
MAT 531: Topology&Geometry, II
Spring 2011

Final Exam Solutions

Part I (choose 2 problems from 1,2, and 3)

1. Let f : RP 3 −→ T 3≡(S1)3 be a smooth map. Show that f is not an immersion.
Suppose f is an immersion. Since RP 3 and T 3 have the same dimension, the differential

dxf : TxRP
3 −→ Tf(x)T

3

is an isomorphism for every x ∈ RP 3. By the Inverse Function Theorem, f is thus a local diffeo-
morphism, and so its image is open in T 3. Since RP 3 is compact and T 3 is Hausdorff, f(RP 3) is
closed in T 3. Since T 3 is connected, it follows that f is surjective. Since RP 3 is compact and f is a
local diffeomorphism, f−1(y)⊂RP 3 is finite for every y∈T 3. Thus, f is a covering projection (the
intersection of the images of neighborhoods of elements of f−1(y) on which f is a diffeomorphism is
an evenly covered neighborhood of y), and

f∗ : π1(RP
3, x0) −→ π1(T

3, f(x0))

is an injective homomorphism. However, this is impossible, since π1(RP
3, x0)≈Z2 has torsion, while

π1(T
3, f(x0))≈Z

3 is torsion-free.

2. Let X and Y be the vector fields on R
3 given by

X =
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
, Y = y

∂

∂x
+ z

∂

∂y
+

∂

∂z
.

(a) Compute the flows ϕs and ψt of X and Y (give formulas).

(b) Do these flows commute?

(a) The time s-flow of X through (x0, y0, z0) is the solution to the initial-value problem

{

x′(s) = 1, y′(s) = x, z′(s) = y,

(x(0), y(0), z(0)) = (x0, y0, z0).

Solving the first equation, then the second, and finally the third, we find that

(

x(s), y(s), z(s)
)

=
(

x0+s, y0+x0s+
s2

2
, z0+y0s+x0

s2

2
+
s3

6

)

.

Thus, the time s-flow of X is given by

ϕs(x, y, z) =
(

x+s, y+sx+
s2

2
, z+sy+

s2

2
x+

s3

6

)

.

Similarly, the time t-flow of Y is given by

ψt(x, y, z) =
(

x+ ty+
t2

2
z+

t3

6
, y+tz+

t2

2
, z+t

)

,



as the roles of x and z in X and Y are interchanged.

(b) Since the Lie bracket of coordinate vector fields is 0,

[X,Y ] =

(

X(y)
∂

∂x
+X(z)

∂

∂y
+X(1)

∂

∂z

)

−

(

Y (1)
∂

∂x
+ Y (x)

∂

∂y
+ Y (y)

∂

∂z

)

=

(

x
∂

∂x
+ y

∂

∂y
+ 0

)

−

(

0 + y
∂

∂y
+ z

∂

∂z

)

= x
∂

∂x
− z

∂

∂z
.

Since [X,Y ] 6=0, the flows of X and Y do not commute by PS4 #5.

Alternatively, the first coordinates of ϕs◦ψt and ψt◦ϕs are given by

(x, y, z) −→ x+ ty+
t2

2
z+

t3

6
+ s , (x+s) + t

(

y+sx+
s2

2

)

+
t2

2

(

z+sy+
s2

2
x+

s3

6

)

+
t3

6
,

respectively. Since these are not the same (unless s=0 or t=0), the flows do not commute.

3. Let M and N be smooth oriented connected manifolds and H : M×[0, 1] −→ N a smooth map.
For each t∈ [0, 1], define

Ht :M −→ N, Ht(p) = H(p, t).

(a) Suppose Ht is a diffeomorphism for every t∈ [0, 1]. Show that H0 is orientation-preserving if
and only if H1 is.

(b) Suppose instead thatM is compact and H0, H1 are diffeomorphisms. Show that H0 is orientation-
preserving if and only if H1 is.

(c) Give an example so that H0 and H1 are diffeomorphisms, with H0 orientation-preserving and
H1 orientation-reversing.

It can be assumed that the manifolds M and N have the same dimension n. Let ωM ∈ En(M)
and ωN ∈ En(N) be oriented volume forms (nowhere 0 top forms). Let f ∈ C∞(M × [0, 1]) and
γ∈En−1(M×[0, 1]) be such that

H∗ωN = f · π∗1ωM + γ ∧ π∗2dt =⇒ H∗
t ωN = ftωM ,

where ft∈C
∞(M), ft(p)=f(p, t).

(a) Since Ht is a diffeomorphism for all t, f(t, p) = ft(p)∈R
∗. Since M× [0, 1] is connected, either

f(t, p)∈R
+ for all (t, p) or f(t, p)∈R

− for all (t, p). Thus, H0 is orientation-preserving (i.e. f0(p)>0
for all p∈M) if and only if H1 is (i.e. f1(p)>0 for all p∈M).

(b) Since the maps H0, H1 :M−→N are smoothly homotopic,

[H∗
0ωN ] = [H∗

1ωN ] =⇒

∫

M
H∗

0ωN =

∫

M
H∗

1ωN .

Since M is connected, either f0(p)>0 for all p∈M or f0(p)<0 for all p∈M ; in the first case
∫

M
H∗

0ωN =

∫

M
f0ωM > 0,
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while in the second case this integral is negative. The same applies to f1 and H1. Since the two
integrals are the same, H0 is orientation-preserving (i.e. f0(p)>0 for all p∈M) if and only if H1 is
(i.e. f1(p)>0 for all p∈M).

(c) Let H : R×[0, 1] −→ R be given by

H(p, t) = −tp+ (1− t)p.

Then, H0=idR is orientation-preserving, while H1=−idR is orientation-reversing.

Note: In this case, M=R is not compact and H1/2 is the constant map sending R to 0 and so is not
a diffeomorphism.

Part II (choose 2 problems from 4,5, and 6)

4. Let M be a smooth manifold obtained by identifying two copies of a Mobius Band, M1 and M2,
along their boundary circles. Compute H∗

deR(M).

Since M is 2-manifold, Hk
deR(M)=0 for k 6=0, 1, 2. Since M is connected, H0

deR(M)≈R. Since the
interior of M1 is a non-orientable open subset of M , M is also non-orientable, and so H2

deR(M)≈0.
It remains to compute H1

deR(M).

This can be done using Mayer-Vietoris. Let U ⊂M be a small tubular neighborhood of M1 (or
the complement of the “equator” in M2) and V ⊂M a small tubular neighborhood of M2 (or the
complement of the “equator” in M1). Thus, U and V are open Mobius Bands, while U ∩V is an
open cylinder. Since all three are homotopic to a circle, by the homotopy invariance of de Rham
cohomology,

Hk
deR(U), Hk

deR(V ), Hk
deR(U∩V ) ≈ Hk

deR(S
1) ≈

{

R, if k=0, 1;

0, otherwise.

The MV long sequence in this case is

0 −→ H0
deR(M) −→ H0

deR(U)⊕H0
deR(V ) −→ H0

deR(U∩V )

δ0−→ H1
deR(M) −→ H1

deR(U)⊕H1
deR(V ) −→ H1

deR(U∩V ) −→ H2
deR(M).

Plugging in for the known groups, we obtain

0 −→ R −→ R⊕R −→ R
δ0−→ H1

deR(M) −→ R⊕R −→ R −→ 0.

Thus, δ0 is the zero homomorphism, and the sequence

0 −→ H1
deR(M) −→ R⊕R −→ R −→ 0

is exact. So, H1
deR(M) ≈ R.

Alternatively, the manifoldM is homeomorphic to the Klein bottle, as can be seen from the following
diagram (see Chapter 8 in Munkres):
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a a

c

b

a′ a′

c

b

a a

b

a′ a′

c

b

a a

b

b

By the last diagram, Hurewicz Theorem, Universal Coefficient Theorem, and de Rham Theorem,

π1(M) =
〈

a, b|abab−1
〉

=⇒ H1(M ;Z) ≈ Abel(π1(M)) ≈ Z2 ⊕ Z

=⇒ H1(M ;R) ≈ H1(M ;Z)⊗Z R ≈ R =⇒ H1
deR(M) ≈ H1(M ;R)∗ ≈ R.

5. Let M be a smooth manifold admitting an open cover {Ui}i=1,...,m such that every intersection
Ui1∩. . .∩Uik is either empty or diffeomorphic to R

n. Show that

(a) if m=2, Hp
deR(M) = 0 for all p 6=0;

(b) if m≥2, Hp
deR(M) = 0 for all p≥m−1.

(a) By Mayer-Vietoris, there is a long exact

0 −→ H0
deR(M) −→ H0

deR(U1)⊕H
0
deR(U2) −→ H0

deR(U1∩U2)

δ0−→ H1
deR(M) −→ H1

deR(U1)⊕H
1
deR(U2) −→ H1

deR(U1∩U2)

...

δp
−→ Hp+1

deR (M) −→ Hp+1
deR (U1)⊕H

p+1
deR (U2) −→ Hp+1

deR (U1∩U2)

Since Hp
deR(U1∩U2), H

p+1
deR (U1), H

p+1
deR (U2)=0 for all p≥1, Hp+1

deR (M)=0 for all p≥1. If U1∩U2=∅,
then this statement applies for p=0 as well. If U1∩U2 6=∅, M is connected, and the sequence

0 −→ R −→ R⊕R −→ R
δ0−→ H1

deR(M) −→ 0

is exact. So, δ0=0 and H1
deR(M)=0.

(b) Suppose the statement holds for some m≥2 (part (a) is the m=2 case); we use Mayer-Vietoris
to show that it holds for m+1. Let

U = U1 ∪ U2 ∪ . . . ∪ Um, V = Um+1 .

By MV, the sequence

Hp
deR(U∩V )

δp
−→ Hp+1

deR (M) −→ Hp+1
deR (U)⊕Hp+1

deR (V )

is exact. By the inductive assumption, Hp(U), Hp(U∩V ) = 0 for all p≥m−1. Since Hp
deR(V ) = 0

for p≥ 1, the outer terms of the above exact sequence vanish if p≥m−1. Thus, Hp+1
deR (M) = 0 if

p+1≥(m+1)−1, as needed for the inductive step.
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6. (a) Explain why RP 2×RP 4 is not orientable.
(b) Describe the orientable double cover M of RP 2×RP 4.
(c) Determine the de Rham cohomology of M .

(a) If M and N are smooth nonempty manifolds, M×N is orientable if and only if M and N are
orientable; see MT06 #5. The even-dimensional projective spaces, RP 2 and RP 4, are not orientable.

(b) The universal cover of RP 2×RP 4 is M̃ = S2×S4 (because the latter is connected and simply
connected and admits a covering map to the former). The group of deck transformations is

G = {id×id, a1×id, id×a2, a1×a2} ≈ π1(M)=Z2⊕Z2 ,

where a1 : S
2−→S2 and a2 : S

4−→S4 are the antipodal maps. The orientable double cover M is the
quotient of M̃ by a subgroup of G of index 2 and thus of order 2. There are three such subgroups.
The quotients of M̃ by {id×id, a1×id} and {id×id, id×a2} are RP 2×S4 and S2×RP 4; these are
non-orientable manifolds, since one of the components in each product is non-orientable. Thus,

M = M̃
/

{id×id, a1×a2} ≡ S2×S4, (x, y) ∼ (−x,−y).

(c) Since M is a 6-manifold, Hk
deR(M) = 0 unless 0 ≤ k ≤ 6. Since M is compact connected and

orientable, H0
deR(M), H6

deR(M)≈R. By PS7 #5,

Hk
deR(M) ≈ Hk

deR(M̃)Z2 ≡
{

[α̃]∈Hk
deR(M̃) : {a1×a2}

∗[α̃]=[α̃]
}

.

By Kunneth’s formula, the homomorphism

⊕

p+q=k

Hp
deR(S

2)⊗Hq
deR(S

4) −→ Hk
deR(S

2×S4), [β]⊗ [γ] −→
[

π∗1β ∧ π∗2γ],

is an isomorphism. In particular,

H1
deR(M̃), H3

deR(M̃), H5
deR(M̃) = 0 =⇒ H1

deR(M), H3
deR(M), H5

deR(M) = 0.

On the other hand, let [ω1] and [ω2] be the generators ofH
2
deR(S

2)≈R andH4
deR(S

4)≈R, respectively.
By the solution to PS6 #6a, a∗1[ω1] = (−1)2+1[ω1] and so

{a1×a2}
∗π∗1[ω1] = {π1 ◦ a1×a2}

∗[ω1] = {a1 ◦ π1}
∗[ω1] = π∗1a

∗
1[ω1] = −π∗1[ω1].

Similarly, {a1×a2}
∗π∗2[ω2]=−π∗2[ω2]. Thus,

H2
deR(M) ≈ H2

deR(M̃)Z2 = 0, H4
deR(M) ≈ H4

deR(M̃)Z2 = 0.
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Part III (choose 1 problem from 7 and 8)

7. Let V,W −→ S1 be smooth real vector bundles. Show that at least one of the vector bundles

V,W, V ⊕W −→ S1

is orientable.

This is equivalent to showing that at least one of the real line bundles

ΛtopV,ΛtopW,Λtop(V ⊕W ) ≈ ΛtopV ⊗ΛtopW −→ S1

is trivial; see Lemma 15.1 in Lecture Notes. The set of isomorphism classes of real line bundles
with the tensor product is an abelian group isomorphic to Ȟ1(S1;Z2), with the trivial line bundle
corresponding to 0∈Ȟ1(S1;Z2); see PS9 #2a. The latter group is isomorphic to

H1(S1;Z2) ≈ Hom
(

H1(S
1;Z2),Z2

)

≈ Hom
(

H1(S
1;Z),Z2

)

≈ Hom(Z,Z2) ≈ Z2 ,

since H1(S
1;Z)≈Abel(π1(S

1)). Thus, for any v, w∈ Ȟ1(S1;Z2), at least one of the three elements
v, w, v+w is zero.

Here is a direct argument. Let {Ui}i=1,2,...,k, with k≥4, be a cover of S1 by open intervals such that
Ui∩Uj= ∅ unless i=j or i≡j±1 mod n,

hVi : V |Ui
−→ Ui×R

l and hWi :W |Ui
−→ Ui×R

m

trivializations of V and W , and

gVij : Ui∩Uj −→ GLlR and gWij : Ui∩Uj −→ GLmR

the corresponding transition data. The maps

gV⊕W
i,j = gVi,j ⊕ gWi,j :: Ui∩Uj −→ GLl+mR

are then transition data for V ⊕W . By our assumptions, Ui∩Uj is a connected interval and thus
det gij does not change sign on Ui∩Uj . By negating the first component of hVi+1 and h

W
i+1 if necessary,

we can assume that
det gVi,i+1, det g

W
i,i+1 > 0 ∀ i=1, 2, . . . , n−1.

If det gVn,1>0, then V is orientable; see Lemma 15.1 in Lecture Notes. If det gVn,1, det g
W
n,1<0, then

det gV⊕W
i,j = det gVi,j · det g

W
i,j > 0 ∀ i, j=1, 2, . . . , n.

So, if V,W −→S1 are not orientable, then V ⊕W −→S1 is orientable.
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8. Let π : V −→M be a smooth vector bundle. A connection in V is an R-linear map

∇ : Γ(M ;V ) −→ Γ(M ;T ∗M⊗V ) s.t. ∇(fs) = df⊗s+ f∇s ∀ f ∈C∞(M), s∈Γ(M ;V ).

(a) Show that ∇ is a first-order differential operator.

(b) What is the symbol of ∇?

(c) Under what conditions (on M and/or V ) is ∇ elliptic?

(a) First, ∇ is a local operator, i.e. the value of ∇s at a point p∈M depends only on the restriction
of s to any neighborhood U of p. If f is a smooth function on M supported in U such that f(p)=1,
then

∇s
∣

∣

p
= ∇

(

fs)
∣

∣

p
− dpf⊗s(p),

by the product-rule condition. The right-hand side of this expression depends only on s|U .

Let ϕ≡ (x1, . . . , xn) : U −→ R
n be a chart on M . An isomorphism ψ : V |U −→ R

n×R
k of vector

bundles covering ϕ induces such an isomorphism for the bundle T ∗M⊗V :

Ψ: T ∗M⊗V
∣

∣

U
−→ R

n×(Rk)n , η −→

(

p, η

(

∂

∂x1

∣

∣

∣

∣

p

)

, . . . , η

(

∂

∂xn

∣

∣

∣

∣

p

))

∀ η∈T ∗
pM⊗Vp, p∈U.

For each i=1, 2, . . . , k, define

si∈Γ(U ;V ) by si(p) = ψ−1
(

ϕi(p), ei
)

∀ p∈U,

where ei∈R
k is the i-th standard coordinate vector. The homomorphisms

ψ̃ : C∞(Rn;Rk) −→ Γ(U ;V )
{

ψ̃(f1, . . . , fk)
}

(p) =
i=k
∑

i=1

fi
(

φ(p)
)

si(p),

Ψ̃ : C∞(Rn; (Rk)n) −→ Γ(U ;T ∗M⊗V )
{

Ψ̃((fj,l)j=1,...,n;l=1,2,...,k)
}

(p) =

j=n
∑

j=1

l=k
∑

j=1

fj,l
(

φ(p)
)

dpxj⊗sl(p),

are then isomorphisms. By definition of ∇, there exist

θij,l ∈ C∞(U) s.t. ∇si
∣

∣

p
=

j=n
∑

j=1

l=k
∑

l=1

θij,l(p)dpxj⊗sl(p) ∀ p∈U.

By the product-rule condition on ∇,

∇
(

ψ̃(f1, . . . , fk))
∣

∣

p
=

i=k
∑

i=1

dp(fi◦φ)⊗si(p) +
i=k
∑

i=1

j=n
∑

j=1

l=k
∑

j=1

θij,l(p)fi
(

φ(p)
)

dpxj⊗sl(p)

=

j=n
∑

j=1

l=k
∑

j=1

(

∂(fl◦φ)

∂xj

∣

∣

∣

∣

p

+
i=k
∑

i=1

θij,l(p)fi
(

φ(p)
)

)

dpxj⊗sl(p).
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Thus, the operator ∇|U in the local coordinates (ϕ, ψ,Ψ) on (U, V |U , T
∗M⊗V |U ) is given by

Ψ̃−1 ◦ ∇ ◦ ψ̃ : C∞(Rn;Rk) −→ C∞(Rn; (Rk)n),

(fi)i=1,2,...,k −→

(

∂fl
∂xj

+

i=k
∑

i=1

θij,l◦ ϕ
−1 · fi

)

j=1,2,...,n;l=1,2,...,k

.

Since this is a first-order differential operator on functions on R
n, ∇ is a first-order differential op-

erator on vector-bundle sections over M .

(b) Let p∈M , α∈T ∗
pM , f ∈C∞(M) be such that f(p)= 0 and dpf =α, and s∈Γ(M ;V ). By the

product-rule condition on ∇,

∇(fs)
∣

∣

p
= dpf ⊗ s+ f(p)⊗ (∇s)|p = α⊗ s(p).

Thus, the symbol of ∇ is given by

σ∇ : T ∗M −→ Hom(V, T ∗M⊗V ),
{

σ∇(α)
}

(v) = α⊗ v ∀α∈T ∗
pM, v∈Vp, p∈M.

(c) The operator ∇ is elliptic if and only if the homomorphism

σ∇(α) : Vp −→ T ∗
pM⊗Vp

is an isomorphism for all α∈T ∗
pM−0 and p∈M . If this is the case (and V has positive rank), then

rkV = rkT ∗M⊗V =⇒ dimM = 1.

Conversely, if dimM=1, σ∇(α) is an isomorphism for all α∈T ∗
pM−0 and p∈M . Thus, ∇ is elliptic

if and only if dimM=1 (or rkV=0).

Bonus Problem

Let γ−→CP 1 be the tautological (complex) line bundle. Compute

∫

CP 1

c1(γ
∗),

where CP 1 has its canonical orientation as a complex manifold and c1(γ
∗) is the image of γ∗ under

the composition

Ȟ1(CP 1;C∞(C∗)) −→ Ȟ2(CP 1;Z) −→ Ȟ2(CP 1;C) −→ H2
deR(CP

1;C),

C
∞(C∗) −→ CP 1 is the sheaf of germs of C∗-valued smooth functions, the first homomorphism is

induced by the exponential short exact sequence of sheaves, and the last homomorphism is the de
Rham isomorphism (using C instead of R-coefficients simplifies the computation).

8



We find a representative ω∈E2(CP 1) for c1(γ
∗)∈H2

deR(CP
1) by unwinding the definitions. Let

U0 =
{

[X0, X1]∈CP 1 : X0 6=0
}

, U1 =
{

[X0, X1]∈CP 1 : X1 6=0
}

,

be the usual open subsets isomorphic to C. The bundle maps

γ|U0

h0−→ U0×C,
(

ℓ, c0, c1) −→ c0,

γ|U1

h1−→ U1×C,
(

ℓ, c0, c1) −→ c1,

are the trivializations of γ with the overlap map

h0 ◦ h
−1
1 : U0∩U1 × C −→ U0∩U1 × C,

(

[X0, X1], c1
)

−→
(

[X0, X1], c0=(X0/X1)c1
)

.

Thus, the corresponding transition data for γ is given by

U0∩U1 −→ C
∗, [X0, X1] −→

X0

X1
.

The induced transition data for γ∗ is described by

g ∈ Ž1
(

{U0, U1};C
∞(C∗)

)

, g01
(

[X0, X1]
)

=
X1

X0
,

with g10=1/g01, g00, g11≡1 (as functions on U0∩U0 and U1∩U1). It determines elements

[g] ∈ Ȟ1({U0, U1};C
∞(C∗)),

[

[g]
]

∈ Ȟ1(CP 1;C∞(C∗)).

The short exact sequence of sheaves inducing the first arrow in the statement of the problem is

0 −→ Z −→ C
∞(C)

exp
−→ C

∞(C∗) −→ 0

f −→ e2πif

In order to find the image of γ∗ (or equivalently of
[

[g]
]

) in Ȟ2(CP 1;Z), apply the Snake Lemma
construction to the diagram

0 // Č2
(

U
′;Z

) i2
// Č2

(

U
′;C∞(C)

) exp
2
// Č2

(

U
′;C∞(C∗)

)

// 0

0 // Č1
(

U
′;Z

) i1
//

δ

OO

Č1
(

U
′;C∞(C)

) exp
1
//

δ

OO

Č1
(

U
′;C∞(C∗)

)

//

δ

OO

0

for a refinement U′ of {U0, U1}. Since g01∈C
∞(U0∩U1;C

∗) does not have a well-defined logarithm
(g01 corresponds to z−→z on C

∗ under the usual identification of U0 with C),

g ∈ Ž1({U0, U1};C
∞(C∗)) ⊂ Č1({U0, U1};C

∞(C∗))

is not in the image of the homomorphism exp1. Thus, we need to take a proper refinement U
′ of

{U0, U1} and choose a refining map µ. Let

U ′
0 =

{

[X0, X1]∈CP 1 : |X0|> |X1|
}

,

U ′
+ = U1 −

{

[r, 1]∈U1 : r∈ [1,∞)},

U ′
− = U1 −

{

[r, 1]∈U1 : r∈(−∞,−1]},

U
′ =

{

U ′
0, U

′
+, U

′
−

}

,

µ : (0,+,−) −→ (0, 1, 1).
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Thus, (µ∗g)0±=g01|U ′
0
∩U ′

±
, (µ∗g)+−≡1, and µ∗g =exp1(g̃), with g̃∈ Č

1(U′;C∞(C)) described by

g̃0±
(

[X0, X1]
)

=
1

2πi
ln

(

X1

X0

)

, Im g̃0+ ∈ (0, 1), Im g̃0− ∈ (−1/2, 1/2),

g̃±0 = −g̃0±, g̃00, g̃±± ≡ 0.

By the proof of the Snake Lemma, there exists h∈ Ž2(U′;Z) such that i2(h)= δ1(g̃). By the Snake
Lemma construction, the image of

[

[g]
]

∈ Ȟ1(CP 1;C∞(C∗)) under the boundary homomorphism in
the corresponding long exact sequence of modules is

[

[h]
]

∈Ȟ2(CP 1;Z).

Via the inclusion Z−→ C,
[

[h]
]

∈ Ȟ2(CP 1;C). It remains to compute its image in H2
deR(CP

1;C)
under the de Rham isomorphism. In this case, this involves going through two boundary homomor-
phisms. The first arises from the Snake Lemma construction for the diagram

0 // Č2
(

U
′;C

)

// Č2
(

U
′;C∞(C)

) d
// Č2

(

U
′;Z1

)

// 0

0 // Č1
(

U
′;C

)

//

δ

OO

Č1
(

U
′;C∞(C)

) d
//

δ

OO

Č1
(

U
′;Z1

)

//

δ

OO

0

where Z1 ⊂ E1 is the sheaf of germs of closed C-valued 1-forms. By the previous paragraph, the
construction of the Snake Lemma maps the element

α ∈ Ž1
(

U
′;Z1

)

⊂ Č1
(

U
′;Z1

)

, α∗∗ ≡ dg̃∗∗ ,

to h. Let β∈ Ž1({U0, U1};Z
1) be given by

β01 ∈ E1(U0∩U1), β01(z) =
1

2πi

dz

z
, where z =

X1

X0
.

Since µ∗β = α, the boundary homomorphism for the short exact sequence

0 −→ C −→ C
∞(C)

d
−→ Z1 −→ 0

takes
[

[β]
]

∈ Ȟ1(CP 1;Z1) to
[

[h]
]

∈Ȟ2(CP 1;C).

Finally, we need to find a preimage ω ∈ Ȟ0(CP 1;Z2) = Z2(CP 1) = E2(CP 1) of
[

[β]
]

under the
boundary homomorphism for the short exact sequence

0 −→ Z1 −→ E1 d
−→ Z2 −→ 0

of sheaves over CP 1. This involves applying the Snake Lemma to the diagram

0 // Č1
(

{U0, U1};Z
1
)

// Č1
(

{U0, U1}; E
1
) d

// Č1
(

{U0, U1};Z
2
)

// 0

0 // Č0
(

{U0, U1};Z
1
)

//

δ

OO

Č0
(

{U0, U1}; E
1
) d

//

δ

OO

Č0
(

{U0, U1};Z
2
)

//

δ

OO

0

10



Let φ ∈ C∞(CP 1) be such that φ([X0, X1]) = 1 if |X0| < |X1| and φ([X0, X1]) = 0 if |X0| > 2|X1|.
Thus,

η ∈ Č0
(

{U0, U1}; E
1
)

, η0 = −φβ01 ∈ E1(U0), η1 = (1−φ)β01 ∈ E1(U1),

is well-defined. Since dη0 = dη1 on U0∩U1, there is a unique 2-form ω ∈E2(CP 1) such ω|Ui
= dηi

on Ui. Since
(δη)01 ≡ η1

∣

∣

U0∩U1

− η0
∣

∣

U0∩U1

= β01,

ω∈ Ž0({U0, U1};Z
2) is mapped to β by the Snake Lemma. Thus,

[ω] ∈ H2
deR(CP

1) ≡
E2(CP 1)

dE1(CP 1)
=

Ȟ0(CP 1;Z2)

d Ȟ0(CP 1; E1)

corresponds to
[

[β]
]

∈ Ȟ1(CP 1;Z1) and
[

[h]
]

∈ Ȟ2(CP 1;C) under the isomorphisms factoring the
de Rham isomorphism and to the image of γ∗.

Using Stokes’ Theorem, we now obtain

∫

CP 1

c1(γ
∗) =

∫

CP 1

ω =

∫

U ′
0

ω = −
1

2πi

∫

Ū ′
0

d

(

φ
dz

z

)

= −
1

2πi

∮

S1

φ
dz

z
= −

1

2πi

∮

S1

dz

z
= −1.

Remark: With the “correct” definition of c1, the answer should be 1. Thus, c1(L) should really be
defined to be the negative of the image of L under the above composition of homomorphism. In the
note for PS9 #2, I repeated a mistake from G&H. Their proof that their incorrect definition of c1(L)
is the correct one (i.e. satisfies 2. in Proposition on p141) contains an error. The relation between θα
and θβ worked out in Section 5 Chapter 0 (the last displayed expression on p72) is the opposite of
the third equation in the proof on p141; this would change the sign in the relation. The seemingly
natural isomorphism between the Čech and de Rham cohomologies in G&H and Warner is actually
not the natural one from a certain perspective. In particular, there is a separate isomorphism on each
level, i.e. between Ȟp and Hp

deR. They can be unified by forming a double complex, Čp(U; Eq), with
the differential Dp,q = δ+(−1)pd, where δ and d are the usual Čech and de Rham differentials; the
sign is needed to insure that D2=0. The Čech and de Rham complexes then inject into this double
complex, inducing isomorphisms in cohomology. The induced isomorphism between Ȟp and Hp

deR is
then (−1)p(p+1)/2 times the isomorphism in G&H, correcting the sign error in the definition of c1(L)
in the de Rham cohomology.
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