
MAT 401: Undergraduate Seminar
Introduction to Enumerative Geometry

Fall 2008

Homework Assignment III

Reminder: Your grade in this class will be based on class participation and the problem sets. There-
fore, you are expected to regularly attend classes and contribute to the discussion (with presentations,
questions, and comments), as well as to submit solutions to the written assignments and study the
discussion problems ahead of time even if you won’t be presenting them. Written solutions must be
turned in by the beginning of class on the due date (typed solutions can also be e-mailed by the
same time). Late problem sets will not be accepted.

Written Assignment due on Thursday, 10/2, at 11:20am in Physics P-117
(or by 10/2, 11am, in Math 3-111)

Please do 6 of the following problems: Chapter 4, #1,2,3,4, and A, B, C below, with A, B, and C
counted as 2 problems each.

Problem A

Let U ⊂ C4×C4 be the subspace consisting of pairs of linearly independent vectors and A⊂U of
pairs of vectors that are orthonormal with respect to the standard hermitian inner-product on C4.
Thus, each element of U and A determines a two-dimensional linear subspace of C4; this induces
surjective maps

π : U −→ G(2, 4), π′ : A −→ G(2, 4).

Show that these maps induce the same topology on G(2, 4).

Problem B

(a) For each i=0, 1, . . . , n, let

Ui =
{

[X0, X1, . . . , Xn]∈CPn : Xi 6=0
}
,

φi : Ui −→ Cn, [X0, X1, . . . , Xn] −→ (X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi).

Show that the maps φi are homeomorphisms, while

φi ◦ φ−1
j : φj(Ui∩Uj) −→ φi(Ui∩Uj)

are analytic maps between open subspaces of Cn.
(b) Describe manifold charts for G(2, 4) (for the quotient topology of Problem A) and show that
G(2, 4) is also a complex manifold (the overlap maps are analytic).



Problem C

Let F =F (X0, . . . , Xn) be a homogeneous polynomial of degree d∈Z+ and (Y0, . . . , Yn)∈Cn+1−0.
If F (Y0, . . . , Yn) = 0, but ∂F

∂Xi
|(Y0,...,Yn) 6= 0 for some i = 0, 1, . . . , n, show that the hypersurface

Z(F )⊂CPn is a complex manifold in a neighborhood of [Y0, . . . , Yn]∈Z(F ). Show that the tangent
hyperplane to Z(F ) at [Y0, . . . , Yn] is given by the equation

G(X0, . . . , Xn) =
∂F

∂X0

∣∣∣
(Y0,...,Yn)

X0 + . . .+
∂F

∂Xn

∣∣∣
(Y0,...,Yn)

Xn = 0.

Discussion Problem for 10/2
(More on Bezoit’s Theorem for CP 2)

Bezoit’s Theorem for CP 2: If C,D ⊂ CP 2 are curves of degrees c, d ∈ Z+ such that C ∩ D is fi-
nite, then the cardinality of the set C ∩D counted with multiplicity mp(C,D) ∈ Z+ for each point
p ∈ C ∩D is cd.

The number mp(C,D) is defined so that if the curves C and D are deformed slightly and generically
(by deforming the homogeneous polynomials defining C and D), then mp(C,D) is the number of
points in the intersection of the deformed curves that lie near p. Thus, the weighted cardinality of
C ∩ D does not change under small changes in (C,D). It thus must be independent of C and D
provided the space

Xc,d ≡
{

(F,G) ∈ HPc(C3)×HPd(C3) : Z(F ) ∩ Z(G) is finite
}

is connected (as in class HPc(C3) is the space of homogeneous polynomials on C3 of degree c). We
can thus determined the weighted cardinality of C∩D by determining it for a specific pair in Xc,d; in
class, C and D were taken to consist of c and d lines, respectively, with all c+d lines being distinct,
obtaining Bezoit’s Theorem. The aim of this discussion problem is to fill in some of the gaps in the
argument.

Part I (∼15mins): A topological space X is called connected if it can’t be written as a disjoint union
of two nonempty open subset, X 6=UtV ; X is called path-connected if for any p, q ∈X there exists
a continuous map f : [0, 1]−→ X such that f(0) = p and f(1) = q (thus every two points in X are
connected by a path). Show that
(a) any continuous map from a connected space to Z is constant;
(b) any path-connected space is connected and thus Cn is connected;
(c) if A⊂X is connected (in the subspace topology), so is Ā⊂X.

Part II (∼30mins): Show that
(a) if f : Cn−→C is an analytic function (analytic in each variable), then for every p∈f−1(0) there
exists r>0 such that Br(p)−f−1(0), where Br(p) is the r-ball centered at p, is path-connected;
(b) if f : Cn−→C is an analytic function, then Cn−f−1(0) is path-connected;
(c) Xc,d is connected.

Part III (∼25mins): Let f, g : C2−→C be two polynomials of degrees at most c and d (not necessarily
homogeneous) such that f(0), g(0) = 0 and there exists r>0 such that Br(0)−0 contains no points
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f−1(0)∩g−1(0). For p∈C2, let ∇f |p : C2−→C be the gradient of f at p. If c∈Z+, denote by Hc(C2)
the space of polynomials on C2 of degree at most c; there is a natural norm on Hc(C2), since such
polynomials correspond to tuples of elements of C. Show that
(a) if (ker∇f |0) ∩ (ker∇g|0) = {0}, there exists ε>0 such that the set

{f+f̃}−1(0) ∩ {g+g̃}−1(0) ∩Br/2(0) ⊂ C2

consists of precisely one element whenever |f̃ |, |g̃| < ε (in such a case, 0 is said to be a simple
intersection point, or point of intersection multiplicity 1, of f−1(0) and g−1(0));
(b) the set

Xc,d(f, g) ≡
{

(f̃ , g̃) ∈ Pc(C2)×Pd(C2) : Z(f+f̃) ∩ Z(g+g̃) is finite;

(ker∇(f+f̃)|p) ∩ (ker∇(g+g̃)|p) = {0} ∀ p∈Z(f+f̃) ∩ Z(g+g̃)
}

is connected and non-empty;
(c) there exists ε>0 such that the cardinality of the set

{f+f̃}−1(0) ∩ {g+g̃}−1(0) ∩Br/2(0) ⊂ C2

is independent of f̃ , g̃∈Xc,d(f, g) with |f̃ |, |g̃|<ε. (This number is called the multiplicity of 0∈C2 as
an intersection point of the curves Z(f) and Z(g) and is denoted by m0(f, g) or m0(Z(f), Z(g))).
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