MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2008

More on Grassmannians

A flag \mathbf{V} in \mathbb{C}^{n} is an increasing sequence of $n+1$ linear subspaces of \mathbb{C}^{n} :

$$
\begin{equation*}
\mathbf{V}=\left(V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq \ldots V_{n-1} \subsetneq V_{n}\right) \tag{1}
\end{equation*}
$$

Thus, V_{i} is a linear subspace of \mathbb{C}^{n} of dimension i containing V_{i-1}; in particular, $V_{0}=\{0\}$ and $V_{n}=\mathbb{C}^{n}$. The standard flag $\mathbf{V}^{\text {std }}$ on \mathbb{C}^{n} is the sequence as above with $V_{i}^{\text {std }}=\mathbb{C}^{i} \times\{0\}^{n-i} \equiv \mathbb{C}^{i}$.

Let $G(2, n)$ denote the Grassmannian of two-dimensional linear subspaces of \mathbb{C}^{n}. For any nonnegative integers a, b and a flag \mathbf{V} as in (1), let

$$
\begin{equation*}
\sigma_{a b}(\mathbf{V})=\left\{P \in G(2, n): P \subset V_{n-b}, P \cap V_{n-1-a} \neq\{0\}\right\} \tag{2}
\end{equation*}
$$

The second condition implies that $n-1-a \geq 1$ if $\sigma_{a b}(\mathbf{V}) \neq \emptyset$, so that $n-2 \geq a$. Since P is a linear subspace of \mathbb{C}^{n} of dimension 2 and V_{n-1-b} is a linear subspace of V_{n-b}, the first condition in (2) and linear algebra imply that for any $P \in \sigma_{a b}(\mathbf{V})$

$$
\operatorname{dim} P \cap V_{n-1-b} \geq \operatorname{dim} P+\operatorname{dim} V_{n-1-b}-\operatorname{dim} V_{n-b}=1 \quad \Longrightarrow \quad P \cap V_{n-1-b} \neq\{0\}
$$

Thus, if $n-1-a>n-1-b$, the second condition in (2) is meaningless since then $V_{n-1-b} \subset V_{n-1-a}$ and $P \cap V_{n-1-a} \neq\{0\}$. Therefore, one always requires that $a \geq b$. Similarly, since V_{n-b} is defined only for $b \geq 0$, we assume that $b \geq 0$. In summary, $\sigma_{a b}(\mathbf{V}) \subset G(2, n)$ is defined by (2) whenever $n-2 \geq a \geq b \geq 0$; otherwise, it is defined to be empty.

If $P \in G(2, n)$, then $P \subset V_{n-0}$ and by linear algebra

$$
\operatorname{dim} P \cap V_{n-1} \geq \operatorname{dim} P+\operatorname{dim} V_{n-1}-\operatorname{dim} V_{n}=1 \quad \Longrightarrow \quad P \cap V_{n-1-0} \neq \emptyset
$$

Thus, $\sigma_{00}(\mathbf{V})=G(2, n)$. In general, the integers a and b in (2) indicate who much earlier a typical element P of $\sigma_{a b}(\mathbf{V})$ satisfies the containment and intersection conditions with respect to the given flag. The subspace $\sigma_{a b}(\mathbf{V})$ is an analytic subvariety of the complex manifold $G(2, n)$ of (complex) codimension $a+b$. Since the dimension of $G(2, n)$ is $2(n-2)$, this means that $\sigma_{a b}(\mathbf{V})$ can be written as a disjoint union of finitely many complex manifolds with the largest dimension equal $2(n-2)-(a+b)$.

If \mathbf{V} and \mathbf{V}^{\prime} are two different flags in \mathbb{C}^{n}, there is a smooth path of flags $\mathbf{V}^{(t)}$, with $t \in[0,1]$, so that $\mathbf{V}^{(0)}=\mathbf{V}$ and $\mathbf{V}^{(1)}=\mathbf{V}^{\prime}$. The smooth manifold with boundary

$$
M=\left\{(t, P) \in[0,1] \times G(2, n): P \in \sigma_{a b}\left(\mathbf{V}^{(t)}\right)\right\}
$$

is then an equivalence between the cycles $\sigma_{a b}(\mathbf{V})$ and $\sigma_{a b}\left(\mathbf{V}^{\prime}\right)$. Thus, the equivalence class of $\sigma_{a b}(\mathbf{V})$ as a cycle in $G(2, n)$ is independent of the flag \mathbf{V} and is denoted $\sigma_{a b}$. It is customary to
abbreviate $\sigma_{a 0}$ as σ_{a}.

Given equivalence classes $\sigma_{a b}$ and $\sigma_{a^{\prime} b^{\prime}}$, their intersection product $\sigma_{a b} \cdot \sigma_{a^{\prime} b^{\prime}}$ is the equivalence class of the cycle $\sigma_{a b}(\mathbf{V}) \cap \sigma_{a^{\prime} b^{\prime}}\left(\mathbf{V}^{\prime}\right)$ for a generic pair of flags \mathbf{V} and \mathbf{V}^{\prime} on \mathbb{C}^{n}. Similarly to the previous paragraph, any two pairs of such flags are homotopic, so that the equivalence class of the cycle $\sigma_{a b}(\mathbf{V}) \cap \sigma_{a^{\prime} b^{\prime}}\left(\mathbf{V}^{\prime}\right)$ is independent of the generic pair $\left(\mathbf{V}, \mathbf{V}^{\prime}\right)$. The codimension of the cycle $\sigma_{a b} \sigma_{a^{\prime} b^{\prime}}$ is given by

$$
\operatorname{codim} \sigma_{a b} \cdot \sigma_{a^{\prime} b^{\prime}}=\operatorname{codim} \sigma_{a b}+\operatorname{codim} \sigma_{a^{\prime} b^{\prime}}=(a+b)+\left(a^{\prime}+b^{\prime}\right)
$$

If $\sigma_{a_{1} b_{1}}, \ldots, \sigma_{a_{k} b_{k}}$ are k cycles, the codimension of the cycle $\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}$ is thus

$$
\operatorname{codim}\left(\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}\right)=\sum_{i=1}^{i=k}\left(a_{i}+b_{i}\right)
$$

If this number equals $2(n-2)$, then the dimension of this cycle in $G(2, n)$ is

$$
\operatorname{dim}\left(\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}\right)=\operatorname{dim} G(2, n)-\operatorname{codim}\left(\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}\right)=0
$$

i.e. $\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}$ is simply a finite collection of points. The number of these points is denoted by

$$
\left\langle\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}, G(2, n)\right\rangle \in \mathbb{Z}
$$

These numbers are called intersection numbers of Schubert cycles.

The above intersection numbers satisfy the following identities:

$$
\begin{align*}
\left\langle\sigma_{a_{1} b_{1}} \cdot \ldots \cdot \sigma_{a_{k} b_{k}}, G(2, n)\right\rangle & =\left\langle\sigma_{a_{1}-b_{1}} \cdot \ldots \cdot \sigma_{a_{k}-b_{k}}, G\left(2, n-b_{1}-\ldots-b_{k}\right)\right\rangle \tag{S1}\\
\left\langle\sigma_{n-2} \cdot \sigma_{n-2}, G(2, n-2)\right\rangle=1 ; & \tag{S2}\\
\left\langle\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{a_{3}}, G(2, n)\right\rangle & =1 \text { if } n-2 \geq a_{1}, a_{2}, a_{3} \geq 0, a_{1}+a_{2}+a_{3}=2 n-4 \tag{S3}\\
\sigma_{a_{1}} \cdot \sigma_{a_{2}} & =\sum_{c \geq a_{1}, a_{2}} \sigma_{c, a_{1}+a_{2}-c} \tag{S4}
\end{align*}
$$

We verified (S1)-(S3) directly from the definition during one of the discussion sessions. The second identity is the $a_{1}, a_{2}=n-2, a_{3}=0$ case of (S3).

The relation (S4) is known as Pieri's formula. It is actually an immediate consequence of (S1), (S3), and the structure of the cohomology of $G(2, n)$. The latter implies that two cycles A and B in $G(2, n)$ are equivalent if and only if

$$
\left\langle A \cdot \sigma_{d e}, G(2, n)\right\rangle=\left\langle B \cdot \sigma_{d e}, G(2, n)\right\rangle \quad \forall d, e \in \mathbb{Z}
$$

Thus, in order to verify (S4), it is sufficient to show that

$$
\begin{equation*}
\left\langle\sigma_{a_{1}} \cdot \sigma_{a_{2}} \cdot \sigma_{d e}, G(2, n)\right\rangle=\sum_{c \geq a_{1}, a_{2}}\left\langle\sigma_{c, a_{1}+a_{2}-c} \cdot \sigma_{d e}, G(2, n)\right\rangle \quad \forall d, e \in \mathbb{Z} \tag{3}
\end{equation*}
$$

We can assume that $n-2 \geq a_{1}, a_{2} \geq 0, a_{1}+a_{2}+d+e=2(n-2)$, and $n-2 \geq d \geq e \geq 0$; otherwise, both sides of (3) are zero. By (S1) and then (S3),

$$
\begin{align*}
& \left\langle\sigma_{a_{1}} \cdot \sigma_{a_{2}} \cdot \sigma_{d e}, G(2, n)\right\rangle=\left\langle\sigma_{a_{1}} \cdot \sigma_{a_{2}} \cdot \sigma_{d-e}, G(2, n-e)\right\rangle \\
& \quad= \begin{cases}1, & \text { if } \min \left(n-2,2(n-2)-\left(a_{1}+a_{2}\right)\right) \geq d \geq(n-2)-\min \left(a_{1}, a_{2}\right), \\
0, & \text { otherwise },\end{cases} \tag{4}
\end{align*}
$$

with the above assumptions on d and e. Similarly, if $\min \left(n-2, a_{1}+a_{2}\right) \geq c \geq \max \left(a_{1}, a_{2}\right)$,

$$
\begin{aligned}
\left\langle\sigma_{c, a_{1}+a_{2}-c} \cdot \sigma_{d e}, G(2, n)\right\rangle & =\left\langle\sigma_{2 c-a_{1}-a_{2}} \cdot \sigma_{d-e}, G\left(2, n+c-a_{1}-a_{2}-e\right)\right\rangle \\
& = \begin{cases}1, & \text { if } d=n-2+c-a_{1}-a_{2} ; \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

This gives

$$
\begin{align*}
& \sum_{c \geq a_{1}, a_{2}}\left\langle\sigma_{c, a_{1}+a_{2}-c} \cdot \sigma_{d e}, G(2, n)\right\rangle \\
& \quad= \begin{cases}1, & \text { if } \min \left(n-2,2(n-2)-\left(a_{1}+a_{2}\right)\right) \geq d \geq(n-2)-\min \left(a_{1}, a_{2}\right) \\
0, & \text { otherwise. }\end{cases} \tag{5}
\end{align*}
$$

Comparing (4) with (5), we obtain (3) and thus (S4).
Unfortunately, this argument requires deep facts about cycles in $G(2, n)$. There is a direct argument as well. A special case of this argument is used in the book to show that

$$
\begin{equation*}
\sigma_{1} \cdot \sigma_{1}=\sigma_{2}+\sigma_{11} \tag{6}
\end{equation*}
$$

in $G(2,4)$. The argument in the book views the elements of $G(2,4)$ as lines in \mathbb{P}^{3} by taking their projectivizations. Here is the argument by considering them as 2-planes in \mathbb{C}^{4}. We need to intersect

$$
\begin{aligned}
\sigma_{1}\left(\mathbf{V}^{\text {std }}\right) & \equiv\left\{P \in G(2,4): P \cap \mathbb{C}^{2} \neq\{0\}\right\}, \\
\sigma_{1}(\mathbf{V}) & \equiv\left\{P \in G(2,4): P \cap V_{2} \neq\{0\}\right\},
\end{aligned}
$$

for a generic flag V. For such a flag $\mathbb{C}^{2} \cap V_{2}=\{0\}$. However, we can move \mathbf{V} so that $\mathbb{C}^{2} \cap V_{2}=\mathbb{C}$ and thus $\mathbb{C}^{2}+V_{2}$ is a three-dimensional linear subspace of \mathbb{C}^{4}, which we can assume to be \mathbb{C}^{3}; it is spanned by the one-dimensional linear subspace $L_{0}=\mathbb{C}$, a one-dimensional linear subspace L_{1} in \mathbb{C}^{2} different from L_{0}, and a one-dimensional linear subspace L_{2} in V_{2} different from L_{0}. An element of

$$
\sigma_{1}\left(\mathbf{V}^{\mathrm{std}}\right) \cap \sigma_{1}(\mathbf{V}) \equiv\left\{P \in G(2,4): P \cap \mathbb{C}^{2} \neq\{0\}, P \cap V_{2} \neq\{0\}\right\}
$$

must either contain the line $L_{0}=\mathbb{C}$ common to \mathbb{C}^{2} and V_{2} or intersect \mathbb{C}^{2} and \mathbf{V}_{2} along some one-dimensional linear subspace $L_{1} \subset \mathbb{C}^{2}$ and $L_{2} \subset V_{2}$. In the latter case, P must lie in $\mathbb{C}^{2}+V_{2}$. Conversely, if P is a two-dimensional linear subspace of $\mathbb{C}^{2}+V_{2}=\mathbb{C}^{3}$, then P must intersect \mathbb{C}^{2} and V_{2} at least in a one-dimensional linear subspace, since by linear algebra

$$
\begin{aligned}
\operatorname{dim} P \cap \mathbb{C}^{2} \geq \operatorname{dim} P+\operatorname{dim} \mathbb{C}^{2}-\operatorname{dim} \mathbb{C}^{3} \geq 1 \\
\operatorname{dim} P \cap V_{2} \geq \operatorname{dim} P+\operatorname{dim} V_{2}-\operatorname{dim} \mathbb{C}^{3} \geq 1
\end{aligned}
$$

From this, we obtain

$$
\begin{aligned}
\sigma_{1}\left(\mathbf{V}^{\text {std }}\right) \cap \sigma_{1}(\mathbf{V})= & \left\{P \in G(2, n): P \cap \mathbb{C}^{4-1-2} \neq\{0\}\right\} \\
& \cup\left\{P \in G(2, n): P \subset \mathbb{C}^{4-1}, P \cap \mathbb{C}^{4-1-1} \neq\{0\}\right\} \\
= & \sigma_{2}\left(\mathbf{V}^{\text {std }}\right) \cup \sigma_{11}\left(\mathbf{V}^{\text {std }}\right) .
\end{aligned}
$$

This implies (6) in the case of $G(2,4)$.

A similar argument extends to the general case of (S4) with some care. The formula (S4) holds for $G(2,2)$, with the only choices for a_{1}, a_{2} being $a_{1}, a_{2}=0$; otherwise, both sides of (S4) vanish by definition. Suppose $n \geq 3$ and the formula holds for all $G(2, m)$ with $m<n$. We need to determine the intersection of

$$
\begin{aligned}
\sigma_{a}\left(\mathbf{V}^{\text {std }}\right) & \equiv\left\{P \in G(2, n): P \cap \mathbb{C}^{n-1-a} \neq\{0\}\right\}, \\
\sigma_{b}(\mathbf{V}) & \equiv\left\{P \in G(2, n): P \cap V_{n-1-b} \neq\{0\}\right\},
\end{aligned}
$$

for a generic flag \mathbf{V} as in (1).
Case 1: $a+b>n-2$. In this case,

$$
\operatorname{dim}\left(\mathbb{C}^{n-1-a}+V_{n-1-b}\right) \leq \operatorname{dim} \mathbb{C}^{n-1-a}+\operatorname{dim} V_{n-1-b}=n+(n-2)-(a+b)<n
$$

Thus, $\mathbb{C}^{n-1-a} \cap V_{n-1-b}=\{0\}$ if V_{n-1-b} is generic. We can also assume that $\mathbb{C}^{n-1-a}+\mathbf{V}_{n-1-b} \subset \mathbb{C}^{n-1}$. Then,

$$
\begin{aligned}
\sigma_{a}\left(\mathbf{V}^{\text {std }}\right) \cap \sigma_{b}(\mathbf{V}) & \equiv\left\{P \in G(2, n): P \cap \mathbb{C}^{n-1-a} \neq\{0\}, P \cap V_{n-1-b} \neq\{0\}\right\} \\
& =\left\{P \in G(2, n-1): P \cap \mathbb{C}^{(n-1)-1-(a-1)} \neq\{0\}, P \cap V_{(n-1)-1-(b-1)} \neq\{0\}\right\} .
\end{aligned}
$$

The last set is precisely the intersection of $\sigma_{a-1}\left(\mathbf{V}^{\text {std }}\right)$ with $\sigma_{b-1}(\mathbf{V})$ in $G(2, n-1)$. By the inductive assumption,

$$
\sigma_{a-1} \cdot \sigma_{b-1}=\sum_{c=\max (a, b)}^{\min (n-2, a+b-1)} \sigma_{c-1, a+b-c-1} \quad \text { in } G(2, n-1) .
$$

Thus, as a cycle in $G(2, n-1) \subset G(2, n)$, this intersection is equivalent to

$$
\begin{aligned}
& \sum_{c=\max (a, b)}^{\min (n-2, a+b-1)}\left\{P \in G(2, n-1): P \subset \mathbb{C}^{(n-1)-(a+b-c-1)}, P \cap C^{(n-1)-1-(c-1)} \neq\{0\}\right\} \\
& \quad \sum_{c=\max (a, b)}^{\min (n-2, a+b-1)}\left\{P \in G(2, n): P \subset \mathbb{C}^{n-(a+b-c)}, P \cap \mathbb{C}^{n-1-c} \neq\{0\}\right\} \\
& \quad=\sum_{c=\max (a, b)}^{\min (n-2, a+b-1)} \sigma_{c, a+b-c}\left(\mathbf{V}_{\text {std }}\right) .
\end{aligned}
$$

This gives (S4).

Case 2: $a+b \leq n-2$. If \mathbf{V} is a generic flag,

$$
\operatorname{dim}\left(\mathbb{C}^{n-1-a} \cap V_{n-1-b}\right)=\operatorname{dim} \mathbb{C}^{n-1-a}+\operatorname{dim} V_{n-1-b}-\operatorname{dim} \mathbb{C}^{n}=n-2-(a+b) \geq 0
$$

However, we can move \mathbf{V} so that $\mathbb{C}^{n-1-a} \cap V_{n-1-b}=\mathbb{C}^{n-1-(a+b)}$, and thus by linear algebra

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{C}^{n-1-a}+V_{n-1-b}\right) & =\operatorname{dim} \mathbb{C}^{n-1-a}+\operatorname{dim} V_{n-1-b}-\operatorname{dim}\left(\mathbb{C}^{n-1-a} \cap V_{n-1-b}\right) \\
& =(n-1-a)+(n-1-b)-(n-1-(a+b)) \\
& =n-1 .
\end{aligned}
$$

Thus, we can assume that $\mathbb{C}^{n-1-a}+V_{n-1-b}=\mathbb{C}^{n-1}$. An element of

$$
\sigma_{a}\left(\mathbf{V}^{\text {std }}\right) \cap \sigma_{b}(\mathbf{V}) \equiv\left\{P \in G(2, n): P \cap \mathbb{C}^{n-1-a} \neq\{0\}, P \cap V_{n-1-b} \neq\{0\}\right\}
$$

must either have a one-dimensional linear subspace in common with $\mathbb{C}^{n-1-a} \cap V_{n-1-b}=\mathbb{C}^{n-1-(a+b)}$ or intersect \mathbb{C}^{n-1-a} and V_{n-1-b} along some one-dimensional linear subspace $L_{1} \subset \mathbb{C}^{n-1-a}$ and $L_{2} \subset V_{n-1-b}$. In the latter case, P must lie in $\mathbb{C}^{n-1-a}+V_{n-1-b}=\mathbb{C}^{n-1}$, since P is a two-dimensional linear subspace of \mathbb{C}^{n}. From this, we obtain

$$
\begin{align*}
\sigma_{a}\left(\mathbf{V}^{\text {std }}\right) \cap \sigma_{b}(\mathbf{V})=\left\{P \in G(2, n): P \cap \mathbb{C}^{n-1-(a+b)}\right. & \neq\{0\}\} \\
\cup\left\{P \in G(2, n): P \subset \mathbb{C}^{n-1},\right. & P \cap \mathbb{C}^{n-1-a} \neq\{0\}, \tag{7}\\
& \left.P \cap V_{n-1-b} \neq\{0\}\right\} .
\end{align*}
$$

The first set on the right-hand side of (7) is precisely the cycle $\sigma_{a+b}\left(\mathbf{V}^{\text {std }}\right)$ in $G(2, n)$; this set is empty if $a+b>n-2$. The second set is the intersection of the cycles

$$
\begin{aligned}
\sigma_{a-1}\left(\mathbf{V}^{\text {std }}\right) & \equiv\left\{P \in G(2, n-1): P \cap \mathbb{C}^{(n-1)-1-(a-1)} \neq\{0\}\right\}, \\
\sigma_{b-1}(\mathbf{V}) & \equiv\left\{P \in G(2, n-1): P \cap V_{(n-1)-1-(b-1)} \neq\{0\}\right\},
\end{aligned}
$$

in $G(2, n-1)$. By the inductive assumption,

$$
\sigma_{a-1} \cdot \sigma_{b-1}=\sum_{c=\max (a, b)}^{\min (n-2, a+b-1)} \sigma_{c-1, a+b-c-1} \quad \text { in } G(2, n-1) .
$$

Thus, as a cycle in $G(2, n-1) \subset G(2, n)$, the second set in (7) is equivalent to

$$
\begin{align*}
& \sum_{c=\max (a, b)}^{\min (n-2, a+b-1)}\left\{P \in G(2, n-1): P \subset \mathbb{C}^{(n-1)-(a+b-c-1)}, P \cap C^{(n-1)-1-(c-1)} \neq\{0\}\right\} \\
& \quad \begin{array}{l}
\min (n-2, a+b-1) \\
\sum_{c=\max (a, b)}^{\min (n-2, a+b-1)}\left\{P \in G(2, n): P \subset \mathbb{C}^{n-(a+b-c)}, P \cap \mathbb{C}^{n-1-c} \neq\{0\}\right\} \\
=\sum_{c=\max (a, b)} \sigma_{c, a+b-c}\left(\mathbf{V}_{\text {std }}\right) .
\end{array} . \tag{8}
\end{align*}
$$

Combining (7) and (8), we obtain (S4).

