{p+1}(V)
$$

is exact. By the inductive assumption, $H^{p}(U), H^{p}(U \cap V)=0$ for all $p \geq m-1$. Since $H_{\mathrm{deR}}^{p}(V)=0$ for $p \geq 1$, the outer terms of the above exact sequence vanish if $p \geq m-1$. Thus, $H_{\text {deR }}^{p+1}(M)=0$ if $p+1 \geq(m+1)-1$, as needed for the inductive step.
6. (a) Explain why $\mathbb{R} P^{2} \times \mathbb{R} P^{4}$ is not orientable.
(b) Describe the orientable double cover M of $\mathbb{R} P^{2} \times \mathbb{R} P^{4}$.
(c) Determine the de Rham cohomology of M.
(a) If M and N are smooth nonempty manifolds, $M \times N$ is orientable if and only if M and N are orientable; see MT06 \#5. The even-dimensional projective spaces, $\mathbb{R} P^{2}$ and $\mathbb{R} P^{4}$, are not orientable.
(b) The universal cover of $\mathbb{R} P^{2} \times \mathbb{R} P^{4}$ is $\tilde{M}=S^{2} \times S^{4}$ (because the latter is connected and simply connected and admits a covering map to the former). The group of deck transformations is

$$
G=\left\{\mathrm{id} \times \mathrm{id}, a_{1} \times \mathrm{id}, \mathrm{id} \times a_{2}, a_{1} \times a_{2}\right\} \approx \pi_{1}(M)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2},
$$

where $a_{1}: S^{2} \longrightarrow S^{2}$ and $a_{2}: S^{4} \longrightarrow S^{4}$ are the antipodal maps. The orientable double cover M is the quotient of \tilde{M} by a subgroup of G of index 2 and thus of order 2 . There are three such subgroups. The quotients of \tilde{M} by $\left\{\mathrm{id} \times \mathrm{id}, a_{1} \times \mathrm{id}\right\}$ and $\left\{\operatorname{id} \times \mathrm{id}, \mathrm{id} \times a_{2}\right\}$ are $\mathbb{R} P^{2} \times S^{4}$ and $S^{2} \times \mathbb{R} P^{4}$; these are non-orientable manifolds, since one of the components in each product is non-orientable. Thus,

$$
M=\tilde{M} /\left\{\mathrm{id} \times \mathrm{id}, a_{1} \times a_{2}\right\} \equiv S^{2} \times S^{4}, \quad(x, y) \sim(-x,-y)
$$

(c) Since M is a 6 -manifold, $H_{\mathrm{deR}}^{k}(M)=0$ unless $0 \leq k \leq 6$. Since M is compact connected and orientable, $H_{\mathrm{deR}}^{0}(M), H_{\mathrm{deR}}^{6}(M) \approx \mathbb{R}$. By PS7 \#5,

$$
H_{\mathrm{deR}}^{k}(M) \approx H_{\mathrm{deR}}^{k}(\tilde{M})^{\mathbb{Z}_{2}} \equiv\left\{[\tilde{\alpha}] \in H_{\mathrm{deR}}^{k}(\tilde{M}):\left\{a_{1} \times a_{2}\right\}^{*}[\tilde{\alpha}]=[\tilde{\alpha}]\right\}
$$

By Kunneth's formula, the homomorphism

$$
\bigoplus_{p+q=k} H_{\mathrm{deR}}^{p}\left(S^{2}\right) \otimes H_{\mathrm{deR}}^{q}\left(S^{4}\right) \longrightarrow H_{\mathrm{deR}}^{k}\left(S^{2} \times S^{4}\right), \quad[\beta] \otimes[\gamma] \longrightarrow\left[\pi_{1}^{*} \beta \wedge \pi_{2}^{*} \gamma\right],
$$

is an isomorphism. In particular,

$$
H_{\mathrm{deR}}^{1}(\tilde{M}), H_{\mathrm{deR}}^{3}(\tilde{M}), H_{\mathrm{deR}}^{5}(\tilde{M})=0 \quad \Longrightarrow \quad H_{\mathrm{deR}}^{1}(M), H_{\mathrm{deR}}^{3}(M), H_{\mathrm{deR}}^{5}(M)=0 .
$$

On the other hand, let $\left[\omega_{1}\right]$ and $\left[\omega_{2}\right]$ be the generators of $H_{\text {deR }}^{2}\left(S^{2}\right) \approx \mathbb{R}$ and $H_{\mathrm{deR}}^{4}\left(S^{4}\right) \approx \mathbb{R}$, respectively. By the solution to PS6 \#6a, $a_{1}^{*}\left[\omega_{1}\right]=(-1)^{2+1}\left[\omega_{1}\right]$ and so

$$
\left\{a_{1} \times a_{2}\right\}^{*} \pi_{1}^{*}\left[\omega_{1}\right]=\left\{\pi_{1} \circ a_{1} \times a_{2}\right\}^{*}\left[\omega_{1}\right]=\left\{a_{1} \circ \pi_{1}\right\}^{*}\left[\omega_{1}\right]=\pi_{1}^{*} a_{1}^{*}\left[\omega_{1}\right]=-\pi_{1}^{*}\left[\omega_{1}\right] .
$$

Similarly, $\left\{a_{1} \times a_{2}\right\}^{*} \pi_{2}^{*}\left[\omega_{2}\right]=-\pi_{2}^{*}\left[\omega_{2}\right]$. Thus,

$$
H_{\mathrm{deR}}^{2}(M) \approx H_{\mathrm{deR}}^{2}(\tilde{M})^{\mathbb{Z}_{2}}=0, \quad H_{\mathrm{deR}}^{4}(M) \approx H_{\mathrm{deR}}^{4}(\tilde{M})^{\mathbb{Z}_{2}}=0
$$

Part III (choose 1 problem from 7 and 8)
7. Let $V, W \longrightarrow S^{1}$ be smooth real vector bundles. Show that at least one of the vector bundles

$$
V, W, V \oplus W \longrightarrow S^{1}
$$

is orientable.
This is equivalent to showing that at least one of the real line bundles

$$
\Lambda^{\mathrm{top}} V, \Lambda^{\mathrm{top}} W, \Lambda^{\mathrm{top}}(V \oplus W) \approx \Lambda^{\mathrm{top}} V \otimes \Lambda^{\mathrm{top}} W \longrightarrow S^{1}
$$

is trivial; see Lemma 15.1 in Lecture Notes. The set of isomorphism classes of real line bundles with the tensor product is an abelian group isomorphic to $\check{H}^{1}\left(S^{1} ; \mathbb{Z}_{2}\right)$, with the trivial line bundle corresponding to $0 \in \check{H}^{1}\left(S^{1} ; \mathbb{Z}_{2}\right)$; see PS9 \#2a. The latter group is isomorphic to

$$
H^{1}\left(S^{1} ; \mathbb{Z}_{2}\right) \approx \operatorname{Hom}\left(H_{1}\left(S^{1} ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right) \approx \operatorname{Hom}\left(H_{1}\left(S^{1} ; \mathbb{Z}\right), \mathbb{Z}_{2}\right) \approx \operatorname{Hom}\left(\mathbb{Z}, \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}
$$

since $H_{1}\left(S^{1} ; \mathbb{Z}\right) \approx \operatorname{Abel}\left(\pi_{1}\left(S^{1}\right)\right)$. Thus, for any $v, w \in \check{H}^{1}\left(S^{1} ; \mathbb{Z}_{2}\right)$, at least one of the three elements $v, w, v+w$ is zero.

Here is a direct argument. Let $\left\{U_{i}\right\}_{i=1,2, \ldots, k}$, with $k \geq 4$, be a cover of S^{1} by open intervals such that $U_{i} \cap U_{j}=\emptyset$ unless $i=j$ or $i \equiv j \pm 1 \bmod n$,

$$
h_{i}^{V}:\left.V\right|_{U_{i}} \longrightarrow U_{i} \times \mathbb{R}^{l} \quad \text { and } \quad h_{i}^{W}:\left.W\right|_{U_{i}} \longrightarrow U_{i} \times \mathbb{R}^{m}
$$

trivializations of V and W, and

$$
g_{i j}^{V}: U_{i} \cap U_{j} \longrightarrow \mathrm{GL}_{l} \mathbb{R} \quad \text { and } \quad g_{i j}^{W}: U_{i} \cap U_{j} \longrightarrow \mathrm{GL}_{m} \mathbb{R}
$$

the corresponding transition data. The maps

$$
g_{i, j}^{V \oplus W}=g_{i, j}^{V} \oplus g_{i, j}^{W}:: U_{i} \cap U_{j} \longrightarrow \mathrm{GL}_{l+m} \mathbb{R}
$$

are then transition data for $V \oplus W$. By our assumptions, $U_{i} \cap U_{j}$ is a connected interval and thus $\operatorname{det} g_{i j}$ does not change sign on $U_{i} \cap U_{j}$. By negating the first component of h_{i+1}^{V} and h_{i+1}^{W} if necessary, we can assume that

$$
\operatorname{det} g_{i, i+1}^{V}, \operatorname{det} g_{i, i+1}^{W}>0 \quad \forall i=1,2, \ldots, n-1
$$

If $\operatorname{det} g_{n, 1}^{V}>0$, then V is orientable; see Lemma 15.1 in Lecture Notes. If $\operatorname{det} g_{n, 1}^{V}, \operatorname{det} g_{n, 1}^{W}<0$, then

$$
\operatorname{det} g_{i, j}^{V \oplus W}=\operatorname{det} g_{i, j}^{V} \cdot \operatorname{det} g_{i, j}^{W}>0 \quad \forall i, j=1,2, \ldots, n
$$

So, if $V, W \longrightarrow S^{1}$ are not orientable, then $V \oplus W \longrightarrow S^{1}$ is orientable.
8. Let $\pi: V \longrightarrow M$ be a smooth vector bundle. A connection in V is an \mathbb{R}-linear map

$$
\nabla: \Gamma(M ; V) \longrightarrow \Gamma\left(M ; T^{*} M \otimes V\right) \quad \text { s.t. } \quad \nabla(f s)=\mathrm{d} f \otimes s+f \nabla s \quad \forall f \in C^{\infty}(M), s \in \Gamma(M ; V) .
$$

(a) Show that ∇ is a first-order differential operator.
(b) What is the symbol of ∇ ?
(c) Under what conditions (on M and/or V) is ∇ elliptic?
(a) First, ∇ is a local operator, i.e. the value of ∇s at a point $p \in M$ depends only on the restriction of s to any neighborhood U of p. If f is a smooth function on M supported in U such that $f(p)=1$, then

$$
\left.\nabla s\right|_{p}=\left.\nabla(f s)\right|_{p}-\mathrm{d}_{p} f \otimes s(p)
$$

by the product-rule condition. The right-hand side of this expression depends only on $\left.s\right|_{U}$.
Let $\varphi \equiv\left(x_{1}, \ldots, x_{n}\right): U \longrightarrow \mathbb{R}^{n}$ be a chart on M. An isomorphism $\psi:\left.V\right|_{U} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}$ of vector bundles covering φ induces such an isomorphism for the bundle $T^{*} M \otimes V$:

$$
\Psi:\left.T^{*} M \otimes V\right|_{U} \longrightarrow \mathbb{R}^{n} \times\left(\mathbb{R}^{k}\right)^{n}, \quad \eta \longrightarrow\left(p, \eta\left(\left.\frac{\partial}{\partial x_{1}}\right|_{p}\right), \ldots, \eta\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right)\right) \quad \forall \eta \in T_{p}^{*} M \otimes V_{p}, p \in U .
$$

For each $i=1,2, \ldots, k$, define

$$
s_{i} \in \Gamma(U ; V) \quad \text { by } \quad s_{i}(p)=\psi^{-1}\left(\varphi_{i}(p), e_{i}\right) \quad \forall p \in U,
$$

where $e_{i} \in \mathbb{R}^{k}$ is the i-th standard coordinate vector. The homomorphisms

$$
\begin{aligned}
& \tilde{\psi}: C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{k}\right) \longrightarrow \Gamma(U ; V) \\
& \left\{\tilde{\psi}\left(f_{1}, \ldots, f_{k}\right)\right\}(p)=\sum_{i=1}^{i=k} f_{i}(\phi(p)) s_{i}(p), \\
& \tilde{\Psi}: C^{\infty}\left(\mathbb{R}^{n} ;\left(\mathbb{R}^{k}\right)^{n}\right) \longrightarrow \Gamma\left(U ; T^{*} M \otimes V\right) \quad\left\{\tilde{\Psi}\left(\left(f_{j, l}\right)_{j=1, \ldots, n ; l=1,2, \ldots, k}\right)\right\}(p)=\sum_{j=1}^{j=n} \sum_{j=1}^{l=k} f_{j, l}(\phi(p)) \mathrm{d}_{p} x_{j} \otimes s_{l}(p),
\end{aligned}
$$

are then isomorphisms. By definition of ∇, there exist

$$
\theta_{j, l}^{i} \in C^{\infty}(U) \quad \text { s.t. }\left.\quad \nabla s_{i}\right|_{p}=\sum_{j=1}^{j=n} \sum_{l=1}^{l=k} \theta_{j, l}^{i}(p) \mathrm{d}_{p} x_{j} \otimes s_{l}(p) \quad \forall p \in U .
$$

By the product-rule condition on ∇,

$$
\begin{aligned}
\left.\nabla\left(\tilde{\psi}\left(f_{1}, \ldots, f_{k}\right)\right)\right|_{p} & =\sum_{i=1}^{i=k} \mathrm{~d}_{p}\left(f_{i} \circ \phi\right) \otimes s_{i}(p)+\sum_{i=1}^{i=k} \sum_{j=1}^{j=n} \sum_{j=1}^{l=k} \theta_{j, l}^{i}(p) f_{i}(\phi(p)) \mathrm{d}_{p} x_{j} \otimes s_{l}(p) \\
& =\sum_{j=1}^{j=n} \sum_{j=1}^{l=k}\left(\left.\frac{\partial\left(f_{l} \circ \phi\right)}{\partial x_{j}}\right|_{p}+\sum_{i=1}^{i=k} \theta_{j, l}^{i}(p) f_{i}(\phi(p))\right) \mathrm{d}_{p} x_{j} \otimes s_{l}(p) .
\end{aligned}
$$

Thus, the operator $\left.\nabla\right|_{U}$ in the local coordinates (φ, ψ, Ψ) on $\left(U,\left.V\right|_{U},\left.T^{*} M \otimes V\right|_{U}\right)$ is given by

$$
\begin{aligned}
\tilde{\Psi}^{-1} \circ \nabla \circ \tilde{\psi}: C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{k}\right) & \longrightarrow C^{\infty}\left(\mathbb{R}^{n} ;\left(\mathbb{R}^{k}\right)^{n}\right), \\
\left(f_{i}\right)_{i=1,2, \ldots, k} & \longrightarrow\left(\frac{\partial f_{l}}{\partial x_{j}}+\sum_{i=1}^{i=k} \theta_{j, l}^{i} \circ \varphi^{-1} \cdot f_{i}\right)_{j=1,2, \ldots, n ; l=1,2, \ldots, k} .
\end{aligned}
$$

Since this is a first-order differential operator on functions on \mathbb{R}^{n}, ∇ is a first-order differential operator on vector-bundle sections over M.
(b) Let $p \in M, \alpha \in T_{p}^{*} M, f \in C^{\infty}(M)$ be such that $f(p)=0$ and $\mathrm{d}_{p} f=\alpha$, and $s \in \Gamma(M ; V)$. By the product-rule condition on ∇,

$$
\left.\nabla(f s)\right|_{p}=\mathrm{d}_{p} f \otimes s+\left.f(p) \otimes(\nabla s)\right|_{p}=\alpha \otimes s(p)
$$

Thus, the symbol of ∇ is given by

$$
\sigma_{\nabla}: T^{*} M \longrightarrow \operatorname{Hom}\left(V, T^{*} M \otimes V\right), \quad\left\{\sigma_{\nabla}(\alpha)\right\}(v)=\alpha \otimes v \quad \forall \alpha \in T_{p}^{*} M, v \in V_{p}, p \in M
$$

(c) The operator ∇ is elliptic if and only if the homomorphism

$$
\sigma_{\nabla}(\alpha): V_{p} \longrightarrow T_{p}^{*} M \otimes V_{p}
$$

is an isomorphism for all $\alpha \in T_{p}^{*} M-0$ and $p \in M$. If this is the case (and V has positive rank), then

$$
\operatorname{rk} V=\operatorname{rk} T^{*} M \otimes V \quad \Longrightarrow \quad \operatorname{dim} M=1
$$

Conversely, if $\operatorname{dim} M=1, \sigma_{\nabla}(\alpha)$ is an isomorphism for all $\alpha \in T_{p}^{*} M-0$ and $p \in M$. Thus, ∇ is elliptic if and only if $\operatorname{dim} M=1$ (or rk $V=0$).

Bonus Problem

Let $\gamma \longrightarrow \mathbb{C} P^{1}$ be the tautological (complex) line bundle. Compute

$$
\int_{\mathbb{C} P^{1}} c_{1}\left(\gamma^{*}\right)
$$

where $\mathbb{C} P^{1}$ has its canonical orientation as a complex manifold and $c_{1}\left(\gamma^{*}\right)$ is the image of γ^{*} under the composition

$$
\check{H}^{1}\left(\mathbb{C} P^{1} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right) \longrightarrow \check{H}^{2}\left(\mathbb{C} P^{1} ; \underline{\mathbb{Z}}\right) \longrightarrow \check{H}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right) \longrightarrow H_{\mathrm{deR}}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right)
$$

$\mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right) \longrightarrow \mathbb{C} P^{1}$ is the sheaf of germs of \mathbb{C}^{*}-valued smooth functions, the first homomorphism is induced by the exponential short exact sequence of sheaves, and the last homomorphism is the de Rham isomorphism (using \mathbb{C} instead of \mathbb{R}-coefficients simplifies the computation).

We find a representative $\omega \in E^{2}\left(\mathbb{C} P^{1}\right)$ for $c_{1}\left(\gamma^{*}\right) \in H_{\text {deR }}^{2}\left(\mathbb{C} P^{1}\right)$ by unwinding the definitions. Let

$$
U_{0}=\left\{\left[X_{0}, X_{1}\right] \in \mathbb{C} P^{1}: X_{0} \neq 0\right\}, \quad U_{1}=\left\{\left[X_{0}, X_{1}\right] \in \mathbb{C} P^{1}: X_{1} \neq 0\right\}
$$

be the usual open subsets isomorphic to \mathbb{C}. The bundle maps

$$
\begin{array}{ll}
\left.\gamma\right|_{U_{0}} \xrightarrow{h_{0}} U_{0} \times \mathbb{C}, & \left(\ell, c_{0}, c_{1}\right) \longrightarrow c_{0}, \\
\left.\gamma\right|_{U_{1}} \xrightarrow{h_{1}} U_{1} \times \mathbb{C}, & \left(\ell, c_{0}, c_{1}\right) \longrightarrow c_{1},
\end{array}
$$

are the trivializations of γ with the overlap map

$$
h_{0} \circ h_{1}^{-1}: U_{0} \cap U_{1} \times \mathbb{C} \longrightarrow U_{0} \cap U_{1} \times \mathbb{C}, \quad\left(\left[X_{0}, X_{1}\right], c_{1}\right) \longrightarrow\left(\left[X_{0}, X_{1}\right], c_{0}=\left(X_{0} / X_{1}\right) c_{1}\right)
$$

Thus, the corresponding transition data for γ is given by

$$
U_{0} \cap U_{1} \longrightarrow \mathbb{C}^{*}, \quad\left[X_{0}, X_{1}\right] \longrightarrow \frac{X_{0}}{X_{1}}
$$

The induced transition data for γ^{*} is described by

$$
g \in \check{Z}^{1}\left(\left\{U_{0}, U_{1}\right\} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right), \quad g_{01}\left(\left[X_{0}, X_{1}\right]\right)=\frac{X_{1}}{X_{0}}
$$

with $g_{10}=1 / g_{01}, g_{00}, g_{11} \equiv 1$ (as functions on $U_{0} \cap U_{0}$ and $U_{1} \cap U_{1}$). It determines elements

$$
[g] \in \check{H}^{1}\left(\left\{U_{0}, U_{1}\right\} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right), \quad[[g]] \in \check{H}^{1}\left(\mathbb{C} P^{1} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right)
$$

The short exact sequence of sheaves inducing the first arrow in the statement of the problem is

$$
\begin{aligned}
\underline{0} \longrightarrow \underline{\mathbb{Z}} \longrightarrow \mathfrak{C}^{\infty}(\mathbb{C}) & \xrightarrow{\exp } \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right) \longrightarrow \underline{0} \\
f & \longrightarrow e^{2 \pi \mathrm{i} f}
\end{aligned}
$$

In order to find the image of γ^{*} (or equivalently of $\left.[[g]]\right)$ in $\check{H}^{2}\left(\mathbb{C} P^{1} ; \underline{Z}\right)$, apply the Snake Lemma construction to the diagram

for a refinement \mathfrak{U}^{\prime} of $\left\{U_{0}, U_{1}\right\}$. Since $g_{01} \in C^{\infty}\left(U_{0} \cap U_{1} ; \mathbb{C}^{*}\right)$ does not have a well-defined logarithm (g_{01} corresponds to $z \longrightarrow z$ on \mathbb{C}^{*} under the usual identification of U_{0} with \mathbb{C}),

$$
g \in \check{Z}^{1}\left(\left\{U_{0}, U_{1}\right\} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right) \subset \check{C}^{1}\left(\left\{U_{0}, U_{1}\right\} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right)
$$

is not in the image of the homomorphism $\exp _{1}$. Thus, we need to take a proper refinement \mathfrak{U}^{\prime} of $\left\{U_{0}, U_{1}\right\}$ and choose a refining map μ. Let

$$
\begin{aligned}
U_{0}^{\prime} & =\left\{\left[X_{0}, X_{1}\right] \in \mathbb{C} P^{1}:\left|X_{0}\right|>\left|X_{1}\right|\right\}, & \mathfrak{U}=\left\{U_{0}^{\prime}, U_{+}^{\prime}, U_{-}^{\prime}\right\}, \\
U_{+}^{\prime} & =U_{1}-\left\{[r, 1] \in U_{1}: r \in[1, \infty)\right\}, & \mu:(0,+,-) \longrightarrow(0,1,1) . \\
U_{-}^{\prime} & =U_{1}-\left\{[r, 1] \in U_{1}: r \in(-\infty,-1]\right\}, &
\end{aligned}
$$

Thus, $\left(\mu^{*} g\right)_{0 \pm}=\left.g_{01}\right|_{U_{0}^{\prime} \cap U_{ \pm}^{\prime}},\left(\mu^{*} g\right)_{+-} \equiv 1$, and $\mu^{*} g=\exp _{1}(\tilde{g})$, with $\tilde{g} \in \check{C}^{1}\left(\mathfrak{U}^{\prime} ; \mathfrak{C}^{\infty}(\mathbb{C})\right)$ described by

$$
\begin{gathered}
\tilde{g}_{0 \pm}\left(\left[X_{0}, X_{1}\right]\right)=\frac{1}{2 \pi \mathfrak{i}} \ln \left(\frac{X_{1}}{X_{0}}\right), \quad \operatorname{Im} \tilde{g}_{0+} \in(0,1), \quad \operatorname{Im} \tilde{g}_{0-} \in(-1 / 2,1 / 2), \\
\tilde{g}_{ \pm 0}=-\tilde{g}_{0 \pm}, \quad \tilde{g}_{00}, \tilde{g}_{ \pm \pm} \equiv 0 .
\end{gathered}
$$

By the proof of the Snake Lemma, there exists $h \in \check{Z}^{2}\left(\mathfrak{U}^{\prime} ; \mathbb{Z}\right)$ such that $i_{2}(h)=\delta_{1}(\tilde{g})$. By the Snake Lemma construction, the image of $[[g]] \in \check{H}^{1}\left(\mathbb{C} P^{1} ; \mathfrak{C}^{\infty}\left(\mathbb{C}^{*}\right)\right)$ under the boundary homomorphism in the corresponding long exact sequence of modules is $[[h]] \in \check{H}^{2}\left(\mathbb{C} P^{1} ; \underline{Z}\right)$.

Via the inclusion $\mathbb{Z} \longrightarrow \mathbb{C},[[h]] \in \check{H}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right)$. It remains to compute its image in $H_{\text {deR }}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right)$ under the de Rham isomorphism. In this case, this involves going through two boundary homomorphisms. The first arises from the Snake Lemma construction for the diagram

where $\mathcal{Z}_{1} \subset \mathcal{E}^{1}$ is the sheaf of germs of closed \mathbb{C}-valued 1-forms. By the previous paragraph, the construction of the Snake Lemma maps the element

$$
\alpha \in \check{Z}^{1}\left(\mathfrak{U}^{\prime} ; \mathcal{Z}^{1}\right) \subset \check{C}^{1}\left(\mathfrak{U}^{\prime} ; \mathcal{Z}^{1}\right), \quad \alpha_{* *} \equiv \mathrm{~d} \tilde{g}_{* *}
$$

to h. Let $\beta \in \check{Z}^{1}\left(\left\{U_{0}, U_{1}\right\} ; \mathcal{Z}^{1}\right)$ be given by

$$
\beta_{01} \in E^{1}\left(U_{0} \cap U_{1}\right), \quad \beta_{01}(z)=\frac{1}{2 \pi \mathfrak{i}} \frac{\mathrm{~d} z}{z}, \quad \text { where } \quad z=\frac{X_{1}}{X_{0}}
$$

Since $\mu^{*} \beta=\alpha$, the boundary homomorphism for the short exact sequence

$$
\underline{0} \longrightarrow \underline{\mathbb{C}} \longrightarrow \mathfrak{C}^{\infty}(\mathbb{C}) \xrightarrow{\mathrm{d}} \mathcal{Z}^{1} \longrightarrow \underline{0}
$$

takes $[[\beta]] \in \check{H}^{1}\left(\mathbb{C} P^{1} ; \mathcal{Z}^{1}\right)$ to $[[h]] \in \check{H}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right)$.
Finally, we need to find a preimage $\omega \in \check{H}^{0}\left(\mathbb{C} P^{1} ; \mathcal{Z}^{2}\right)=\mathcal{Z}^{2}\left(\mathbb{C} P^{1}\right)=E^{2}\left(\mathbb{C} P^{1}\right)$ of $[[\beta]]$ under the boundary homomorphism for the short exact sequence

$$
\underline{0} \longrightarrow \mathcal{Z}^{1} \longrightarrow \mathcal{E}^{1} \xrightarrow{\mathrm{~d}} \mathcal{Z}^{2} \longrightarrow \underline{0}
$$

of sheaves over $\mathbb{C} P^{1}$. This involves applying the Snake Lemma to the diagram

Let $\phi \in C^{\infty}\left(\mathbb{C} P^{1}\right)$ be such that $\phi\left(\left[X_{0}, X_{1}\right]\right)=1$ if $\left|X_{0}\right|<\left|X_{1}\right|$ and $\phi\left(\left[X_{0}, X_{1}\right]\right)=0$ if $\left|X_{0}\right|>2\left|X_{1}\right|$. Thus,

$$
\eta \in \check{C}^{0}\left(\left\{U_{0}, U_{1}\right\} ; \mathcal{E}^{1}\right), \quad \eta_{0}=-\phi \beta_{01} \in E^{1}\left(U_{0}\right), \quad \eta_{1}=(1-\phi) \beta_{01} \in E^{1}\left(U_{1}\right)
$$

is well-defined. Since $\mathrm{d} \eta_{0}=\mathrm{d} \eta_{1}$ on $U_{0} \cap U_{1}$, there is a unique 2-form $\omega \in E^{2}\left(\mathbb{C} P^{1}\right)$ such $\left.\omega\right|_{U_{i}}=\mathrm{d} \eta_{i}$ on U_{i}. Since

$$
\left.(\delta \eta)_{01} \equiv \eta_{1}\right|_{U_{0} \cap U_{1}}-\left.\eta_{0}\right|_{U_{0} \cap U_{1}}=\beta_{01}
$$

$\omega \in \check{Z}^{0}\left(\left\{U_{0}, U_{1}\right\} ; \mathcal{Z}^{2}\right)$ is mapped to β by the Snake Lemma. Thus,

$$
[\omega] \in H_{\mathrm{deR}}^{2}\left(\mathbb{C} P^{1}\right) \equiv \frac{E^{2}\left(\mathbb{C} P^{1}\right)}{\mathrm{d} E^{1}\left(\mathbb{C} P^{1}\right)}=\frac{\check{H}^{0}\left(\mathbb{C} P^{1} ; \mathcal{Z}^{2}\right)}{\mathrm{d} \check{H}^{0}\left(\mathbb{C} P^{1} ; \mathcal{E}^{1}\right)}
$$

corresponds to $[[\beta]] \in \check{H}^{1}\left(\mathbb{C} P^{1} ; \mathcal{Z}^{1}\right)$ and $[[h]] \in \check{H}^{2}\left(\mathbb{C} P^{1} ; \mathbb{C}\right)$ under the isomorphisms factoring the de Rham isomorphism and to the image of γ^{*}.

Using Stokes' Theorem, we now obtain

$$
\int_{\mathbb{C} P^{1}} c_{1}\left(\gamma^{*}\right)=\int_{\mathbb{C} P^{1}} \omega=\int_{U_{0}^{\prime}} \omega=-\frac{1}{2 \pi \mathfrak{i}} \int_{\bar{U}_{0}^{\prime}} \mathrm{d}\left(\phi \frac{\mathrm{~d} z}{z}\right)=-\frac{1}{2 \pi \mathfrak{i}} \oint_{S^{1}} \phi \frac{\mathrm{~d} z}{z}=-\frac{1}{2 \pi \mathfrak{i}} \oint_{S^{1}} \frac{\mathrm{~d} z}{z}=-1 .
$$

Remark: With the "correct" definition of c_{1}, the answer should be 1 . Thus, $c_{1}(L)$ should really be defined to be the negative of the image of L under the above composition of homomorphism. In the note for PS9 \#2, I repeated a mistake from G\&H. Their proof that their incorrect definition of $c_{1}(L)$ is the correct one (i.e. satisfies 2. in Proposition on p141) contains an error. The relation between θ_{α} and θ_{β} worked out in Section 5 Chapter 0 (the last displayed expression on p72) is the opposite of the third equation in the proof on p141; this would change the sign in the relation. The seemingly natural isomorphism between the Čech and de Rham cohomologies in G\&H and Warner is actually not the natural one from a certain perspective. In particular, there is a separate isomorphism on each level, i.e. between \breve{H}^{p} and $H_{\text {deR }}^{p}$. They can be unified by forming a double complex, $\check{C}^{p}\left(\mathfrak{U} ; \mathcal{E}^{q}\right)$, with the differential $D_{p, q}=\delta+(-1)^{p} d$, where δ and d are the usual Cech and de Rham differentials; the sign is needed to insure that $D^{2}=0$. The Čech and de Rham complexes then inject into this double complex, inducing isomorphisms in cohomology. The induced isomorphism between \breve{H}^{p} and H_{deR}^{p} is then $(-1)^{p(p+1) / 2}$ times the isomorphism in G\&H, correcting the sign error in the definition of $c_{1}(L)$ in the de Rham cohomology.

