MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2008

Homework Assignment II

Written Assignment due on Thursday, 9/18, at 11:20am in Physics P-117

 (or by $9 / 18$, 11am, in Math 3-111)Chapter 2, \#1,5,6

Please aim to make your solutions as concise and to the point as possible.

Discussion Problem for 9/18
 Duality for Conics

Let $n_{2}(i)$ be the number of plane conics that are tangent to i general lines and pass through $5-i$ points, with $i=0,1, \ldots, 5$. It is stated at the end of Chapter 2 that

i	0	1	2	3	4	5
$n_{2}(i)$	1	2	4	4	2	1

An argument for the numbers $n_{2}(i)$ for $i=0,1,2$ is given in the book. The aim of this discussion problem is to obtain the remaining numbers by showing that

$$
\begin{equation*}
n_{2}(i)=n_{2}(5-i) . \tag{}
\end{equation*}
$$

Part I: Chapter 2, \#8 (~ 25 mins)
Part II: Recall from the first discussion session and Chapter 2 that a line in $\mathbb{C} P^{2}$ is also a point in the dual projective plane, $\left(\mathbb{C} P^{2}\right)^{*} \approx \mathbb{C} P^{2}$. If $C \subset \mathbb{C} P^{2}$ is a smooth conic, there is a well-defined tangent line $\tau_{C}(z) \in\left(\mathbb{C} P^{2}\right)^{*}$ at each point $z \in C$. Show that the map

$$
\tau_{C}: C \longrightarrow\left(\mathbb{C} P^{2}\right)^{*}, \quad z \longrightarrow \tau_{C}(z),
$$

is injective and is a homeomorphism (or at least a bijection) onto a smooth conic C^{*} in $\left(\mathbb{C} P^{2}\right)^{*}$. Furthermore, the image of the map

$$
\tau_{C^{*}}: C^{*} \longrightarrow\left(\left(\mathbb{C} P^{2}\right)^{*}\right)^{*}=\mathbb{C} P^{2}
$$

is the original conic C (i.e. dualizing twice gets us back to where we started). ($\sim 25 \mathrm{mins}$)

Part III: Prove the identity ($*$) (~ 10 mins)
On Tuesday, 9/16, please volunteer to discuss one of the three parts on Thursday, 9/18.

