MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2008

Homework Assignment VI

Written Assignment due on Thursday, 12/11, at 11:20am in Physics P-117

Problem K

Let F = F(X, Y, Z) be a homogeneous polynomial of degree 2 which is not a product of linear factors. Thus,

$$C \equiv Z(F) \equiv \left\{ [X, Y, Z] \in \mathbb{P}^2 \colon F(X, Y, Z) = 0 \right\}$$

is a smooth curve of degree 2 in \mathbb{P}^2 . Show that there are homogeneous polynomials $P_i = P_i(u, v)$ of degree 2 so that the image of the map

$$f: \mathbb{P}^1 \longrightarrow \mathbb{P}^2, \qquad [u, v] \longrightarrow [P_0(u, v), P_1(u, v), P_2(u, v)]$$

is the curve C.

There are at least two ways of going about this. The homogeneous polynomials P_0, P_1, P_2 are determined by 3 coefficients each; the homogeneous polynomial F is given by 6 coefficients. The requirement $f(\mathbb{P}^1) \subset Z(F)$ is equivalent to

$$F(P_0(u, v), P_1(u, v), P_2(u, v)) = 0 \quad \forall u, v.$$

The left-hand side of this equation is a homogeneous polynomial of degree $2 \cdot 2$ in u and v. Collecting the coefficients of the various terms $u^a v^{4-a}$, one obtains 5 equations in 9 unknowns. The extra 9-5 degrees of freedom correspond to the fact that if P_0, P_1, P_2 work, so do the polynomials $P_i(au+bv, cu+dv)$ for any fixed $a, b, c, d \in \mathbb{C}$. This approach is direct, but would be very messy.

Here is another approach. It is based on the following observation. Let $M \in GL_3\mathbb{C}$ be an invertible 3×3 -matrix; it determines a bijective linear map $M : \mathbb{C}^3 \longrightarrow \mathbb{C}^3$ and induces a bijective map

$$\bar{M} \colon \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \qquad [v] \longrightarrow [Mv]$$

If F = F(X, Y, Z) is homogeneous polynomial of degree 2, then so is $F \circ M$. Furthermore, F does not split into linear factors if and only if $F \circ M$ does not (you can prove this either directly or using the approach of Chapter 2, #8). If $Z(F) = f(\mathbb{P}^1)$, then $Z(F \circ M) = \{\overline{M}^{-1} \circ f\}(\mathbb{P}^1)$, and $\overline{M}^{-1} \circ f$ is given by the polynomials $M^{-1}(P_0 P_1 P_2)^{tr}$. Thus, it is sufficient to prove the statement with Freplaced by $F \circ M$ for some $M \in \operatorname{GL}_3 \mathbb{C}$, perhaps repeating the replacement process several times.

For example, if $F(X, Y, Z) = X^2 + Y^2 + Z^2$, we could take

$$M = \left(\begin{array}{ccc} 1 & \mathfrak{i} & 0 \\ 1 & -\mathfrak{i} & 0 \\ 0 & 0 & \mathfrak{i} \end{array} \right)^{-1}$$

This replaces X + iY with X, X - iY with Y, and Z with iZ, so that F is replaced with $XY - Z^2$. So it is sufficient to do the following steps.

(a) Find f as above that works for $F(X, Y, Z) = XY - Z^2$.

(b) If F does not split into linear factors, show that there exists $M \in GL_n\mathbb{C}$ so that $F \circ M$ is $X^2 + Y^2 + Z^2$ or $XY - Z^2$.

Discussion Problems for 12/11

Counting plane rational curves

Please read the attached note, *even if you are not presenting*, and make sure to actively participate in the discussion, with questions or comments.

If you are presenting,

(1) State formula (1), recalling what n_d is.

(2) Describe how you are going to prove it; this is essentially Sections 1 and 2.

(3) Prove the formula; this is Section 3 plus you need to derive formula (1) from (6). If time permits, use (1) to compute a few of the numbers n_d . What is the analogue of this for \mathbb{P}^3 ? Please draw pictures, more of them than in the note, and do not just copy the formulas!

Some of this material is related to some of the material in Chapter 3 of the book.

Please prepare your presentation ahead of time so that it fits in 1 hour and 10 minutes. You should come to my office hours on Tuesday 5-7 or Wednesday 9-10 with any questions you might have.

Counting Plane Rational Curves: a modern approach

Aleksey Zinger

December 3, 2008

Enumerative geometry of algebraic varieties is a field of mathematics that dates back to the nineteenth century. The general goal of this subject is to determine the number of geometric objects that satisfy pre-specified geometric conditions. The objects are typically (complex) curves in a smooth algebraic manifold. Such curves are usually required to represent the given homology class, to have certain singularities, and to satisfy various contact conditions with respect to a collection of subvarieties. One of the most well-known examples of an enumerative problem is

Question 1 If d is a positive integer, what is the number n_d of degree d rational curves that pass through 3d-1 points in general position in the complex projective plane \mathbb{P}^2 ?

Since the number of (complex) lines through any two distinct points is one, $n_1 = 1$. A little bit of algebraic geometry and topology gives $n_2 = 1$ and $n_3 = 12$. It is far harder to find that $n_4 = 620$, but this number was computed as early as the middle of the nineteenth century; see [5, p378].

The higher-degree numbers n_d remained unknown until the early 1990s, when a recursive formula for the numbers n_d was announced in [2] and [4]:

$$n_d = \frac{1}{6(d-1)} \sum_{d_1+d_2=d} \left(d_1 d_2 - 2 \frac{(d_1-d_2)^2}{3d-2} \right) \binom{3d-2}{3d_1-1} d_1 d_2 n_{d_1} n_{d_2}.$$
(1)

The argument of the latter paper is described below. It can also be used to solve the natural generalization of Question 1 to the higher-dimensional projective spaces; see [4, Section 10].

We will define an invariant that counts holomorphic maps into \mathbb{P}^2 . A priori, the number we describe depends on the cross ratio of the chosen four points on a sphere. However, it turns out that this number is well-defined. We use its independence to express this invariant in terms of the numbers n_d in two different ways. By comparing the two expressions, we obtain (1).

1 The moduli space of four marked points on a sphere

Let x_0, x_1, x_2 and x_3 be the four points in \mathbb{P}^2 given by

$$x_0 = [1, 0, 0], \quad x_1 = [0, 1, 0], \quad x_2 = [0, 0, 1], \quad x_3 = [1, 1, 1].$$

We denote by $H^0(\mathbb{P}^2; \gamma^{*\otimes 2})$ the space of holomorphic sections of the holomorphic line bundle $\gamma^{*\otimes 2} \longrightarrow \mathbb{P}^2$, or equivalently of the degree 2 homogeneous polynomials in three variables. Let

$$\mathcal{U} = \left\{ ([s], x) \in \mathbb{P}H^0(\mathbb{P}^2; \gamma^{*\otimes 2}) \times \mathbb{P}^2 : s(x_i) = 0 \ \forall i = 0, 1, 2, 3; \ s(x) = 0 \right\} \\ \approx \left\{ \left([A, B]; [z_0, z_1, z_2] \right) \in \mathbb{P}^1 \times \mathbb{P}^2 : (A - B)z_0z_1 - Az_1z_2 + Bz_0z_2 = 0 \right\}.$$

The space \mathcal{U} is a compact complex manifold of dimension 2.

Let $\pi : \mathcal{U} \longrightarrow \overline{\mathfrak{M}}_{0,4} \equiv \mathbb{P}^1$ denote the projection onto the first component. If $[A, B] \in \overline{\mathfrak{M}}_{0,4}$, the fiber $\pi^{-1}([A, B])$ is the conic

$$\mathcal{C}_{A,B} = \{ [z_0, z_1, z_2] \in \mathbb{P}^2 : (A - B)z_0z_1 - Az_1z_2 + Bz_0z_2 = 0 \}.$$

If $[A, B] \neq [1, 0], [0, 1], [1, 1], C_{A,B}$ is a smooth complex curve of genus zero; it is a sphere with four distinct marked points. If $[A, B] = [1, 0], [0, 1], [1, 1], C_{A,B}$ is a union of two lines. One of the lines contains two of the four points x_0, \ldots, x_3 , and the other line passes through the remaining two points. The two lines intersect in a single point. Figure 1 shows the three singular fibers of the projection map $\pi: \mathcal{U} \longrightarrow \overline{\mathfrak{M}}_{0,4}$. The other fibers are smooth conics. The fibers should be viewed as lying in planes orthogonal to the horizontal line in the figure.

The following remarks concerning the family $\mathcal{U} \longrightarrow \overline{\mathfrak{M}}_{0,4}$ are not directly relevant for the purposes of the next two sections and can be omitted. If $[A, B] \in \overline{\mathfrak{M}}_{0,4} - \{[1, 0], [0, 1], [1, 1]\}, \mathcal{C}_{A,B}$ is a smooth complex curve of genus zero, i.e. it is a sphere holomorphically embedded in \mathbb{P}^2 . Thus, there exists a one-to-one holomorphic map $f: \mathbb{P}^1 \longrightarrow \mathcal{C}_{A,B}$. It can be shown directly that if $[u_i, v_i] = f^{-1}(x_i)$,

$$\frac{v_0/u_0 - v_2/u_2}{v_0/u_0 - v_3/u_3} : \frac{v_1/u_1 - v_2/u_2}{v_1/u_1 - v_3/u_3} = \frac{B}{A}$$

The cross-ratio is the only invariant of four distinct points on \mathbb{P}^1 ; see [1], for example. Thus,

$$\mathbb{P}^{1} - \{ [1,0], [0,1], [1,1] \} = \mathfrak{M}_{0,4} \equiv \{ (x_{0}, x_{1}, x_{2}, x_{3}) \in (\mathbb{P}^{1})^{4} \colon x_{i} \neq x_{j} \text{ if } i \neq j \} / \sim,$$

where $(x_{0}, x_{1}, x_{2}, x_{3}) \sim (\tau(x_{0}), \tau(x_{1}), \tau(x_{2}), \tau(x_{3}))$ if $\tau \in \mathrm{PSL}_{2} \equiv \mathrm{Aut}(\mathbb{P}^{1}).$

Furthermore, the restriction of the projection map $\pi: \mathcal{U}|_{\mathfrak{M}_{0,4}} \longrightarrow \mathfrak{M}_{0,4}$ to each fiber $\mathcal{C}_{[A,B]}$ is the cross ratio of the points x_0, \ldots, x_3 on $\mathcal{C}_{[A,B]}$, viewed as an element of $\mathbb{P}^1 \supset \mathbb{C}$.

2 Counts of holomorphic maps

If d is an integer and C is a complex curve, which may be a wedge of spheres, let

$$\mathcal{H}_d(\mathcal{C}) = \left\{ f \in C^\infty(\mathcal{C}; \mathbb{P}^2) \colon f \text{ is holomorphic, } \deg f = d \right\}.$$
(2)

We give a more explicit description of the space $\mathcal{H}_d(\mathcal{C})$ in the relevant cases below.

Suppose ℓ_0, ℓ_1 and p_2, \ldots, p_{3d-1} are two lines and 3d-2 points in general position in \mathbb{P}^2 . If $\sigma \in \overline{\mathfrak{M}}_{0,4}$, let $N_d^{\sigma}(l_0, l_1, p_2, \ldots, p_{3d-1})$ denote the cardinality of the set

$$\{f \in \mathcal{H}_d(\mathcal{C}_\sigma) : f(x_0) \in \ell_0, \ f(x_1) \in \ell_1, \ f(x_2) = p_2, \ f(x_3) = p_3, \ p_i \in \mathrm{Im} \ f \ \forall i \}.$$
(3)

Figure 1: The Family $\mathcal{U} \longrightarrow \overline{\mathfrak{M}}_{0,4}$

Here C_{σ} denotes the rational curve with four marked points, x_0 , x_1 , x_2 , and x_3 , whose cross ratio is σ ; see Section 1. If $\sigma \neq [1,0], [0,1], [1,1], C_{\sigma}$ is a sphere with four, distinct, marked points. In this case, the condition $f \in \mathcal{H}_d(C_{\sigma})$ means that f has the form

$$f([u,v]) = [P_0(u,v), P_1(u,v), P_2(u,v)] \qquad \forall [u,v] \in \mathbb{P}^1,$$

for some degree d homogeneous polynomials P_0, P_1, P_2 that have no common factor. If $\sigma = [1,0], [0,1], [1,1], C_{\sigma}$ is a wedge of two spheres, $C_{\sigma,1}$ and $C_{\sigma,2}$, with two marked points each. In this case, the first condition in (2) means that f is continuous and $f|_{\mathcal{C}_{\sigma,1}}$ and $f|_{\mathcal{C}_{\sigma,2}}$ are holomorphic. The second condition in (2) means that $d = d_1 + d_2$ if the degrees of $f|_{\mathcal{C}_{\sigma,1}}$ and $f|_{\mathcal{C}_{\sigma,2}}$ are d_1 and d_2 , respectively.

The requirement that the two lines, ℓ_0 and ℓ_1 , and the 3d-2 points, p_2, \ldots, p_{3d-1} , are in general position means that they lie in a dense open subset \mathcal{U}_{σ} of the space of all possible tuples $(\ell_0, \ell_1, p_2, \ldots, p_{3d-1})$:

$$\mathfrak{X} \equiv \mathrm{Gr}_2 \mathbb{C}^3 \times \mathrm{Gr}_2 \mathbb{C}^3 \times \left(\mathbb{P}^2\right)^{3d-2}.$$

Here $\operatorname{Gr}_2\mathbb{C}^3$ denotes the Grassmanian manifold of two-planes through the origin in \mathbb{C}^3 , or equivalently of lines in \mathbb{P}^2 . The dense open subset \mathcal{U}_{σ} of \mathfrak{X} consists of tuples $(\ell_0, \ell_1, p_2, \ldots, p_{3d-1})$ that satisfy a number of geometric conditions. In particular, $\ell_0 \neq \ell_1$, none of the points p_2, \ldots, p_{3d-1} lies on either ℓ_0 or ℓ_1 , the 3d-1 points $\ell_0 \cap \ell_1, p_2, \ldots, p_{3d-1}$ are distinct, no three of them lie on the same line, and so on. In addition, we need to impose certain cross-ratio conditions on the rational curves that pass through ℓ_0, ℓ_1, p_2, p_3 , and a subset of the remaining 3d-4 points. These conditions can be stated more formally. Define

$$\operatorname{ev}_{\sigma} : \mathcal{H}_d(\mathcal{C}_{\sigma}) \times (\mathcal{C}_{\sigma})^{3d-4} \longrightarrow (\mathbb{P}^2)^{3d} \quad \text{by} \quad \operatorname{ev}_{\sigma}(f; x_4, \dots, x_{3d-1}) = (f(x_0), f(x_1), \dots, f(x_{3d-1})).$$

The space $\mathcal{H}_d(\mathcal{C}_{\sigma})$ is a dense open subset of \mathbb{P}^{3d+2} and the evaluation map ev_{σ} is holomorphic. There is a natural compactification $\overline{\mathfrak{M}}_{\sigma}(\mathbb{P}^2, d)$ of $\mathcal{H}_d(\mathcal{C}_{\sigma})$, which consists spaces of holomorphic maps from various wedges of spheres into \mathbb{P}^2 . The complex dimension of each such boundary stratum is less than that of $\mathcal{H}_d(\mathcal{C}_{\sigma})$. The evaluation map ev_{σ} admits a continuous extension over $\partial \overline{\mathfrak{M}}_{\sigma}(\mathbb{P}^2, d)$, whose restriction to each stratum is holomorphic. The elements $(\ell_0, \ell_1, p_2, \ldots, p_{3d-1})$ of the subspace \mathcal{U}_{σ} of \mathfrak{X} are characterized by the condition that the restriction of the evaluation map to each stratum of $\overline{\mathfrak{M}}_{\sigma}(\mathbb{P}^2, d)$ is transversal to the submanifold

$$\ell_0 \times \ell_1 \times p_2 \times \ldots \times p_{3d-1} \subset (\mathbb{P}^2)^{3d}.$$

This condition implies that

$$\operatorname{ev}_{\sigma}^{-1}(\ell_0 \times \ell_1 \times p_2 \times \ldots \times p_{3d-1}) \cap \partial \overline{\mathfrak{M}}_{\sigma}(\mathbb{P}^2, d) = \emptyset$$

and the set in (3) is a finite subset of $\mathcal{H}_d(\mathcal{C}_\sigma)$.

The set \mathcal{U}_{σ} of "general" tuples $(\ell_0, \ell_1, p_2, \ldots, p_{3d-1})$ is path-connected. Indeed, it is the complement of a finite number of proper complex submanifolds in \mathfrak{X} . It follows that the number in (3) is independent of the choice of two lines and 3d-2 points in general position in \mathbb{P}^2 . We thus may simply denote it by N_d^{σ} . If $\sigma \neq [1,0], [0,1], [1,1], \mathcal{C}_{\sigma}$ is a sphere with four distinct points. In such a case, it is fairly easy to show that the number N_d^{σ} does not change under small variations of σ , or equivalently of the four points on the sphere. Thus, N_d^{σ} is independent of

$$\sigma \in \mathfrak{M}_{0,4} = \mathbb{P}^1 - \left\{ [1,0], [0,1], [1,1] \right\} = \overline{\mathfrak{M}}_{0,4} - \left\{ [1,0], [0,1], [1,1] \right\}.$$

It is far harder to prove

Proposition 2 The function $\sigma \longrightarrow N_d^{\sigma}$ is constant on $\overline{\mathfrak{M}}_{0,4}$.

This proposition is a special case of the gluing theorems first proved in [3] and [4].

3 Holomorphic maps vs. complex curves

In this subsection, we express the numbers $N_d^{[0,1]}$ and $N_d^{[1,1]}$ of Subsections 2 in terms of the numbers $n_{d'}$, with $d' \leq d$, of Question 1. By Proposition 2, $N_d^{[0,1]} = N_d^{[1,1]}$. We obtain a recursion for the numbers of Question 1 by comparing the expressions for $N_d^{[0,1]}$ and $N_d^{[1,1]}$.

Let C_1 denote the component of $C_{[0,1]}$ containing the marked points x_0 and x_3 ; see Figure 1. We denote by C_2 the other component of $C_{[0,1]}$. By definition,

$$N_d^{[0,1]} = \sum_{d_1+d_2=d} N_{d_1,d_2}^{[0,1]} \quad \text{where}$$
$$N_{d_1,d_2}^{[0,1]} = \left| \left\{ f \in \mathcal{H}_d(\mathcal{C}_{[0,1]}; \mathbb{P}^2) \colon \deg f|_{\mathcal{C}_1} = d_1, \ \deg f|_{\mathcal{C}_2} = d_2; \ p_i \in \operatorname{Im} f \ \forall i; \\ f(x_0) \in \ell_0, \ f(x_1) \in \ell_1, \ f(x_2) = p_2, \ f(x_3) = p_3 \right\} \right|.$$

Since the group PSL_2 of holomorphic automorphisms acts transitively on triples of distinct points on the sphere,

$$N_{d_1,d_2}^{[0,1]} = \left| \left\{ (f_1, f_2) \in \mathcal{H}_{d_1}(S^2) \times \mathcal{H}_{d_2}(S^2) : f_1(\infty) = f_2(\infty), \ p_i \in f_1(S^2) \cup f_2(S^2) \ \forall i; \\ f_1(0) \in \ell_0, \ f_1(1) = p_3, \ f_2(0) \in \ell_1, \ f_2(1) = p_2 \right\} \right|.$$

Since the maps f_1 and f_2 above are holomorphic, $d_1, d_2 \ge 0$ if $N_{d_1, d_2}^{[0,1]} \ne 0$. Since every degree 0 holomorphic map is constant and $p_3 \not\in \ell_0$, $N_{0,d}^{[0,1]} = 0$. Similarly, $N_{d,0}^{[0,1]} = 0$. Thus, we assume that $d_1, d_2 > 0$. Since the points p_3, \ldots, p_{3d-1} are in general position, $f_1(S^2)$ contains at most $3d_1-2$ of

the points p_4, \ldots, p_{3d-1} . Similarly, the curve $f_2(S^2)$ passes through at most $3d_2-2$ of the points p_4, \ldots, p_{3d-1} . Thus, if $I = \{4, \ldots, 3d-1\}$,

$$N_{d_1,d_2}^{[0,1]} = \sum_{I=I_1 \sqcup I_2, |I_1|=3d_1-2} N_{d_1,d_2}^{[0,1]}(I_1,I_2),$$

where $N_{d_1,d_2}^{[0,1]}(I_1,I_2)$ is the cardinality of the set

$$\mathcal{S}_{d_1,d_2}^{[0,1]}(I_1,I_2) = \left\{ (f_1,f_2) \in \mathcal{H}_{d_1}(S^2) \times \mathcal{H}_{d_2}(S^2) : p_i \in f_1(S^2) \; \forall i \in I_1, \; p_i \in f_2(S^2) \; \forall i \in I_2; \\ f_1(\infty) = f_2(\infty), \; f_1(0) \in \ell_0, \; f_1(1) = p_3, \; f_2(0) \in \ell_1, \; f_2(1) = p_2 \right\}$$

If $(f_1, f_2) \in S_{d_1, d_2}^{[1,0]}(I_1, I_2)$, $f_1(S^2)$ is one of the n_{d_1} curves passing through the points $\{p_i : i \in \{3\} \sqcup I_1\}$. Similarly, $f_2(S^2)$ is one of the n_{d_2} curves passing through the points $\{p_i : i \in \{2\} \sqcup I_2\}$. The point $f_1(\infty) = f_2(\infty)$ must be one of the points of $f_1(S^2) \cap f_2(S^2)$; by Bezoit's theorem there are d_1d_2 such points. Finally, $f_1(0)$ must be one of the d_1 points of $f_1(S^2) \cap \ell_0$, while $f_2(0)$ must be one of the d_2 points of $f_2(S^2) \cap \ell_1$. Thus, we conclude that

$$N_{d}^{[0,1]} = \sum_{d_{1}+d_{2}=d} N_{d_{1},d_{2}}^{[0,1]} = \sum_{d_{1}+d_{2}=d} \sum_{I=I_{1}\sqcup I_{2},|I_{1}|=3d_{1}-2} N_{d_{1},d_{2}}^{[0,1]}(I_{1},I_{2})$$

$$= \sum_{d_{1}+d_{2}=d} \sum_{I_{1}\subset I,|I_{1}|=3d_{1}-2} (d_{1}d_{2})(d_{1}n_{d_{1}})(d_{2}n_{d_{2}})$$

$$= \sum_{d_{1}+d_{2}=d} \binom{3d-4}{3d_{1}-2} d_{1}^{2}d_{2}^{2}n_{d_{1}}n_{d_{2}};$$
(4)

where $I = \{4, \ldots, 3d - 1\}.$

We compute the number $N_d^{[1,1]}$ similarly. We denote by C_1 the component of $C_{[1,1]}$ containing the points x_0 and x_1 and by C_2 the other component of $C_{[1,1]}$. By definition,

$$N_d^{[1,1]} = \sum_{d_1+d_2=d} N_{d_1,d_2}^{[1,1]}, \quad \text{where}$$
$$N_{d_1,d_2}^{[1,1]} = \left| \left\{ (f_1, f_2) \in \mathcal{H}_{d_1}(S^2) \times \mathcal{H}_{d_2}(S^2) \colon f_1(\infty) = f_2(\infty), \ p_i \in f_1(S^2) \cup f_2(S^2) \ \forall i; \\ f_1(0) \in \ell_0, \ f_1(1) \in \ell_1, \ f_2(0) = p_2, \ f_2(1) = p_3 \right\} \right|.$$

Since every degree-zero holomorphic map is constant, $N_{d,0}^{[1,1]} = 0$ as before. However,

$$N_{0,d}^{[1,1]} = \left| \left\{ f_2 \in \mathcal{H}_d(S^2) \colon f_2(\infty) \in \ell_0 \cap \ell_1, \ f_2(0) = p_2, \ f_2(1) = p_3; \\ p_i \in f_2(S^2) \ \forall i = 4, \dots, 3d-1 \right\} \right|$$

Thus, $N_{0,d}^{[1,1]} = n_d$. If $d_1, d_2 > 0$,

$$N_{d_1,d_2}^{[1,1]} = \sum_{I=I_1 \sqcup I_2, |I_1|=3d_1-1} N_{d_1,d_2}^{[1,1]}(I_1,I_2),$$

where $N_{d_1,d_2}^{[1,1]}(I_1,I_2)$ is the cardinality of the set

$$\mathcal{S}_{d_1,d_2}^{[1,1]}(I_1,I_2) = \left\{ (f_1,f_2) \in \mathcal{H}_{d_1}(S^2) \times \mathcal{H}_{d_2}(S^2) : p_i \in f_1(S^2) \; \forall i \in I_1, \; p_i \in f_2(S^2) \; \forall i \in I_2; \\ f_1(\infty) = f_2(\infty), \; f_1(0) \in \ell_0, \; f_1(1) \in \ell_1, \; f_2(0) = p_2, \; f_2(1) = p_3 \right\}.$$

Proceeding as in the previous paragraph, we conclude that

$$N_{d}^{[1,1]} = \sum_{d_{1}+d_{2}=d} N_{d_{1},d_{2}}^{[1,1]} = n_{d} + \sum_{d_{1}+d_{2}=d} \sum_{I=I_{1}\sqcup I_{2},|I_{1}|=3d_{1}-1} N_{d_{1},d_{2}}^{[1,1]}(I_{1},I_{2})$$

$$= n_{d} + \sum_{d_{1}+d_{2}=d} \sum_{I_{1}\subset I,|I_{1}|=3d_{1}-1} (d_{1}d_{2})(d_{1}^{2}n_{d_{1}})(n_{d_{2}})$$

$$= n_{d} + \sum_{d_{1}+d_{2}=d} \binom{3d-4}{3d_{1}-1} d_{1}^{3}d_{2}n_{d_{1}}n_{d_{2}};$$
(5)

Comparing equations (4) and (5), we obtain

$$n_d = \sum_{d_1+d_2=d} \left(\binom{3d-4}{3d_1-2} d_1 d_2 - \binom{3d-4}{3d_1-1} d_1^2 \right) d_1 d_2 n_{d_1} n_{d_2}.$$
 (6)

The recursive formula (1) is the symmetrized version of (6).

References

- [1] L. Ahlfors, Complex Analysis, McGraw-Hill, 1979.
- [2] M. Kontsevich and Yu. Manin, Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562.
- [3] D. McDuff and D. Salamon, Introduction to J-Holomorphic Curves, American Mathematical Society, 1994.
- [4] Y. Ruan and G. Tian, A Mathematical Theory of Quantum Cohomology, J. Diff. Geom. 42 (1995), no. 2, 259-367.
- [5] H. Zeuthen, Almindelige Egenskaber ved Systemer af Plane Kurver, Kongelige Danske Videnskabernes Selskabs Skrifter, 10 (1873), 285-393. Danish.