MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2008

More on Plane Conics

Theorem: For each integer *i*, with $0 \le i \le 5$, let $n_2(i)$ be the number of smooth plane conics that are tangent to *i* general lines and pass through 5-i general points in $\mathbb{C}P^2$. Then,

$$n_2(i) = n_2(5-i).$$
 (*)

Corollary: The six numbers $n_2(i)$ are given by

The numbers $n_2(0)$, $n_2(1)$, and $n_2(2)$ are computed in Chapter 2 of Katz's book; the identity (*) then yields the remaining three numbers. The above theorem was the subject of the discussion on Thursday, 9/18; the aim of these notes is to sum up the full argument.

We will denote $[X] = [X_0, X_1, X_2]$ an arbitrary point of $\mathbb{C}P^2$ and by $[Y] = [Y_0, Y_1, Y_2]$ a specific point in $\mathbb{C}P^2$. A line in $\mathbb{C}P^2$ is the set of points $[X_0, X_1, X_2]$ in $\mathbb{C}P^2$ satisfying a linear equation

$$B_0 X_0 + B_1 X_1 + B_2 X_2 = 0$$

for some $B = (B_0, B_1, B_2) \neq 0$ and thus corresponds to a point in the dual projective plane, $(\mathbb{C}P^2)^{\vee} \approx \mathbb{C}P^2$. Analogously, a point $[Y_0, Y_1, Y_2]$ in $\mathbb{C}P^2$ determines a line in $(\mathbb{C}P^2)^{\vee}$; it is the set of all points $[A_0, A_1, A_2]$ in $(\mathbb{C}P^2)^{\vee}$ such that

$$A_0Y_0 + A_1Y_1 + A_2Y_2 = 0.$$

Since a line in $(\mathbb{C}P^2)^{\vee}$ corresponds to a point in $\mathbb{C}P^2$, the dual of the dual of the original $\mathbb{C}P^2$ is the original $\mathbb{C}P^2$:

$$\left((\mathbb{C}P^2)^{\vee}\right)^{\vee} = \mathbb{C}P^2.$$

As we have seen previously, this duality between lines and points in the projective plane implies that the number of lines passing through two general points in \mathbb{C}^2 (or $\mathbb{C}P^2$) is the same as the number of points lying on two general lines in \mathbb{C}^2 (or $\mathbb{C}P^2 \approx (\mathbb{C}P^2)^{\vee}$).

A conic in $\mathbb{C}P^2$ is the zero set of a nonzero homogeneous polynomial $F(X_0, X_1, X_2)$. Any such polynomial is of the form

$$F_M(X_0, X_1, X_2) = X^t M X, \tag{**}$$

for some nonzero symmetric 3×3 -matrix, where we view $X = (X_0, X_1, X_2) \in \mathbb{C}^3$ as a column vector. Let

$$C_M \equiv Z(F_M) \subset \mathbb{C}P^2$$

be the conic corresponding to a symmetric 3×3 -matrix M. It can be of three possible shapes: smooth, union of two distinct lines, or a double line. These three possibilities are beautifully captured by the presentation (**):

Lemma 1: (1) If $\operatorname{rk} M = 1$, C_M is a double line. (2) If $\operatorname{rk} M = 2$, C_M is a union of two distinct lines. (3) If $\operatorname{rk} M = 3$, C_M is a smooth conic.

This key technical observation was proved by Jonathan using algebraic computations only. Below we give a less direct argument.

- By the first part of Problem C in Problem Set III, if $[Y] \in C_M$ and $MY \neq 0$, then [Y] is a smooth point of C_M (this statement uses the assumption that M is symmetric). Thus, if the rank of M is 3, then every point of C_M is smooth (since the kernel of M is trivial) and thus C_M is a smooth conic.
- If the rank of M is two, M vanishes on a one-dimensional linear subspace of \mathbb{C}^3 , corresponding to a singular point $[Y] \in C_M$, i.e. MY = 0. Since M is symmetric, using the Gram-Schmidt diagonalization procedure we can also find $Y', Y'' \in \mathbb{C}^3$ such that $\{Y, Y', Y''\}$ is a basis for \mathbb{C}^3 ,

$$Y'^{t}MY' = 1, \qquad Y''^{t}MY'' = 1, \qquad Y'^{t}MY'' = 0;$$

it is essential here that we are working with complex numbers. Then, $\{Y, Y' + iY''\}$ and $\{Y, Y' - iY''\}$ span 2 distinct two-dimensional linear subspaces of \mathbb{C}^3 ; their projectivizations are two distinct lines in $\mathbb{C}P^2$ intersecting at $[Y] \in C_M$. Furthermore, for all $s, t \in \mathbb{C}$

$$(sY + t(Y' + iY''))^{t} M (sY + t(Y' + iY'')) = 0, (sY + t(Y' - iY''))^{t} M (sY + t(Y' - iY'')) = 0;$$

thus, these two lines must be contained in C_M . Since C_M is a conic (a degree 2 curve), it must then consist of these two lines only (each is a degree 1 curve).

• If the rank of M is one, M vanishes on a two-dimensional linear subspace of \mathbb{C}^3 ; its projectivization is a line L in $\mathbb{C}P^2$ on which F_M vanishes to second order, i.e. $C_M = 2L$. Since M is symmetric of rank one, we can choose a basis $\{Y, Y', Y''\}$ for \mathbb{C}^3 such that $Y', Y'' \in \ker M$ and thus $Y^t M Y \neq 0$. Then,

$$(aY + bY' + cY'')^{t}M(aY + bY' + cY'') = a^{2} \cdot Y^{t}MY;$$

this expression vanishes only when a=0, i.e. $aY+bY'+cY'' \in \ker M$. Thus, C_M has no points outside of L.

This completes the proof of Lemma 1.

If $C \subset \mathbb{C}P^2$ is a smooth conic, there is a well-defined tangent line $L_z(C)$ at each point $z \in C$; it corresponds to a point $\tau_C(z) \in (\mathbb{C}P^2)^{\vee}$. Thus, we obtain a map

$$\tau_C \colon C \longrightarrow (\mathbb{C}P^2)^{\vee}, \qquad z \longrightarrow \tau_C(z).$$

Lemma 2: The map τ_C is a homeomorphism onto a smooth conic C^{\vee} in $(\mathbb{C}P^2)^{\vee}$ and $\tau_C^{-1} = \tau_{C^{\vee}}$. (In fact, τ_C is an analytic map, as is its inverse; such a map is called a biholomorphism).

Let M be a symmetric 3×3 matrix such that $C = C_M$. By Lemma 1, M is invertible, since C is smooth. By the last part of Problem C in Problem Set III, the tangent line to C_M at a point $Y \in C_M$ is given by $[MY] \in (\mathbb{C}P^2)^{\vee}$. Since $Y^t M Y = 0$ for all $[Y] \in C_M$, it follows that

 $(MY)^t A^{-1}(MY) = 0 \quad \forall [Y] \in C_M \qquad \Longrightarrow \qquad \tau_{C_M}(C_M) \subset C_{M^{-1}} \subset (\mathbb{C}P^2)^{\vee}.$

On the other hand, if $[B] \in C_{M^{-1}}$, then $[M^{-1}B] \in C_M$. Thus,

$$\tau_{C_M} \colon C_M \longrightarrow C_M^{\vee} \equiv C_{M^{-1}}$$

is a bijection with inverse $\tau_{C_{M-1}}$. Since M^{-1} has rank 3, by Lemma 1 the image of τ_{C_M} is a smooth conic. The map τ_{C_M} is continuous with respect to the quotient topology on $\mathbb{C}P^2$ because it is the composition of restrictions of the continuous maps

$$\mathbb{C}^3 - 0 \longrightarrow \mathbb{C}^3 - 0, \quad X \longrightarrow MX, \qquad \mathbb{C}^3 - 0 \longrightarrow \mathbb{C}P^2, \quad A \longrightarrow [A]$$

For the same reason, $\tau_{C_M}^{-1} = \tau_{C_{M-1}}$ is also continuous. This concludes the proof of Lemma 2.

If C is a smooth conic which is tangent to a line L in $\mathbb{C}P^2$ at some point $[Y] \in C$, then the dual conic $C^{\vee} = \tau_C(C)$ passes through the point $L^{\vee} \in (\mathbb{C}P^2)^{\vee}$ corresponding to L, since $\tau_C([Y]) = L^{\vee}$. Conversely, suppose C is a smooth conic which passes through a point $p \in \mathbb{C}P^2$. Since $\tau_C^{-1} = \tau_{C^{\vee}}$, $p = \tau_{C^{\vee}}([B])$ for some $[B] \in C^{\vee}$ and thus C^{\vee} is tangent at [B] to the line $p^{\vee} \in (\mathbb{C}P^2)^{\vee}$ corresponding to $p \in \mathbb{C}P^2$.

We are now ready to prove the theorem. Choose *i* general lines L_j , $1 \le j \le i$, and 5-i general points p_j , $1 \le j \le 5-i$, in $\mathbb{C}P^2$. They correspond to *i* general points L_j^{\vee} , $1 \le j \le i$, and 5-i general lines p_j^{\vee} , $1 \le j \le 5-i$, in $(\mathbb{C}P^2)^{\vee}$. If *C* is a smooth conic in $\mathbb{C}P^2$ which is tangent to the *i* lines L_j and passes through the 5-i points p_j , then by the previous paragraph $C^{\vee} \subset (\mathbb{C}P^2)^{\vee}$ is a smooth conic which passes through the *i* points L_j^{\vee} and is tangent to the 5-i lines p_j^{\vee} . Conversely, if $C^{\vee} \subset (\mathbb{C}P^2)^{\vee}$ is a smooth conic which passes through the i points L_j^{\vee} and is tangent to the 5-i lines p_j^{\vee} , then $C = (C^{\vee})^{\vee} \subset \mathbb{C}P^2$ is a smooth conic which is tangent to the *i* points L_j^{\vee} and is tangent to the 5-i lines p_j^{\vee} , then $C = (C^{\vee})^{\vee} \subset \mathbb{C}P^2$ is a smooth conic which is tangent to the *i* points L_j and passes through the 5-i points p_j . Thus, we have established a bijection between the set of smooth conics in $\mathbb{C}P^2$ which are tangent to the *i* lines L_j and pass through the 5-i points p_j^{\vee} . By definition, the cardinality of the first set is $n_2(i)$, while the cardinality of the second set is $n_2(5-i)$; this proves the identity (*).