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More on Plane Conics

Theorem: For each integer i, with 0≤ i≤5, let n2(i) be the number of smooth plane conics
that are tangent to i general lines and pass through 5−i general points in CP 2. Then,

n2(i) = n2(5− i). (*)

Corollary: The six numbers n2(i) are given by

i 0 1 2 3 4 5
n2(i) 1 2 4 4 2 1

The numbers n2(0), n2(1), and n2(2) are computed in Chapter 2 of Katz’s book; the iden-
tity (∗) then yields the remaining three numbers. The above theorem was the subject of the
discussion on Thursday, 9/18; the aim of these notes is to sum up the full argument.

We will denote [X]=[X0, X1, X2] an arbitrary point of CP 2 and by [Y ]=[Y0, Y1, Y2] a specific
point in CP 2. A line in CP 2 is the set of points [X0, X1, X2] in CP 2 satisfying a linear equation

B0X0 +B1X1 +B2X2 = 0

for some B = (B0, B1, B2) 6= 0 and thus corresponds to a point in the dual projective plane,
(CP 2)∨≈CP 2. Analogously, a point [Y0, Y1, Y2] in CP 2 determines a line in (CP 2)∨; it is the
set of all points [A0, A1, A2] in (CP 2)∨ such that

A0Y0 +A1Y1 +A2Y2 = 0.

Since a line in (CP 2)∨ corresponds to a point in CP 2, the dual of the dual of the original CP 2

is the original CP 2: (
(CP 2)∨

)∨ = CP 2.

As we have seen previously, this duality between lines and points in the projective plane im-
plies that the number of lines passing through two general points in C2 (or CP 2) is the same
as the number of points lying on two general lines in C2 (or CP 2≈ (CP 2)∨).

A conic in CP 2 is the zero set of a nonzero homogeneous polynomial F (X0, X1, X2). Any such
polynomial is of the form

FM (X0, X1, X2) = XtMX, (**)

for some nonzero symmetric 3×3-matrix, where we view X = (X0, X1, X2)∈C3 as a column
vector. Let

CM ≡ Z(FM ) ⊂ CP 2



be the conic corresponding to a symmetric 3×3-matrix M . It can be of three possible shapes:
smooth, union of two distinct lines, or a double line. These three possibilities are beautifully
captured by the presentation (**):

Lemma 1: (1) If rkM = 1, CM is a double line.
(2) If rkM = 2, CM is a union of two distinct lines.
(3) If rkM = 3, CM is a smooth conic.

This key technical observation was proved by Jonathan using algebraic computations only.
Below we give a less direct argument.

• By the first part of Problem C in Problem Set III, if [Y ]∈CM and MY 6=0, then [Y ] is a
smooth point of CM (this statement uses the assumption that M is symmetric). Thus,
if the rank of M is 3, then every point of CM is smooth (since the kernel of M is trivial)
and thus CM is a smooth conic.

• If the rank of M is two, M vanishes on a one-dimensional linear subspace of C3, cor-
responding to a singular point [Y ] ∈ CM , i.e. MY = 0. Since M is symmetric, using
the Gram-Schmidt diagonalization procedure we can also find Y ′, Y ′′ ∈ C3 such that
{Y, Y ′, Y ′′} is a basis for C3,

Y ′tMY ′ = 1, Y ′′tMY ′′ = 1, Y ′tMY ′′ = 0;

it is essential here that we are working with complex numbers. Then, {Y, Y ′+ iY ′′}
and {Y, Y ′− iY ′′} span 2 distinct two-dimensional linear subspaces of C3; their projec-
tivizations are two distinct lines in CP 2 intersecting at [Y ]∈CM . Furthermore, for all
s, t∈C (

sY + t(Y ′ + iY ′′)
)t
M

(
sY + t(Y ′ + iY ′′)

)
= 0,(

sY + t(Y ′ − iY ′′)
)t
M

(
sY + t(Y ′ − iY ′′)

)
= 0;

thus, these two lines must be contained in CM . Since CM is a conic (a degree 2 curve),
it must then consist of these two lines only (each is a degree 1 curve).

• If the rank of M is one, M vanishes on a two-dimensional linear subspace of C3; its
projectivization is a line L in CP 2 on which FM vanishes to second order, i.e. CM =2L.
Since M is symmetric of rank one, we can choose a basis {Y, Y ′, Y ′′} for C3 such that
Y ′, Y ′′∈kerM and thus Y tMY 6=0. Then,

(aY + bY ′ + cY ′′)tM(aY + bY ′ + cY ′′) = a2 · Y tMY ;

this expression vanishes only when a= 0, i.e. aY +bY ′+cY ′′∈kerM . Thus, CM has no
points outside of L.

This completes the proof of Lemma 1.
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If C⊂CP 2 is a smooth conic, there is a well-defined tangent line Lz(C) at each point z∈C;
it corresponds to a point τC(z)∈(CP 2)∨. Thus, we obtain a map

τC : C −→ (CP 2)∨, z −→ τC(z).

Lemma 2: The map τC is a homeomorphism onto a smooth conic C∨ in (CP 2)∨ and τ−1
C =τC∨ .

(In fact, τC is an analytic map, as is its inverse; such a map is called a biholomorphism).

Let M be a symmetric 3×3 matrix such that C =CM . By Lemma 1, M is invertible, since
C is smooth. By the last part of Problem C in Problem Set III, the tangent line to CM at a
point Y ∈CM is given by [MY ]∈(CP 2)∨. Since Y tMY =0 for all [Y ]∈CM , it follows that

(MY )tA−1(MY ) = 0 ∀ [Y ]∈CM =⇒ τCM
(CM ) ⊂ CM−1 ⊂ (CP 2)∨.

On the other hand, if [B]∈CM−1 , then [M−1B]∈CM . Thus,

τCM
: CM −→ C∨M ≡ CM−1

is a bijection with inverse τCM−1 . Since M−1 has rank 3, by Lemma 1 the image of τCM
is

a smooth conic. The map τCM
is continuous with respect to the quotient topology on CP 2

because it is the composition of restrictions of the continuous maps

C3 − 0 −→ C3 − 0, X −→MX, C3 − 0 −→ CP 2, A −→ [A].

For the same reason, τ−1
CM

=τCM−1 is also continuous. This concludes the proof of Lemma 2.

If C is a smooth conic which is tangent to a line L in CP 2 at some point [Y ] ∈ C, then
the dual conic C∨ = τC(C) passes through the point L∨ ∈ (CP 2)∨ corresponding to L, since
τC([Y ])=L∨. Conversely, suppose C is a smooth conic which passes through a point p∈CP 2.
Since τ−1

C = τC∨ , p = τC∨([B]) for some [B] ∈ C∨ and thus C∨ is tangent at [B] to the line
p∨∈(CP 2)∨ corresponding to p∈CP 2.

We are now ready to prove the theorem. Choose i general lines Lj , 1≤j≤ i, and 5−i general
points pj , 1≤ j ≤ 5−i, in CP 2. They correspond to i general points L∨j , 1≤ j ≤ i, and 5−i
general lines p∨j , 1≤j≤5−i, in (CP 2)∨. If C is a smooth conic in CP 2 which is tangent to the
i lines Lj and passes through the 5−i points pj , then by the previous paragraph C∨⊂(CP 2)∨

is a smooth conic which passes through the i points L∨j and is tangent to the 5−i lines p∨j .
Conversely, if C∨ ⊂ (CP 2)∨ is a smooth conic which passes through the i points L∨j and is
tangent to the 5−i lines p∨j , then C=(C∨)∨⊂CP 2 is a smooth conic which is tangent to the i
lines Lj and passes through the 5−i points pj . Thus, we have established a bijection between
the set of smooth conics in CP 2 which are tangent to the i lines Lj and pass through the 5−i
points pj and the set of smooth conics in (CP 2)∨≈CP 2 which pass through the i points L∨j
and are tangent to the 5− i lines p∨j . By definition, the cardinality of the first set is n2(i),
while the cardinality of the second set is n2(5−i); this proves the identity (∗).

3


