MAT 531: Topology\&Geometry, II Spring 2010

Problem Set 11

Due on Thursday, 5/6, in class

1. Let M and N be compact oriented connected n-manifolds. If $f: M \longrightarrow N$ is a smooth map, the degree of f is the number $\operatorname{deg} f \in \mathbb{R}$ such that

$$
\int_{M} f^{*} \omega=(\operatorname{deg} f) \cdot \int_{N} \omega \quad \forall \omega \in E^{n}(N) .
$$

This number is well-defined (i.e. exists) and is an integer (you should be able to prove these two claims, but you can assume them for this problem).
(a) Show that if $f: M \longrightarrow N$ and $g: N \longrightarrow X$ are smooth maps between compact oriented connected n-manifolds, then

$$
\operatorname{deg}(g \circ f)=(\operatorname{deg} g) \cdot(\operatorname{deg} f)
$$

(b) Show that if $f: M \longrightarrow N$ is a covering projection between compact oriented connected n-manifolds, then $\operatorname{deg} f$ is the degree of f as a covering map (i.e. the number of elements in each fiber).
(c) Show that if $f: M \longrightarrow N$ is a smooth map of degree one between compact oriented connected n-manifolds, then

$$
f_{*}: \pi_{1}(M) \longrightarrow \pi_{1}(N)
$$

is surjective.
Note: The last part uses a fact that has been stated previously and will be proved in class on Tuesday, $5 / 4$. You can nearly complete the solution to this problem without this fact.
2. State and prove a Mayer-Vietoris theorem for compactly supported cohomology.

Note: The restriction of a compactly supported form to an open subset need not be compactly supported. You do not need anything from the lecture on Tuesday, $5 / 4$, to do this problem.

3 . Let M be an oriented n-manifold, possibly non-compact.
(a) Show that the pairing

$$
H_{\mathrm{de} \mathrm{R}}^{*}(M) \otimes H_{\mathrm{de} ; c}^{*}(M) \longrightarrow \mathbb{R}, \quad[\alpha] \otimes[\beta] \longrightarrow \int_{M} \alpha \wedge \beta,
$$

is well-defined.
(b) Show that the above pairing is nondegenerate if $M=\mathbb{R}^{n}$.
(c) Suppose that M admits a cover $\left\{U_{i}\right\}_{i=1, \ldots, m}$ such that every intersection $U_{i_{1}} \cap \ldots \cap U_{i_{k}}$ is either empty or diffeomorphic to \mathbb{R}^{n}. Show that the above pairing is nondegenerate.

