
Chapter 2

Smooth Vector Bundles

7 Definitions and Examples

A (smooth) real vector bundle V of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. Formally, it is a triple (M,V, π), where
M and V are smooth manifolds and

π : V −→M

is a surjective submersion. For each p∈M , the fiber Vp≡π−1(p) of V over p is a real k-dimensional
vector space; see Figure 2.1. The vector-space structures in Vp vary smoothly with p∈M . This
means that the scalar multiplication map

R× V −→ V, (c, v) −→ c · v, (7.1)

and the addition map

V ×M V ≡
{
(v1, v2)∈V ×V : π(v1)=π(v2) ∈M

}
−→ V, (v1, v2) −→ v1+v2, (7.2)

are smooth. Note that we can add v1, v2∈V only if they lie in the same fiber over M , i.e.

π(v1)=π(v2) ⇐⇒ (v1, v2) ∈ V ×M V.

The space V ×M V is a smooth submanifold of V ×V by the Implicit Function Theorem for Maps
(Corollary 6.7). The local triviality condition means that for every point p ∈ M there exist a
neighborhood U of p in M and a diffeomorphism

h : V |U ≡ π−1(U) −→ U×Rk

such that h takes every fiber of π to the corresponding fiber of the projection map π1 : U×Rk−→U ,
i.e. π1◦h=π on V |U so that the diagram

V |U ≡π−1(U)

π
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲

h

≈
// U×Rk

π1
||②②
②②
②②
②②
②

U

commutes, and the restriction of h to each fiber is linear:

h(c1v1+c2v2) = c1h(v1) + c2h(v2) ∈ x× Rk ∀ c1, c2∈R, v1, v2∈Vx, x∈U.
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Figure 2.1: Fibers of a vector-bundle projection map are vector spaces of the same rank.

These conditions imply that the restriction of h to each fiber Vx of π is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of Rk’s over open sets in
M glued together. This is in a sense analogous to an m-manifold being open subsets of Rm glued
together in a nice way. Here is a formal definition.

Definition 7.1. A real vector bundle of rank k is a tuple (M,V, π, ·,+) such that

(RVB1) M and V are smooth manifolds and π : V −→M is a smooth map;

(RVB2) · : R×V −→V is a map s.t. π(c·v)=π(v) for all (c, v)∈R×V ;

(RVB3) +: V ×M V −→V is a map s.t. π(v1+v2)=π(v1)=π(v2) for all (v1, v2)∈V ×M V ;

(RVB4) for every point p ∈ M there exist a neighborhood U of p in M and a diffeomorphism
h : V |U −→U×Rk such that

(RVB4-a) π1◦h=π on V |U and

(RVB4-b) the map h|Vx : Vx−→x×Rk is an isomorphism of vector spaces for all x∈U .

The spaces M and V are called the base and the total space of the vector bundle (M,V, π). It is
customary to call π : V −→M a vector bundle and V a vector bundle over M . If M is an m-
manifold and V −→M is a real vector bundle of rank k, then V is an (m+k)-manifold. Its smooth
charts are obtained by restricting the trivialization maps h for V , as above, to small coordinate
charts in M .

Example 7.2. If M is a smooth manifold and k is a nonnegative integer, then

π1 :M×Rk −→M

is a real vector bundle of rank k over M . It is called the trivial rank k real vector bundle over M and
denoted π : τRk −→M or simply π : τk−→M if there is no ambiguity.

Example 7.3. LetM=S1 be the unit circle and V =MB the infinite Mobius band of Example 1.8.
With notation as in Example 1.8, the map

π : V −→M, [s, t] −→ e2πis ,

defines a real line bundle (i.e. rank 1 bundle) over S1. Trivializations of this vector bundle can be
constructed as follows. With U±=S1−{±1}, let

h+ : V |U+ −→ U+×R, [s, t] −→
(
e2πis, t

)
;

h− : V |U−
−→ U−×R, [s, t] −→

{
(e2πis, t), if s ∈ (1/2, 1];

(e2πis,−t), if s ∈ [0, 1/2).
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Both maps are diffeomorphisms, with respect to the smooth structures of Example 1.8 on MB and
of Example 1.7 on S1. Furthermore, π1◦h± = π and the restriction of h± to each fiber of π is a
linear map to R.

Example 7.4. Let RPn be the real projective space of dimension n described in Example 1.9 and

γn =
{
(ℓ, v)∈RPn×Rn+1 : v∈ℓ

}
,

where ℓ⊂Rn+1 denotes a one-dimensional linear subspace. If Ui⊂RPn is as in Example 1.9, the
map

hi : γn ∩ Ui×Rn+1 −→ Ui×R,
(
ℓ, (v0, . . . , vn)

)
−→ (ℓ, vi),

is a homeomorphism. The overlap maps,

hi◦h−1
j : Ui∩Uj × R −→ Ui∩Uj × R, (ℓ, c) −→

(
ℓ, (Xi/Xj)c

)
,

are smooth. By Lemma 2.6, the collection {(γn ∩ Ui×Rn+1, hi)} of generalized smooth charts
then induces a smooth structure on the topological subspace γn⊂RPn×Rn+1. With this smooth
structure, γn is an embedded submanifold of RPn×Rn+1 and the projection on the first component,

π=π1 : γn −→ RPn ,

defines a smooth real line bundle. The fiber over a point ℓ∈RPn is the one-dimensional subspace
ℓ of Rn+1! For this reason, γn is called the tautological line bundle over RPn. Note that γ1−→S1

is the infinite Mobius band of Example 7.3.

Example 7.5. If M is a smooth m-manifold, let

TM =
⊔

p∈M

TpM, π : TM −→M, π(v) = p if v∈TpM.

If ϕα : Uα−→Rm is a smooth chart on M , let

ϕ̃α : TM |Uα≡π−1(Uα) −→ Uα × Rm, ϕ̃α(v) =
(
π(v), dπ(v)ϕαv

)
. (7.3)

If ϕβ : Uβ−→Rm is another smooth chart, the overlap map

ϕ̃α◦ϕ̃−1
β : Uα∩Uβ × Rm −→ Uα∩Uβ × Rm

is a smooth map between open subsets of R2m. By Corollary 2.7, the collection of generalized
smooth charts {

(π−1(Uα), ϕ̃α) : (Uα, ϕα)∈FM
}
,

where FM is the smooth structure of M , then induces a manifold structure on the set TM . With
this smooth structure on TM , the projection π : TM−→M defines a smooth real vector bundle of
rank m, called the tangent bundle of M .

Definition 7.6. A complex vector bundle of rank k is a tuple (M,V, π, ·,+) such that

(CVB1) M and V are smooth manifolds and π : V −→M is a smooth map;

(CVB2) · : C×V −→V is a map s.t. π(c·v)=π(v) for all (c, v)∈C×V ;
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(CVB3) +: V ×M V −→V is a map s.t. π(v1+v2)=π(v1)=π(v2) for all (v1, v2)∈V ×M V ;

(CVB4) for every point p ∈ M there exists a neighborhood U of p in M and a diffeomorphism
h : V |U −→U×Ck such that

(CVB4-a) π1◦h=π on V |U and

(CVB4-b) the map h|Vx : Vx−→x×Ck is an isomorphism of complex vector spaces for all
x∈U .

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
Ck’s over open sets in M glued together. If M is an m-manifold and V −→M is a complex vector
bundle of rank k, then V is an (m+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 7.7. If M is a smooth manifold and k is a nonnegative integer, then

π1 :M×Ck −→M

is a complex vector bundle of rank k over M . It is called the trivial rank-k complex vector bundle

over M and denoted π : τCk −→M or simply π : τk−→M if there is no ambiguity.

Example 7.8. Let CPn be the complex projective space of dimension n described in Example 1.10
and

γn =
{
(ℓ, v)∈CPn×Cn+1 : v∈ℓ

}
.

The projection π : γn−→CPn defines a smooth complex line bundle. The fiber over a point ℓ∈CPn
is the one-dimensional complex subspace ℓ of Cn+1. For this reason, γn is called the tautological

line bundle over CPn.

Example 7.9. If M is a complex m-manifold, the tangent bundle TM of M is a complex vector
bundle of rank m over M .

8 Sections and Homomorphisms

Definition 8.1. (1) A (smooth) section of a (real or complex) vector bundle π : V −→ M is a
(smooth) map s :M−→V such that π◦s=idM , i.e. s(x)∈Vx for all x∈M .

(2) A vector field on a smooth manifold is a section of the tangent bundle TM−→M .

If π : V =M×Rk −→M is the trivial bundle of rank k, a section of π is a map s : M −→ V of
the form

s=(idM , f) :M −→M×Rk

for some map f : M −→ Rk. This section is smooth if and only if f is a smooth map. Thus,
a (smooth) section of the trivial vector bundle of rank k over M is essentially a (smooth) map
M−→Rk.

If s is a smooth section, then s(M) is an embedded submanifold of V : the injectivity of s and ds is
immediate from π◦s=idM , while the embedding property follows from the continuity of π. Every
fiber Vx of V is a vector space and thus has a distinguished element, the zero vector in Vx, which
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V

s0(M)≈M

s(M)≈M

Figure 2.2: The image of a vector-bundle section is an embedded submanifold of the total space.

we denote by 0x. It follows that every vector bundle admits a canonical section, called the zero

section,
s0(x) = (x, 0x) ∈ Vx.

This section is smooth, since on a trivialization of V over an open subset U of M it is given by the
inclusion of U as U×0 into U×Rk or U×Ck. Thus, M can be thought of as sitting inside of V as
the zero section, which is a deformation retract of V ; see Figure 2.2.

If s :M−→V is a section of a vector bundle V −→M and h : V |U −→U×Rk is a trivialization of V
over an open subset U⊂M , then

h ◦ s = (idU , sh) : U −→ U×Rk (8.1)

for some sh : U−→Rk. Since the trivializations h cover V and each trivialization h is a diffeomor-
phism, a section s :M−→V is smooth if and only if the induced functions sh : U−→Rk are smooth
in all trivializations h : V |U −→U×Rk of V .

Every trivialization h : V |U −→ U×Rk of a vector bundle V −→M over an open subset U ⊂M
corresponds to a k-tuple (s1, . . . , sk) of smooth sections of V over U such that the set {si(x)}i
forms a basis for Vx≡π−1(x) for all x∈U . Let e1, . . . , ek be the standard coordinate vectors in Rk.
If h : V |U −→U×Rk is a trivialization of V , then each section

si = h−1 ◦ (idU , ei) : U −→ V |U , si(x) = h−1(x, ei),

is smooth. Since {ei} is a basis for Rk and h : Vx−→x×Rk is a vector-space isomorphism, {si(x)}i
is a basis for Vx for all x∈U . Conversely, if s1, . . . , sk : U −→V |U are smooth sections such that
{si(x)}i is a basis for Vx for all x∈U , then the map

ψ : U × Rk −→ V |U , (x, c1, . . . , ck) −→ c1s1(x) + . . .+ cksk(x), (8.2)

is a diffeomorphism commuting with the projection maps; its inverse, h=ψ−1, is thus a trivialization
of V over U . If in addition s :M−→V is any bundle section and

sh ≡
(
sh,1, . . . , sh,k) : U −→ Rk

is as in (8.1), then

s(x) = h−1
(
x, sh,1(x), . . . , sh,k(x)

)
= sh,1(x)s1(x) + . . .+ sh,k(x)sk(x) ∀x∈U.

Thus, a bundle section s : M −→ V is smooth if and only if for every open subset U ⊂M and a
k-tuple of smooth sections s1, . . . , sk : U −→V |U such that {si(x)}i is a basis for Vx for all x∈U
the coefficient functions

c1, . . . , ck : U −→ R, s(x) ≡ c1(x)s1(x) + . . .+ ck(x)sk(x) ∀x∈U,
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are smooth.

For example, let π : V =TM −→M be the tangent bundle of a smooth m-manifold M . If ϕ̃α is a
trivialization of TM over Uα⊂M as in (7.3),

si(x) ≡ ϕ̃−1
α (x, ei) =

∂

∂xi

∣∣∣∣
x

∀x ∈ Uα

is the i-th coordinate vector field. Thus, a vector field X : M −→TM is smooth if and only if for
every smooth chart ϕα=(x1, . . . , xm) : Uα−→Rm the coefficient functions

c1, . . . , cm : U −→ R, X(p) ≡ c1(p)
∂

∂x1

∣∣∣∣
p

+ . . .+ cm(p)
∂

∂xm

∣∣∣∣
p

∀ p∈U,

are smooth. If X :M−→TM is a vector field on M and p∈M , sometimes it will be convenient to
denote the value X(p)∈TpM of X at p by Xp. If in addition f ∈C∞(M), define

Xf :M −→ R by {Xf}(p) = Xp(f) ∀ p∈M.

A vector field X on M is smooth if and only if Xf ∈C∞(M) for every f ∈C∞(M).

The set of all smooth sections of a vector bundle π : V −→M is denoted by Γ(M ;V ). This is
naturally a module over the ring C∞(M) of smooth functions on M , since fs∈Γ(M ;V ) whenever
f ∈ C∞(M) and s ∈ Γ(M ;V ). We will denote the set Γ(M ;TM) of smooth vector fields on M
by VF(M). It carries a canonical structure of Lie algebra over R, with the Lie bracket defined by

[·, ·] : VF(M)×VF(M) −→ VF(M),

[X,Y ]p(f) = Xp(Y f)− Yp(Xf) ∀ p∈M, f ∈ C∞(U), U ⊂M open, p∈U ;
(8.3)

see Exercise 5.

Definition 8.2. (1) Suppose π : V −→M and π′ : V ′−→N are real (or complex) vector bundles.
A (smooth) map f̃ : V −→V ′ is a (smooth) vector-bundle homomorphism if f̃ descends to a map
f :M−→N , i.e. the diagram

V

π
��

f̃
// V ′

π′

��
M

f
// N

(8.4)

commutes, and the restriction f̃ : Vx−→Vf(x) is linear (or C-linear, respectively) for all x∈M .

(2) If π : V −→M and π′ : V ′ −→M are vector bundles, a smooth vector-bundle homomorphism
f̃ : V −→V ′ is an isomorphism of vector bundles if π′◦f̃=π, i.e. the diagram

V

π
  ❆

❆❆
❆❆

❆❆
❆

f̃
// V ′

π′
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

M

(8.5)

commutes, and f̃ is a diffeomorphism (or equivalently, its restriction to each fiber is an isomor-
phism of vector spaces). If such an isomorphism exists, then V and V ′ are said to be isomorphic

vector bundles.
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Let f̃ : V −→V ′ be a vector-bundle homomorphism between vector bundles over the same space M
that covers idM as in (8.5). If

h : V |U −→ U×Rk and h′ : V ′|U −→ U×Rk′

are trivializations of V and V ′ over the same open subset U⊂M , then there exists

f̃h′h : U −→ Matk′×kR s.t. h′ ◦ f̃ ◦ h−1(x, v) =
(
x, f̃h′h(x)v

)
∀x∈U, v∈Rk . (8.6)

Since the trivializations h and h′ are diffeomorphisms that cover V and V ′, respectively, a vector-
bundle homomorphism as in (8.5) is smooth if and only if the induced function

f̃hh′ : U −→ Matk′×kR

is smooth for every pair, h : V |U −→U×Rk and h′ : V ′|U −→ U×Rk′ , of trivializations of V and V ′

over U .

Example 8.3. The tangent bundle π : TRn−→Rn of Rn is canonically trivial. The map

TRn −→ Rn × Rn , v −→
(
π(v); v(π1), . . . , v(πn)

)
,

where πi : R
n−→R are the component projection maps, is a vector-bundle isomorphism.

Lemma 8.4. The real line bundle V −→S1 given by the infinite Mobius band of Example 7.3 is
not isomorphic to the trivial line bundle S1×R−→S1.

Proof. In fact, (V, S1) is not even homeomorphic to (S1×R, S1). Since

S1×R− s0(S1) ≡ S1×R− S1×0 = S1×R− ⊔ S1×R+,

the space S1×R − S1 is not connected. On the other hand, V −s0(S1) is connected. If MB is
the standard Mobius Band and S1⊂MB is the central circle, MB−S1 is a deformation retract of
V −S1. On the other hand, the boundary of MB has only one connected component (this is the
primary feature of MB) and is a deformation retract of MB−S1. Thus, V −S1 is connected as
well.

Lemma 8.5. If π : V −→M is a real (or complex) vector bundle of rank k, V is isomorphic to the
trivial real (or complex) vector bundle of rank k over M if and only if V admits k sections s1, . . . , sk
such that the vectors s1(x), . . . , sk(x) are linearly independent over R (or over C, respectively) in
Vx for all x∈M .

Proof. We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose ψ : M×Rk −→V is an isomorphism of vector bundles over M . Let e1, . . . , ek be the
standard coordinate vectors in Rk. Define sections s1, . . . , sk of V over M by

si(x) = ψ
(
x, ei

)
∀ i = 1, . . . , k, x ∈M.

Since the maps x−→ (x, ei) are sections of M×Rk over M and ψ is a bundle homomorphism, the
maps si are sections of V . Since the vectors (x, ei) are linearly independent in x×Rk and ψ is
an isomorphism on every fiber, the vectors s1(x), . . . , sk(x) are linearly independent in Vx for all
x∈M , as needed.
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(2) Suppose s1, . . . , sk are sections of V such that the vectors s1(x), . . . , sk(x) are linearly indepen-
dent in Vx for all x∈M . Define the map

ψ :M×Rk −→ V by ψ(x, c1, . . . , ck) = c1s1(x) + . . .+ cksk(x) ∈ Vx.

Since the sections s1, . . . , sk and the vector space operations on V are smooth, the map h is
smooth. It is immediate that π(ψ(x, c))=x and the restriction of ψ to x×Rk is linear; thus, ψ is
a vector-bundle homomorphism. Since the vectors s1(x), . . . , sk(x) are linearly independent in Vx,
the homomorphism ψ is injective and thus an isomorphism on every fiber. We conclude that ψ is
an isomorphism between vector bundles over M .

9 Transition Data

Suppose π : V −→M is a real vector bundle of rank k. By Definition 7.1, there exists a collection
{(Uα, hα)}α∈A of trivializations for V such that

⋃
α∈A Uα =M . Since (Uα, hα) is a trivialization

for V ,
hα : V |Uα −→ Uα×Rk

is a diffeomorphism such that π1◦hα=π and the restriction hα : Vx−→x×Rk is linear for all x∈Uα.
Thus, for all α, β∈A,

hαβ≡hα◦h−1
β :

(
Uα∩ Uβ

)
× Rk −→

(
Uα∩Uβ

)
× Rk

is a diffeomorphism such that π1◦hαβ =π1, i.e. hαβ maps x×Rk to x×Rk, and the restriction of
hαβ to x×Rk defines an isomorphism of x×Rk with itself. Such a diffeomorphism must be given by

(x, v) −→
(
x, gαβ(x)v

)
∀ v ∈ Rk,

for a unique element gαβ(x)∈GLkR (the general linear group of Rk). The map hαβ is then given by

hαβ(x, v) =
(
x, gαβ(x)v

)
∀x ∈ Uα∩Uβ , v∈Rk,

and is completely determined by the map gαβ : Uα∩Uβ−→GLkR (and gαβ is determined by hαβ).
Since hαβ is smooth, so is gαβ .

Example 9.1. Let π : V −→S1 be the Mobius band line bundle of Example 7.3. If {(U±, h±)} is
the pair of trivializations described in Example 7.3, then

h−◦h−1
+ : U+∩U− × R −→ U+∩U− × R, (p, v) −→

(
p, g−+(p)v

)
=

{
(p, v), if Im p<0,

(p,−v), if Im p>0,

where g−+ : U+∩U− = S1−{±1} −→ GL1R=R∗, g−+(p) =

{
−1, if Im p>0;

1, if Im p<0.

In this case, the transition maps gαβ are locally constant, which is rarely the case.

Suppose {(Uα, hα)}α∈A is a collection of trivializations of a rank k vector bundle π : V −→M
covering M . Any (smooth) section s : M −→ V of π determines a collection of (smooth) maps
{sα : Uα−→Rk}α∈A such that

hα◦s(x) =
(
x, sα(x)

)
∀x∈Uα =⇒ sα(x) = gαβ(x)sβ(x) ∀x∈Uα∩Uβ , α, β∈A, (9.1)
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where {gαβ}α,β∈A is the transition data for the collection of trivializations {hα}α∈A of V . Con-
versely, a collection of (smooth) maps {sα : Uα−→Rk}α∈A satisfying the second condition in (9.1)
induces a well-defined (smooth) section of π via the first equation in (9.1). Similarly, suppose
{(Uα, h′α)}α∈A is a collection of trivializations of a rank k′ vector bundle π′ : V ′−→M covering M .
A (smooth) vector-bundle homomorphism f̃ : V −→ V ′ covering idM as in (8.5) determines a
collection of (smooth) maps

{f̃α : Uα−→Matk′×kR}α∈A s.t. h′α◦f̃ ◦h−1
α (x, v) =

(
x, f̃α(x)v

)
∀ (x, v)∈Uα×Rk (9.2)

=⇒ f̃α(x)gαβ(x) = g′αβ(x)f̃β(x) x∈Uα∩Uβ , α, β∈A, (9.3)

where {g′αβ}α,β∈A is the transition data for the collection of trivializations {h′α}α∈A of V ′. Con-
versely, a collection of (smooth) maps as in (9.2) satisfying (9.3) induces a well-defined (smooth)
vector-bundle homomorphism f̃ : V −→V ′ covering idM as in (8.5) via the equation in (9.2).

By the above, starting with a real rank k vector bundle π : V −→M , we can obtain an open cover
{Uα}α∈A of M and a collection of smooth transition maps

{
gαβ : Uα∩Uβ −→ GLkR

}
α,β∈A

.

These transition maps satisfy:

(VBT1) gαα ≡ Ik, since hαα≡hα◦h−1
α =id;

(VBT2) gαβgβα ≡ Ik, since hαβ◦hβα=id;

(VBT3) gαβgβγgγα ≡ Ik, since hαβ◦hβγ◦hγα=id.

The last condition is known as the (Čech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

gα1α2g
−1
α0α2

gα0α1 ≡ Ik ∀α0, α1, α2 ∈ A.

In light of (VBT2), the two versions of the cocycle condition are equivalent.

Conversely, given an open cover {Uα}α∈A of M and a collection of smooth maps

{
gαβ : Uα∩Uβ −→ GLkR

}
α,β∈A

that satisfy (VBT1)-(VBT3), we can assemble a rank k vector bundle π′ : V ′−→M as follows. Let

V ′ =

( ⊔

α∈A

α×Uα×Rk
)/
∼, where

(β, x, v) ∼
(
α, x, gαβ(x)v

)
∀ α, β ∈ A, x∈Uα∩Uβ, v∈Rk.

The relation∼ is reflexive by (VBT1), symmetric by (VBT2), and transitive by (VBT3) and (VBT2).
Thus, ∼ is an equivalence relation, and V ′ carries the quotient topology. Let

q :
⊔

α∈A

α×Uα×Rk −→ V ′ and π′ : V ′ −→M, [α, x, v] −→ x,
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be the quotient map and the natural projection map (which is well-defined). If β∈A and W is a
subset of Uβ×Rk, then

q−1
(
q(β×W )

)
=

⊔

α∈A

α×hαβ(W ), where

hαβ :
(
Uα∩Uβ

)
× Rk −→

(
Uα∩Uβ

)
× Rk, hαβ(x, v) =

(
x, gαβ(x)v

)
.

In particular, if β×W is an open subset of β×Uβ×Rk, then q−1
(
q(β×W )

)
is an open subset of⊔

α∈A α×Uα×Rk. Thus, q is an open continuous map. Since its restriction

qα ≡ q|α×Uα×Rk

is injective, (qα(α×Uα×Rk), q−1
α ) is a smooth chart on V ′ in the sense of Lemma 2.6. The overlap

maps between these charts are the maps hαβ and thus smooth.1 Thus, by Lemma 2.6, these charts
induce a smooth structure on V ′. The projection map π′ : V ′−→M is smooth with respect to this
smooth structure, since it induces projection maps on the charts. Since

π1 = π′ ◦ qα : α×Uα×Rk −→ Uα ⊂M,

the diffeomorphism qα induces a vector-space structure in V ′
x for each x∈Uα such that the restric-

tion of qα to each fiber is a vector-space isomorphism. Since the restriction of the overlap map hαβ
to x×Rk, with x∈Uα∩Uβ , is a vector-space isomorphism, the vector space structures defined on
V ′
x via the maps qα and qβ are the same. We conclude that π′ : V ′−→M is a real vector bundle of

rank k.

If {Uα}α∈A and
{
gαβ : Uα∩Uβ −→GLkR

}
α,β∈A

are transition data arising from a vector bundle

π : V −→M , then the vector bundle V ′ constructed in the previous paragraph is isomorphic to V .
Let {(Uα, hα)} be the trivializations as above, giving rise to the transition functions gαβ . We define

f̃ : V −→ V ′ by f̃(v) =
[
α, hα(v)

]
if π(v) ∈ Uα.

If π(v)∈Uα∩Uβ , then
[
β, hβ(v)

]
=

[
α, hαβ(hβ(v))

]
=

[
α, hα(v)

]
∈ V ′,

i.e. the map f̃ is well-defined (depends only on v and not on α). It is immediate that π′◦ f̃ = π.
Since the map

q−1
α ◦ f̃ ◦ h−1

α : Uα×Rk −→ α×Uα×Rk

is the identity (and thus smooth), f̃ is a smooth map. Since the restrictions of qα and hα to every
fiber are vector-space isomorphisms, it follows that so is f̃ . We conclude that f̃ is a vector-bundle
isomorphism.

In summary, a real rank k vector bundle over M determines a set of transition data with values
in GLkR satisfying (VBT1)-(VBT3) above (many such sets, of course) and a set of transition data
satisfying (VBT1)-(VBT3) determines a real rank-k vector bundle over M . These two processes
are well-defined and are inverses of each other when applied to the set of equivalence classes of
vector bundles and the set of equivalence classes of transition data satisfying (VBT1)-(VBT3).

1Formally, the overlap map is (β−→α)×hαβ .
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Two vector bundles over M are defined to be equivalent if they are isomorphic as vector bundles
over M . Two sets of transition data

{
gαβ

}
α,β∈A

and
{
g′αβ

}
α,β∈A

,

with A consisting of all sufficiently small open subsets ofM , are said to be equivalent if there exists
a collection of smooth functions {fα : Uα−→GLkR}α∈A such that

g′αβ = fαgαβf
−1
β , ∀α, β ∈ A, 2

i.e. the two sets of transition data differ by the action of a Čech 0-chain (more in Chapter 5
of Warner). Along with the cocycle condition on the gluing data, this means that isomorphism
classes of real rank k vector bundles over M can be identified with Ȟ1(M ; GLkR), the quotient of
the space of Čech cocycles of degree one by the subspace of Čech boundaries.

Remark 9.2. In Chapter 5 of Warner, Čech cohomology groups, Ȟm, are defined for (sheafs of)
abelian groups. However, the first two groups, Ȟ0 and Ȟ1, generalize to non-abelian groups as
well.

If π : V −→M is a complex rank k vector bundle over M , we can similarly obtain transition data
for V consisting of an open cover {Uα}α∈A of M and a collection of smooth maps

{
gαβ : Uα∩Uβ−→GLkC

}
α,β∈A

that satisfies (VBT1)-(VBT3). Conversely, given such transition data, we can construct a complex
rank k vector bundle over M . The set of isomorphism classes of complex rank k vector bundles
over M can be identified with Ȟ1(M ; GLkC).

10 Restrictions and Pullbacks

If N is a smooth manifold, M⊂N is an embedded submanifold, and π : V −→N is a vector bundle
of rank k (real or complex) over N , then its restriction to M ,

π : V |M ≡π−1(M) −→M,

is a vector bundle of rank k over M . It inherits a smooth structure from V by the Slice Lemma
(Proposition 5.3) or the Implicit Function Theorem for Manifolds (Theorem 6.3). If {(Uα, hα)} is
a collection of trivializations for V −→N , then {(M∩Uα, hα|π−1(M∩Uα))} is a collection of trivial-
izations for V |M −→M . Similarly, if {gαβ} is transition data for V −→N , then {gαβ |M∩Uα∩Uβ

} is
transition data for V |M −→M .

If f : M −→N is a smooth map and π : V −→N is a vector bundle of rank k, there is a pullback
bundle over M :

f∗V ≡M ×N V ≡
{
(p, v)∈M×V : f(p)=π(v)

} π1−→M. (10.1)

2According to the discussion around (9.3), such a collection {fα}α∈A corresponds, via trivializations, to an
isomorphism between the vector bundles determined by {gαβ}α,β∈A and {g′αβ}α,β∈A.
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Note that f∗V is the maximal subspace of M×V so that the diagram

f∗V

π1
��

π2 // V

π
��

M
f

// N

commutes. By the Implicit Function Theorem for Maps (Corollary 6.7), f∗V is a smooth subman-
ifold of M×V . By construction, the fiber of π1 over p∈M is p×Vf(p)⊂M×V , i.e. the fiber of π
over f(p)∈N : (

f∗V )p = p× Vf(p) ∀ p∈M. (10.2)

If {(Uα, hα)} is a collection of trivializations for V −→N , then {(f−1(Uα), hα◦f)} is a collection
of trivializations for f∗V −→M . Similarly, if {gαβ} is transition data for V −→N , then {gαβ ◦ f}
is transition data for f∗V −→M . The case discussed in the previous paragraph corresponds to f
being the inclusion map.

Lemma 10.1. If f̃ : V −→V ′ is a vector-bundle homomorphism covering a smooth map f :M−→N
as in (8.4), there exists a bundle homomorphism φ : V −→f∗V ′ so that the diagram

V

π
  ❅

❅❅
❅❅

❅❅
❅

φ
//

f̃

%%
f∗V ′

π1
||②②
②②
②②
②②

π2 // V ′

π′

��
M

f
// N

commutes.

Proof. The map φ is defined by

φ : V −→M×V ′, φ(v) =
(
π(v), f̃(v)

)
.

Since f ◦ π=π′ ◦ f̃ ,
φ(v) ∈ f∗V ′ ≡M ×N V ′ ≡

{
(p, v′)∈M×V ′ : f(p)=π′(v′)

}
.

Since f∗V ′ ⊂ M ×V ′ is a smooth embedded submanifold, the map φ : V −→ f∗V ′ obtained
by restricting the range is smooth; see Proposition 5.5. The above diagram commutes by the
construction of φ. Since f̃ is linear on each fiber of V , so is φ.

If f : M−→N is a smooth map, then dpf : TpM−→Tf(p)N is a linear map which varies smoothly
with p. It thus gives rises to a smooth map,

df : TM −→ TN, v −→ dπ(v)f(v). (10.3)

However, this description of df gives no indication that df maps v ∈ TpM to Tf(p)N or that
this map is linear on each TpM . One way to fix this defect is to state that (10.3) is a bundle
homomorphism covering the map f :M−→N , i.e. that the diagram

TM

π
��

df
// TN

π′

��
M

f
// N

(10.4)

50



commutes. By Lemma 10.1, df then induces a vector-bundle homomorphism from TM to f∗TN
so that the diagram

TM

π
!!❉

❉❉
❉❉

❉❉
❉

df
// f∗TN

π1
{{①①
①①
①①
①①

π2 //❴❴❴ TN

π′

��
✤

✤

✤

M
f

//❴❴❴❴❴❴❴❴❴ N

(10.5)

commutes. The triangular part of (10.5) is generally the preferred way of describing df . The
description (10.4) factors through the triangular part of (10.5), as indicated by the dashed arrows.
The triangular part of (10.5) also leads to a more precise statement of the Implicit Function The-
orem, which is rather useful in topology of manifolds; see Theorem 11.11 below.

If π : V −→N is a smooth vector bundle, f :M−→N is a smooth map, and s : N−→V is a bundle
section of V , then

f∗s :M −→ f∗V, {f∗s}(p) =
(
p, s(f(p))

)
∈ f∗V ≡M×N V ⊂M×V,

is a bundle section of f∗V −→M . If s is smooth, then f∗s : M −→M×V is a smooth map with
the image in M×N V . Since M×N V ⊂ M×V is an embedded submanifold, f∗s : M −→ f∗V is
a smooth map by Proposition 5.5. Thus, a smooth map f : M −→N induces a homomorphism of
vector spaces

f∗ : Γ(N ;V ) −→ Γ(M ; f∗V ), s −→ f∗s, (10.6)

which is also a homomorphism of modules with respect to the ring homomorphism

f∗ : C∞(N) −→ C∞(M), g −→ g ◦ f .

In the case of tangent bundles, the homomorphism (10.6) is compatible with the Lie algebra
structures on the spaces of vector fields, as described by the following lemma.

Lemma 10.2. Let f : M −→N be a smooth map. If X1, X2 ∈ VF(M) and Y1, Y2 ∈VF(N) are
smooth vector fields on M and N , respectively, such that df(Xi)= f∗Yi∈Γ(M ; f∗TN) for i=1, 2,
then

df
(
[X1, X2]

)
= f∗[Y1, Y2].

This is checked directly from the relevant definitions.

The pullback operation on vector bundles also extends to homomorphisms. Let f : M −→ N
be a smooth map and πV : V −→ N and πW : W −→ N be vector bundles. Any vector-bundle
homomorphism ϕ : V −→W over N induces a vector-bundle homomorphism f∗ϕ : f∗V −→ f∗W
over M so that the diagram

f∗V

π1

��✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷

f∗ϕ

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

π2 // V

πV
✴
✴
✴
✴
✴
✴
✴

��✴
✴
✴
✴
✴
✴
✴

ϕ

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

f∗W
π1

||②②
②②
②②
②②

π2 //W

πW
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

M
f

// N

(10.7)
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commutes. The vector-bundle homomorphism f∗ϕ is given by

(f∗ϕ)p=id×ϕf(p) : (f∗V )p=p×Vf(p) −→ (f∗W )p=p×Wf(p), (p, v) −→
(
p, ϕp(v)

)
,

where ϕp is the restriction of ϕ to the fiber Vf(p)=π
−1
V (f(p)) over f(p)∈N .

11 Subbundles and Quotient Bundles

Definition 11.1. Let M be a smooth manifold.

(1) A rank k′ subbundle of a vector bundle π : V −→M is a smooth submanifold V ′ of V such that
π|V ′ : V ′−→M is a vector bundle of rank k′.

(2) A rank k distribution on M is a rank k subbundle of TM−→M .

A subbundle of course cannot have a larger rank than the ambient bundle; so rkV ′ ≤ rkV in
Definition 11.1 and the equality holds if and only if V ′=V . By Exercise 17, the requirement that
π|V ′ : V ′−→M is a vector bundle of rank k′ can be replaced by the condition that V ′

p≡Vp∩V ′ is a
k′-dimensional linear subspace of Vp for all p∈M .

If f : M −→N is an immersion, the bundle homomorphism df as in (10.5) is injective and the
image of df in f∗TN is a subbundle of f∗TN . In the caseM⊂N is an embedded submanifold and
f is the inclusion map, we identify TM with the image of dι in f∗TN =TN |M . By Lemma 10.2,
if Y1, Y2∈VF(N) are smooth vector fields on N , then

Y1
∣∣
M
, Y2

∣∣
M
∈ VF(M) ⊂ Γ(M ;TN |M ) =⇒ [Y1, Y2]

∣∣
M
∈ VF(M) ⊂ Γ(M ;TN |M ).

Definition 11.2. Let N be a smooth manifold.

(1) A collection {ια : Mα −→ N}α∈A of injective immersions from m-manifolds is a foliation

of Nn if the collection {Im ια}α∈A covers N and for every q ∈N there exists a smooth chart
ψ : V −→Rm×Rn−m around q such that the image under ια of every connected subset U⊂ ι−1

α (V )
under ψ is contained in ψ−1(Rm×y) for some y∈Rn−m (dependent on U).

(2) A foliation {ια : Mα −→ N}α∈A of N is proper if ια is an embedding and the images of ια
partition N (their union covers M and any two of them are either disjoint or the same).

Thus, a foliation of N consists of regular immersions that cover N and are regular in a systematic
way (all of them correspond to horizontal slices in a single coordinate chart); see Figure 2.3. Since
manifolds are second-countable and the subset ι−1

α (V )⊂Mα in Definition 11.2 is open, ια(ι
−1
α (V ))

is contained in at most countably many of the horizontal slices ψ−1(Rm×y). The images of dια in
TN determine a rank m distribution D on N . By Lemma 10.2, if Y1, Y2∈VF(N) are vector fields
on N , then

Y1, Y2 ∈ Γ(N ;D) ⊂ VF(N) =⇒ [Y1, Y2] ∈ Γ(N ;D) ⊂ VF(N). (11.1)

Definition 11.3. Let D⊂TN be a distribution on a smooth manifold N . An injective immersion
ι :M−→N is integral for D if

Imdpι = Dι(p) ⊂ Tι(p)N ∀ p∈M.
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Rm

Rn−m

ι1(M1) ∩ V
ι2(M2) ∩ V

Figure 2.3: A foliation of N in a smooth chart V .

If ι :M−→N is an integrable injective immersion for a distribution D on N , then in particular

dimM = rkD.

If N admits a foliation {ια : Mα −→N}α∈A by injective immersions integral to a distribution D
on N , then Γ(N ;D)⊂VF(N) is a Lie subalgebra. By Frobenius Theorem, the converse is also true.

Example 11.4. The collection of embeddings

ια : R
m −→ Rn=Rm×Rn−m , ια(x) = (x, α), α ∈ Rn−m ,

is a proper foliation of Rn by m-manifolds. The corresponding distribution D⊂TRn is described by

D = Rn × (Rm×0) ⊂ Rn × Rn = TRn .

Example 11.5. The collection of embeddings

ια : S
1 −→ S2n+1 ⊂ Cn+1 , ια(e

iθ) = eiθα, α ∈ S2n+1 ,

is a proper foliation of S2n+1 by circles. The corresponding distribution D⊂TS2n+1 is described by

D =
{
(p, irp) : p∈S2n+1, r∈R

}
⊂ TS2n+1 ⊂ TCn+1

∣∣
S2n+1 = S2n+1×Cn+1 .

The embedded submanifolds of this foliations are the fibers of the quotient projection map

π : S2n+1 −→ S2n+1/S1 = CPn

of Example 1.10. This is an S1-bundle over CPn. In general, the fibers of the projection map
π : N−→B of any smooth fiber bundle form a proper foliation of the total space N of the bundle.
The corresponding distribution D⊂TN is then the vertical tangent bundle of π:

Dp = ker dpπ ⊂ TpN ∀ p∈N.

Example 11.6. Let π : V −→M be a smooth vector bundle and D ⊂ TV the vertical tangent
bundle of π as in Example 11.5. For each p∈M , let ιp : Vp−→V be the inclusion of the fiber over p
and define

ι̃ : π∗V ≡ {(v, w)∈V ×V : π(v)=π(w)
}
−→ TV, ι̃(v, w) = dvιp(w) ≡

d

dt
(v+tw)

∣∣∣
t=0
∈ TvV.
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This map is linear on the fibers of π∗V, TV −→V (i.e. linear in w above) and injective (since ιp is an
immersion). If ϕ : U−→Rm is a smooth chart on M and (π, h2) : V |U −→U×Rk is a trivialization
of V ,

h̃ : π∗V |V |U −→ V |U × Rk, h̃(v, w) =
(
v, h2(w)

)
,

H : TV |V |U −→ V |U × Rm×Rk, H(w) =
(
π′(w), w(ϕ◦π), w(h2)

)
,

are trivializations of the vector bundles π∗V −→V and π′ : TV −→V . Since

H ◦ ι̃ ◦ h̃−1 : V |U × Rk −→ V |U × Rm×Rk, (v, w) −→ (v, 0, w),

is a smooth map, it follows that ι̃ is a smooth injective bundle map over V . Since dv(ι̃(v, w))=0
for all (v, w)∈π∗V , Im ι̃⊂D. Since π∗V and D are vector bundles over π∗V of the same rank k,
ι̃ : π∗V −→D is an isomorphism of vector bundles over (the total space of) V . In particular, there
is a short exact sequence

0 −→ π∗V
ι̃−→ TV

dπ−→ π∗TM −→ 0 (11.2)

of vector bundles over V .

Example 11.7. An example of a foliation, which is not proper, is provided by the skew lines on
the torus of the same irrational slope η:

ια : R −→ S1×S1, ια(s) =
(
αeis, eiηs

)
, α ∈ S1 ⊂ C.

If η ∈ Q, this foliation is proper. In either case, the corresponding distribution D on S1×S1 is
described by

D(eit1 ,eit2 ) = d(t1,t2)q
(
{(r, ηr)∈R2=T(t1,t2)R

2 : r∈R}
)
,

where q : R2−→S1×S1 the usual covering map.

If V is a vector space (over R or C) and V ′⊂V is a linear subspace, then we can form the quotient
vector space, V/V ′. If W is another vector space, W ′⊂W is a linear subspace, and g : V −→W is
a linear map such that g(V ′)⊂W ′, then g descends to a linear map between the quotient spaces:

ḡ : V/V ′ −→W/W ′.

If we choose bases for V and W such that the first few vectors in each basis form bases for V ′

and W ′, then the matrix for g with respect to these bases is of the form:

g =

(
A B
0 D

)
.

The matrix for ḡ is then D. If g is an isomorphism from V to W that restricts to an isomorphism
from V ′ to W ′, then ḡ is an isomorphism from V/V ′ to W/W ′. Any vector-space homomorphism
ϕ : V −→W such that V ′⊂ kerϕ descends to a homomorphism ϕ̄ so that the diagram

V

q

��

ϕ
//W

V/V ′

ϕ̄

<<②
②

②
②
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commutes.

If V ′⊂V is a subbundle, we can form a quotient bundle, V/V ′−→M , such that

(V/V ′)p = Vp/V
′
p ∀ p∈M.

The topology on V/V ′ is the quotient topology for the natural surjective map q : V −→V/V ′. The
vector-bundle structure on V/V ′ is determined from those of V and V ′ by requiring that q be a
smooth vector-bundle homomorphism. Thus, if s is a smooth section of V , then q◦s is a smooth
section of V/V ′; so, there is a homomorphism

Γ(M ;V ) −→ Γ(M ;V/V ′), s −→ q ◦ s,

of C∞(M)-modules. There is also a short exact sequence3 of vector bundles over M ,

0 −→ V ′ −→ V
q−→ V/V ′ −→ 0,

where the zeros denote the zero vector bundleM×0−→M . We can choose a system of trivializations
{(Uα, hα)}α∈A of V such that

hα
(
V ′|Uα

)
= Uα × (Rk

′×0) ⊂ Uα×Rk ∀α∈A. (11.3)

Let qk′ : R
k −→Rk−k

′

be the projection onto the last (k−k′) coordinates. The trivializations for
V/V ′ are then given by {(Uα, {id×qk′} ◦ hα)}. Alternatively, if {gαβ} is transition data for V
such that the upper-left k′×k′-submatrices of gαβ correspond to V ′ (as is the case for the above
trivializations hα) and ḡαβ is the lower-right (k−k′)×(k−k′) matrix of gαβ , then {ḡαβ} is transition
data for V/V ′. Any vector-bundle homomorphism ϕ : V −→W over M such that ϕ(v) = 0 for
all v ∈V ′ descends to a vector-bundle homomorphism ϕ̄ so that ϕ= ϕ̄◦q. We leave proofs of the
following lemmas as an exercise.

Lemma 11.8. If f :M−→N is a smooth map and W,W ′−→N are smooth vector bundles,

f∗
(
W/W ′) ≈ (f∗W )/(f∗W ′)

as vector bundles over M .

Lemma 11.9. Let V −→M andW −→N be vector bundles over smooth manifolds and f :M−→N
a smooth map. A vector-bundle homomorphism f̃ : V −→W covering f as in (8.4) and vanishing
on a subbundle V ′⊂V induces a vector-bundle homomorphism

f̄ : V/V ′ −→W

covering f ; this induced homomorphism is smooth if the homomorphism f̃ is smooth.

If ι : X−→M is an immersion, the image of dι in ι∗TM is a subbundle of ι∗TM . In this case, the
quotient bundle,

NM ι ≡ ι∗TM
/
Imdι −→ X,

3
exact means that at each position the kernel of the outgoing vector-bundle homomorphism equals the image of

the incoming one; short means that it consists of five terms with zeros (rank 0 vector bundles) at the ends
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is called the normal bundle for the immersion ι. If X is an embedded submanifold and ι is the
inclusion map, TX is a subbundle of ι∗TM=TM |X and the quotient subbundle,

NMX ≡ NM ι = ι∗TM
/
Imdι = TM |X

/
TX −→ X,

is called the normal bundle of X in M ; its rank is the codimension of X in M .

The following lemma provides a geometric way to identify the normal bundle to a submanifold. Its
converse is known as the Tubular Neighborhood Theorem; see [3, (12.11)] for the general case and
Proposition 16.9 below for the compact case.

Lemma 11.10. Suppose X is an embedded submanifold of M and V −→X is a vector bundle. If
there exists a diffeomorphism between neighborhoods W and W ′ of X in V and in M , respectively,

f :W −→W ′ s.t. f(p)=p ∀ p∈X,

then V is isomorphic to the normal bundle NMX of X in M . If in addition, M is a complex
manifold, X is a complex submanifold, V −→X is a complex vector bundle, and the linear map

dpf : TpV/TpX −→ TpM/TpX

is C-linear for all p∈X (as is the case if f is a holomorphic map between complex manifolds), then
V and NMX are isomorphic as complex vector bundles.

Proof. The bundle map ι̃ of Example 11.6 induces an isomorphism

V −→ NXV ≡ TV |X
/
TX

of (complex) vector bundles over X; so, it is sufficient to show that NXV,NXM −→ X are
isomorphic vector bundles. If f is a diffeomorphism as above, the differential

df |X : TV |X −→ TM |X

is an isomorphism that restricts to the identity on TX. Thus, df |X induces an isomorphism

TV |X/TX −→ TM |X
/
TX = NMX (11.4)

of vector bundles over X. If V , TM , and TX are complex bundles and df |X is C-linear, then the
bundle isomorphism between the quotient bundles above is also C-linear. Combining (11.4) with
the first isomorphism, we obtain the lemma.

If f : M −→ N is a smooth map and X ⊂ M is an embedded submanifold, the vector-bundle
homomorphism df in (10.5) restricts (pulls back by the inclusion map) to a vector-bundle homo-
morphism

df |X : TM |X −→ (f∗TN)
∣∣
X

over X, which can be composed with the inclusion homomorphism TX−→TM |X ,

TX −→ TM |X
df |X−→ (f∗TN)

∣∣
X
.
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If in addition Y ⊂ N is an embedded submanifold and f(X) ⊂ Y , the above sequence can be
composed with the f∗-pullback of the projection homomorphism q : TN |Y −→NNY ,

TX −→ TM |X
df |X−→ (f∗TN)

∣∣
X

f∗q−→ f∗NNY . (11.5)

This composite vector-bundle homomorphism is 0, since dxf(v) ∈ Tf(x)Y for all x ∈X. Thus, it
descends to a vector-bundle homomorphism

df : NMX −→ f∗NNY (11.6)

over X. If f⊤∩NY as in (6.1), then the map TM |X −→ f∗NNY in (11.5) is onto and thus the
vector-bundle homomorphism (11.6) is surjective on every fiber. Finally, if X=f−1(Y ), the ranks
of the two bundles in (11.6) are the same by the last statement in Theorem 6.3, and so (11.6) is an
isomorphism of vector bundles over X. Combining this observation with Theorem 6.3, we obtain
a more precise statement of the latter.

Theorem 11.11. Let f : M −→ N be a smooth map and Y ⊂ N an embedded submanifold. If
f⊤∩NY as in (6.1), then X ≡ f−1(Y ) is an embedded submanifold of M and the differential df
induces a vector-bundle isomorphism

NMX

π
""❋

❋❋
❋❋

❋❋
❋❋

df
// f∗(NNY )

π1
zztt
tt
tt
tt
t

M

(11.7)

Since the ranks of NMX and f∗(NNY ) are the codimensions of X in M and Y in N , respectively,
this theorem implies Theorem 6.3. If Y ={q} for some q∈N , then NNY is a trivial vector bundle
and thus so is NMX ≈ f∗(NNY ). For example, the unit sphere Sm ⊂ Rm+1 has trivial normal
bundle, because

Sm = f−1(1), where f : Rm+1 −→ R, f(x) = |x|2.
A trivialization of the normal bundle to Sm is given by

TRm+1/TSm −→ Sm×R, (x, v) −→ (x, x·v).
Corollary 11.12. Let f : X −→M and g : Y −→M be smooth maps. If f⊤∩Mg as in (6.5), then
the space

X×M Y ≡
{
(x, y)∈X×Y : f(x)=g(y)

}

is an embedded submanifold of X×Y and the differential df induces a vector-bundle isomorphism

NX×Y (X×M Y )

π
((PP

PP
PP

PP
PP

PP

d(f◦πX)+d(g◦πY )
// π∗Xf

∗TM = π∗Y g
∗TM

uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

X×M Y

(11.8)

Furthermore, the projection map π1=πX : X×M Y −→ X is injective (immersion) if g : Y −→M
is injective (immersion).

This corollary is obtained by applying Theorem 11.11 to the smooth map

f×g : X×Y −→M×M.

All other versions of the Implicit Function Theorem stated in these notes are special cases of this
corollary.

57



12 Direct Sums and Duals

If V and V ′ are two vector spaces, we can form a new vector space, V⊕V ′=V×V ′, the direct sum
of V and V ′. There are natural inclusions V, V ′−→V⊕V ′ and projections V⊕V ′ −→V, V ′. Linear
maps f : V −→W and f ′ : V ′−→W ′ induce a linear map

f⊕f ′ : V ⊕V ′ −→W⊕W ′.

If we choose bases for V , V ′, W , and W ′ so that f and f ′ correspond to some matrices A and D,
then with respect to the induced bases for V ⊕V ′ and W⊕W ′,

f ⊕ g =

(
A 0
0 D

)
.

If π : V −→M and π′ : V ′−→M are smooth vector bundles, we can form their direct sum, V ⊕V ′,
so that

(V ⊕V )p = Vp⊕V ′
p ∀ p∈M.

The vector-bundle structure on V ⊕V ′ is determined from those of V and V ′ by requiring that
either the natural inclusion maps V, V ′ −→ V ⊕V ′ or the projections V ⊕V ′ −→ V, V ′ be smooth
vector-bundle homomorphisms over M . Thus, if s and s′ are sections of V and V ′, then s⊕s′ is a
smooth section of V ⊕V ′ if and only if s and s′ are smooth. So, the map

Γ(M ;V )⊕ Γ(M ;V ′) −→ Γ(M ;V ⊕V ′),

(s, s′) −→ s⊕s′,
{
s⊕s′

}
(p) = s(p)⊕ s′(p) ∀ p∈M,

is an isomorphism of C∞(M)-modules. If {gαβ} and {g′αβ} are transition data for V and V ′,
transition data for V ⊕V ′ is given by {gαβ⊕g′αβ}, i.e. we put the first matrix in the top left corner
and the second matrix in the bottom right corner. Alternatively,

π×π′ : V ×V ′ −→M×M

is a smooth vector bundle with respect to the product structures and

V ⊕ V ′ = d∗(V ×V ′), (12.1)

where d :M −→M×M, d(p) = (p, p) is the diagonal embedding.

The operation ⊕ is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If τ0=M−→M is trivial rank 0 bundle,

τ0 ⊕ V ≈ V

for every vector bundle V −→M . If n∈Z≥0, let

nV = V ⊕ . . .⊕ V︸ ︷︷ ︸
n

;

by convention; 0V =τ0. We leave proofs of the following lemmas as an exercise.
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Lemma 12.1. If f :M−→N is a smooth map and W,W ′−→N are smooth vector bundles,

f∗
(
W ⊕W ′) ≈ (f∗W )⊕ (f∗W ′)

as vector bundles over M .

Lemma 12.2. Let V, V ′ −→M and W,W ′ −→ N be vector bundles over smooth manifolds and
f :M−→N a smooth map. Vector-bundle homomorphisms

f̃ : V −→W and f̃ ′ : V ′ −→W ′

covering f as in (8.4) induce a vector-bundle homomorphism

f̃⊕f̃ ′ : V ⊕V ′ −→W⊕W ′

covering f ; this induced homomorphism is smooth if and only if f̃ and f̃ ′ are smooth.

If V, V ′−→M are vector bundles, then V and V ′ are vector subbundles of V ⊕V ′. It is immediate
that (

V ⊕V ′
)
/V = V ′ and

(
V ⊕V ′

)
/V ′ = V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if V ′ is a subbundle of V , by Section 14 below

V ≈ (V/V ′)⊕ V ′

as smooth vector bundles, real or complex. However, if V and V ′ are holomorphic bundles, V may
not have the same holomorphic structure as (V/V ′)⊕V ′ (i.e. the two bundles are isomorphic as
smooth vector bundles, but not as holomorphic ones).

If V is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V ∗ = HomR

(
V,R) or V ∗ = HomC

(
V,C).

A linear map g : V −→W between two vector spaces induces a dual map in the “opposite” direction:

g∗ :W ∗ −→ V ∗,
{
g∗(L)

}
(v) = L

(
g(v)

)
∀ L ∈W ∗, v ∈ V.

If V =Rk and W =Rn, then g is given by an n×k-matrix, and its dual is given by the transposed
k×n-matrix.

If π : V −→M is a smooth vector bundle of rank k (say, over R), the dual bundle of V is a vector
bundle V ∗−→M such that

(V ∗)p = V ∗
p ∀ p∈M.

The vector-bundle structure on V ∗ is determined from that of V by requiring that the natural map

V ⊕V ∗ = V ×MV ∗ −→ R (or C), (v, L) −→ L(v), (12.2)
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be smooth. Thus, if s and ψ are smooth sections of V and V ∗,

ψ(s) :M −→ R, {ψ(s)}(p) =
{
ψ(p)

}(
s(p)

)
,

is a smooth function on M . So, the map

Γ(M ;V )× Γ(M ;V ∗) −→ C∞(M), (s, ψ) −→ ψ(s),

is a nondegenerate pairing of C∞(M)-modules. If {gαβ} is transition data for V , i.e. the transitions
between smooth trivializations are given by

hα◦h−1
β : Uα∩Uβ × Rk −→ Uα∩Uβ × Rk, (p, v) −→

(
p, gαβ(p)v

)
,

the dual transition maps are then given by

Uα∩Uβ × Rk −→ Uα∩Uβ × Rk, (p, v) −→
(
p, gαβ(p)

trv
)
.

However, these maps reverse the direction, i.e. they go from the α-side to the β-side. To fix this
problem, we simply take the inverse of gαβ(p)

tr:

Uα∩Uβ × Rk −→ Uα∩Uβ × Rk, (p, v) −→
(
p, {gαβ(p)tr}−1v

)
.

So, transition data for V ∗ is {(gtrαβ)−1}. As an example, if V is a line bundle, then gαβ is a smooth
nowhere-zero function on Uα∩Uβ and (g∗)αβ is the smooth function given by 1/gαβ . We leave
proofs of the following lemmas as an exercise.

Lemma 12.3. If f :M−→N is a smooth map and W −→N is a smooth vector bundle,

f∗(W ∗) ≈ (f∗W )∗

as vector bundles over M .

Lemma 12.4. Let V −→M andW −→N be vector bundles over smooth manifolds and f :M−→N
a diffeomorphism. A vector-bundle homomorphism f̃ : V −→W covering f as in (8.4) induces a
vector-bundle homomorphism

f̃∗ :W ∗ −→ V ∗

covering f−1; this induced homomorphism is smooth if and only if the homomorphism f̃ is.

The cotangent bundle of a smooth manifold M , π : T ∗M −→M , is the dual of its tangent bundle,
TM −→M , i.e. T ∗M = (TM)∗. For each p ∈M , the fiber of the cotangent bundle over p is the
cotangent space T ∗

pM of M at p; see Definition 3.7. A section α : M −→T ∗M of T ∗M is called a
1-form on M ; it assigns to each p∈M a linear map

αp≡α(p) : TpM −→ R.

If in addition X is a vector field, then

α(X) :M −→ R,
{
α(X)

}
(p) = αp

(
X(p)

)
,

is a function on M . The section α is smooth if and only if α(X)∈C∞(M) for every smooth vector
field X on M . If ϕ=(x1, . . . , xm) : U−→Rm is a smooth chart, the sections

∂

∂x1
, . . . ,

∂

∂xm
∈ VF(U)
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form a basis for VF(U) as a C∞(U)-module. Since

dpxi

(
∂

∂xj

)
= δij ∀ i, j = 1, 2, . . . ,m,

dxi(X)∈C∞(U) for all X ∈VF(U) and {dpxi}i is a basis for T ∗
pM for all p∈U . Thus, dxi is a

smooth section of T ∗M over U and the inverse of the map

U×Rm −→ T ∗M |U , (p, c1, . . . , cm) −→ c1dpx1 + . . .+ cmdpxm ,

is a trivialization of T ∗M over U ; see Section 8. By (4.16), this inverse is given by

T ∗M |U −→ U×Rm, u −→
(
π(u), u

(
∂

∂x1

)
, . . . , u

(
∂

∂xm

))
,

where π : T ∗M −→M is the projection map. Thus, a 1-form α on M is smooth if and only if for
every smooth chart ϕα=(x1, . . . , xm) : Uα−→Rm the coefficient functions

c1=α

(
∂

∂x1

)
, . . . , cm=

(
∂

∂xm

)
: U −→ R, αp ≡ c1(p)dpx1 + . . .+ cm(p)dpxm ∀ p∈U,

are smooth. The C∞(M)-module of 1-forms on M is denoted by E1(M).

13 Tensor and Exterior Products

If V and V ′ are two vector spaces, we can form a new vector space, V ⊗V ′, the tensor product of
V and V ′. If g : V −→W and g′ : V ′−→W ′ are linear maps, they induce a linear map

g⊗g′ : V ⊗V ′ −→W⊗W ′.

If we choose bases {ej}, {e′n}, {fi}, and {f ′m} for V , V ′, W , andW ′, respectively, then {ej⊗e′n}(j,n)
and {fi⊗f ′m}(i,m) are bases for V⊗V ′ and W ⊗W ′. If the matrices for g and g′ with respect to the
chosen bases for V , V ′, W , and W ′ are (gij)i,j and (g′mn)m,n, then the matrix for g⊗g′ with respect
to the induced bases for V⊗V ′ andW⊗W ′ is (gijg

′
mn)(i,m),(j,n). The rows of this matrix are indexed

by the pairs (i,m) and the columns by the pairs (j, n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j, n). If the vector spaces V and W are one-dimensional, g
corresponds to a single number gij , while g⊗g′ corresponds to the matrix (gmn)m,n multiplied by
this number.

If π : V −→M and π′ : V ′ −→M are smooth vector bundles, we can form their tensor product,
V ⊗V ′, so that

(V ⊗V ′)p = Vp⊗V ′
p ∀ p∈M.

The topology and smooth structure on V ⊗V ′ are determined from those of V and V ′ by requiring
that if s and s′ are smooth sections of V and V ′, then s ⊗ s′ is a smooth section of V ⊗V ′. So,
the map

Γ(M ;V )⊗ Γ(M ;V ′) −→ Γ(M ;V ⊗V ′),

(s, s′) −→ s⊗s′,
{
s⊗s′

}
(p) = s(p)⊗ s′(p) ∀ p∈M,
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is a homomorphism of C∞(M)-modules (but not an isomorphism). If {gαβ} and {g′αβ} are transi-
tion data for V and V ′, then transition data for V ⊗V ′ is given by {gαβ⊗g′αβ}, i.e. we construct a
matrix-valued function gαβ⊗g′αβ from {gαβ} and {g′αβ} as in the previous paragraph. If V and V ′

are line bundles, then gαβ and g′αβ are smooth nowhere-zero functions on Uα∩Uβ and (g⊗g′)αβ is
the smooth function given by gαβg

′
αβ .

The operation ⊗ is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If τ1−→M is the trivial line bundle,

τ1 ⊗ V ≈ V

for every vector bundle V −→M is a vector bundle. If n∈Z+, let

V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸
n

, V ⊗(−n) = (V ∗)⊗n ≡ V ∗ ⊗ . . .⊗ V ∗
︸ ︷︷ ︸

n

;

by convention, V ⊗0=τ1. We leave proofs of the following lemmas as an exercise.

Lemma 13.1. If f :M−→N is a smooth map and W,W ′−→N are smooth vector bundles,

f∗
(
W ⊗W ′) ≈ (f∗W )⊗ (f∗W ′)

as vector bundles over M .

Lemma 13.2. Let V, V ′ −→M and W,W ′ −→ N be vector bundles over smooth manifolds and
f :M−→N a smooth map. Vector-bundle homomorphisms

f̃ : V −→W and f̃ : V ′ −→W ′

covering f as in (8.4) induce a vector-bundle homomorphism

f̃⊗f̃ ′ : V ⊗V ′ −→W⊗W ′

covering f ; this induced homomorphism is smooth if f̃ and f̃ ′ are smooth.

Lemma 13.3. Let V, V ′ −→M and W −→ N be vector bundles over smooth manifolds and f :
M−→N a smooth map. A bundle map

f̃ : V ⊕V ′=V ×MV −→W

covering f as in (8.4) such that the restriction of f̃ to each fiber Vp×Vp is linear in each component
induces a vector-bundle homomorphism

f̄ : V ⊗V ′ −→W

covering f ; this induced homomorphism is smooth if the homomorphism f̃ is.

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, ΛkV ,
of V . A linear map g : V −→W induces a linear map

Λkg : ΛkV −→ ΛkW.
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If n is a nonnegative integer, let Sk(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) =
{
(i1, . . . , ik)∈Zk : 1≤ i1<i2<. . .< ik≤n

}
.

If {ej}j=1,...,n and {fi}i=1,...,m are bases for V and W , then {eη}η∈Sk(n) and {fµ}µ∈Sk(m) are bases

for ΛkV and ΛkW , where

e(η1,...,ηk) = eη1 ∧ . . . ∧ eηk and f(µ1,...,µk) = fµ1 ∧ . . . ∧ fµk .

If (gij)i=1,...,m,j=1,...,n is the matrix for g with respect to the chosen bases for V and W , then
(
det

(
(gµrηs)r,s=1,...,k

))
(µ,η)∈Ik(m)×Ik(n)

is the matrix for Λkg with respect to the induced bases for ΛkV and ΛkW . The rows and columns of
this matrix are indexed by the sets Sk(m) and Sk(n), respectively. The (µ, η)-entry of the matrix
is the determinant of the k×k-submatrix of (gij)i,j with the rows and columns indexed by the
entries of µ and η, respectively. In order to actually write down the matrix, we need to order the
sets Sk(m) and Sk(n). If k=m=n, then ΛkV and ΛkW are one-dimensional vector spaces, called
the top exterior power of V and W , with bases

{
e1 ∧ . . . ∧ ek

}
and

{
f1 ∧ . . . ∧ fk

}
.

With respect to these bases, the homomorphism Λkg corresponds to the number det(gij)i,j . If k>n
(or k>m), then ΛkV (or ΛkW ) is the zero vector space and the corresponding matrix is empty.

If π : V −→M is a smooth vector bundle, we can form its k-th exterior power, ΛkV, so that

(ΛkV )p = ΛkVp ∀ p∈M.

The topology and smooth structure on ΛkV are determined from those of ΛkV by requiring that
if s1, . . . , sk are smooth sections of V , then s1∧. . .∧sk is a smooth section of ΛkV . Thus, the map

Λk
(
Γ(M ;V )

)
−→ Γ(M ; ΛkV ),

(s1, . . . , sk) −→ s1∧. . .∧sk, {s1∧. . .∧sk}(p) = s1(p)∧. . .∧sk(p) ∀ p∈M,

is a homomorphism of C∞(M)-modules (but not an isomorphism). If {gαβ} is transition data for
V , then transition data for ΛkV is given by {Λkgαβ}, i.e. we construct a matrix-valued function
Λkgαβ from each matrix gαβ as in the previous paragraph. As an example, if the rank of V is k,
then the transition data for the line bundle ΛkV , called the top exterior power of V , is {det gαβ}.
By definition, Λ0V =τR1 is the trivial line bundle over M .

It follows directly from the definitions that if V −→M is a vector bundle of rank k and L−→M is
a line bundle (vector bundle of rank one), then

Λtop(V ⊕L) ≡ Λk+1(V ⊕L) = ΛkV ⊗ L ≡ ΛtopV ⊗ L.

More generally, if V,W −→M are any two vector bundles, then

Λtop(V ⊕W ) = (ΛtopV )⊗ (ΛtopW ) and Λk(V ⊕W ) =
⊕

i+j=k

(ΛiV )⊗(ΛjW ).

We leave proofs of the following lemmas as exercises.
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Lemma 13.4. If f :M−→N is a smooth map, W −→N is a smooth vector bundle, and k∈Z≥0,

f∗
(
ΛkW ) ≈ Λk(f∗W )

as vector bundles over M .

Lemma 13.5. Let V −→M be a vector bundle. If k, l∈Z≥0, the map

Γ(M ; ΛkV )⊗ Γ(M ; ΛlV ) −→ Γ(M ; Λk+lV )

(s1, s2) −→ s1∧s2, {s1∧s2}(p) = s1(p)∧s2(p) ∀ p∈M,

is a well-defined homomorphism of C∞(M)-modules.

Lemma 13.6. Let V −→M andW −→N be vector bundles over smooth manifolds and f :M−→N
a smooth map. A vector-bundle homomorphism f̃ : V −→W covering f as in (8.4) induces a vector-
bundle homomorphism

Λkf̃ : ΛkV −→ ΛkW

covering f ; this induced homomorphism is smooth if the homomorphism f̃ is.

Lemma 13.7. Let V −→M andW −→N be vector bundles over smooth manifolds and f :M−→N
a smooth map. A bundle homomorphism

f̃ : kV ≡ V ×M . . .×M V︸ ︷︷ ︸
k

−→W

covering f as in (8.4) such that the restriction of f̃ to each fiber V k
p is linear in each component

and alternating induces a vector-bundle homomorphism

f̄ : ΛkV −→W

covering f ; this induced homomorphism is smooth if the homomorphism f̃ is.

Remark 13.8. For complex vector bundles, the above constructions (exterior power, tensor prod-
uct, direct sum, etc.) are always done over C, unless specified otherwise. So if V is a complex
vector bundle of rank k overM , the top exterior power of V is the complex line bundle ΛkV overM
(could also be denoted as ΛkCV ). In contrast, if we forget the complex structure of V (so that it
becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle Λ2kV
(could also be denoted as Λ2k

R V ).

If M is a smooth manifold, a section of the bundle Λk(T ∗M)−→M is called a k-form on M . A
smooth nowhere-vanishing section s of Λtop(T ∗M), i.e.

s(p) ∈ Λtop(T ∗
pM)− 0 ∀ p∈M,

is called a volume form on M ; Corollary 15.2 below provides necessary and sufficient conditions for
such a section to exist. The space of smooth k-forms on M is often denoted by Ek(M), rather
than Γ(M ; Λk(T ∗M)).
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14 Metrics on Fibers

Definition 14.1. A Riemannian metric in a smooth real vector bundle π : V −→M is a smooth
map

〈, 〉 : V ×MV ≡ {(v, w)∈V ×V : π(v)=π(w)
}
−→ R

such that the restriction

〈, 〉 : Vx×Vx −→ R, (v, w) −→ 〈v, w〉 ,

is an inner-product on Vx for every x∈M .

Thus, a Riemannian metric in π : V −→M is a smoothly varying family of inner-products in the
fibers Vx≈Rk of V . We leave a proof of the following lemma as an exercise.

Lemma 14.2. Let π : V −→M be a real vector bundle and 〈, 〉 : V×MV −→ R a map such that the
restriction

〈, 〉 : Vx×Vx −→ R, (v, w) −→ 〈v, w〉 ,
is an inner-product on Vx for every x∈M . The following statements are equivalent:

(1) the map 〈, 〉 is a Riemannian metric in V ;

(2) the section 〈, 〉 of the vector bundle (V ⊗V )∗−→M is smooth;

(3) if s1, s2 are smooth sections of the vector bundle V −→M , then the map

〈
s1, s2

〉
:M −→ R, p −→

〈
s1(p), s2(p)

〉
,

is smooth;

(4) if h : V |U −→U×Rk is a trivialization of V , then the matrix-valued function,

B : U −→ MatkR s.t.
〈
h−1(p, v), h−1(p, w)

〉
= vtB(p)w ∀ p∈U, v, w∈Rk,

is smooth.

Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
coveringM by a locally finite collection of trivializations for V and patching together inner-products
on each trivialization using a partition of unity; see Definition 14.3 below.

Definition 14.3. A smooth partition of unity subordinate to the open cover {Uα}α∈A of a smooth
manifold M is a collection {ηα}α∈A of smooth functions on M with values in [0, 1] such that

(PU1) the collection {supp ηα}α∈A is locally finite;

(PU2) supp ηα⊂Uα for every α∈A;

(PU3)
∑

α∈A

ηα ≡ 1.
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If 〈, 〉 is a Riemannian metric on a vector bundle π : V −→M and W ⊂ V is a vector subbundle,
then the orthogonal complement

W⊥ ≡
{
v∈V : 〈v, w〉=0 ∀w∈Wπ(v)

}

of W in V is also a vector subbundle of V and

V =W ⊕W⊥.

Furthermore, the quotient projection map q : V −→ V/W induces a vector bundle isomorphism
from W⊥ to V/W so that

V ≈W ⊕ (V/W ).

Definition 14.4. A Hermitian metric in a smooth complex vector bundle π : V −→M is a smooth
map 〈, 〉 : V ×MV −→ C such that the restriction

〈, 〉 : Vx×Vx −→ C, (v, w) −→ 〈v, w〉 ,

is a hermitian inner-product on Vx for every x∈M .

Thus, a Hermitian metric in π : V −→M is a smoothly varying family of Hermitian inner-products
in the fibers Vx≈Ck of V . We leave a proof of the following lemma as an exercise.

Lemma 14.5. Let π : V −→M be a complex vector bundle and 〈, 〉 : V ×MV −→ C a map such
that the restriction

〈, 〉 : Vx×Vx −→ C, (v, w) −→ 〈v, w〉 ,
is an inner-product on Vx for every x∈M . The following statements are equivalent:

(1) the map 〈, 〉 is a Hermitian metric in V ;

(2) the section 〈, 〉 of the vector bundle (V ⊗RV )∗−→M is smooth;

(3) if s1, s2 are smooth sections of the vector bundle V −→M , then the map

〈
s1, s2

〉
:M −→ C, p −→

〈
s1(p), s2(p)

〉
,

is smooth;

(4) if h : V |U −→U×Ck is a trivialization of V , then the matrix-valued function,

B : U −→ MatkC s.t.
〈
h−1(p, v), h−1(p, w)

〉
= vtB(p)w ∀ p∈U, v, w∈Ck,

is smooth.

Similarly to the real case, every complex vector bundle admits a Hermitian metric. If 〈, 〉 is a
Hermitian metric on a complex vector bundle π : V −→ M and W ⊂ V is a complex vector
subbundle, then the orthogonal complement

W⊥ ≡
{
v∈V : 〈v, w〉=0 ∀w∈Wπ(v)

}

of W in V is also a complex vector subbundle of V and

V =W ⊕W⊥.
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Furthermore, the quotient projection map q : V −→ V/W induces a vector bundle isomorphism
from W⊥ to V/W so that V ≈W ⊕ (V/W ).

If V −→M is a real vector bundle of rank k with a Riemannian metric 〈, 〉 or a complex vector
bundle of rank k with a Hermitian metric 〈, 〉, let

SV ≡
{
v∈V : 〈v, v〉=1

}
−→M

be the sphere bundle of V . In the real case, the fiber of SV over every point of M is Sk−1.
Furthermore, if U is a small open subset of M , then SV |U ≈U×Sk−1 as bundles over U , i.e. SV is
an Sk−1-fiber bundle overM . In the complex case, SV is an S2k−1-fiber bundle overM . If V −→M
is a real line bundle (vector bundle of rank one) with a Riemannian metric 〈, 〉, then SV −→M
is an S0-fiber bundle. In particular, if U is a small open subset of M , SV |U is diffeomorphic to
U×{±1}. Thus, SV −→M is a 2 : 1-covering map. If M is connected, the covering space SV is
connected if and only if V is not orientable; see Section 15 below.

15 Orientations

If V is a real vector space of dimension k, the top exterior power of V , i.e.

ΛtopV ≡ ΛkV

is a one-dimensional vector space. Thus, ΛtopV −0 has exactly two connected components. An
orientation on V is a component C of ΛtopV −0. If C is an orientation on V , then a basis {ei} for V
is called oriented (with respect to C) if

e1 ∧ . . . ∧ ek ∈ C.

If {fj} is another basis for V and A is the change-of-basis matrix from {ei} to {fj}, i.e.

(
f1, . . . , fk

)
=

(
e1, . . . , ek

)
A ⇐⇒ fj =

i=k∑

i=1

Aijei,

then
f1 ∧ . . . ∧ fk = (detA)e1 ∧ . . . ∧ ek.

Thus, two different bases for V belong to the same orientation on V if and only if the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V −→M is a real vector bundle of rank k. An orientation for V is an orientation for each
fiber Vx ≈ Rk, which varies smoothly (or continuously, or is locally constant) with x ∈M . This
means that if

h : V |U −→ U×Rk

is a trivialization of V and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of Rk) on every fiber. If V admits an orientation,
V is called orientable.

Lemma 15.1. Suppose V −→M is a smooth real vector bundle.
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(1) V is orientable if and only if V ∗ is orientable.

(2) V is orientable if and only if there exists a collection {Uα, hα} of trivializations that covers M
such that

det gαβ : Uα∩Uβ −→ R+,

where {gαβ} is the corresponding transition data.

(3) V is orientable if and only if the line bundle ΛtopV −→M is orientable.

(4) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M×R.

(5) If M is connected and V is a line bundle, V is orientable if and only if the sphere bundle SV
(with respect to any Riemann metric on V ) is not connected.

Proof. (1) Since Λtop(V ∗) ≈ (ΛtopV )∗ and a line bundle L is trivial if and only if L∗ is trivial, this
claim follows from (3) and (4).

(2) If V has an orientation, we can choose a collection {Uα, hα} of trivializations that coversM such
that the restriction of hα to each fiber is orientation-preserving (if a trivialization is orientation-
reversing, simply multiply its first component by −1). Then, the corresponding transition data
{gαβ} is orientation-preserving, i.e.

det gαβ : Uα∩Uβ −→ R+.

Conversely, suppose {Uα, hα} is a collection of trivializations that covers M such that

det gαβ : Uα∩Uβ −→ R+.

Then, if x∈Uα for some α, define an orientation on Vx by requiring that

hα : Vx −→ x×Rk

is orientation-preserving. Since det gαβ is R+-valued, the orientation on Vx is independent of α
such that x∈Uα. Each of the trivializations hα is then orientation-preserving on each fiber.

(3) An orientation for V is the same as an orientation for ΛtopV , since

ΛtopV = Λtop
(
ΛtopV

)
.

Furthermore, if {(Uα, hα)} is a collection of trivializations for V such that the corresponding tran-
sition functions gαβ have positive determinant, then {(Uα,Λtophα)} is a collection of trivializations
for ΛtopV such that the corresponding transition functions Λtopgαβ = det(gαβ) have positive de-
terminant as well.

(4) The trivial line bundle M×R is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V is isomorphic to the trivial line bundle, then V is orientable. Conversely,
suppose V is an oriented line bundle. For each x∈M , let

Cx ⊂ ΛtopV = V
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be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V by requiring that for all x∈M

〈
s(x), s(x)

〉
= 1 and s(x) ∈ Cx.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V is trivial by Lemma 8.5.

(5) If V is orientable, then V is isomorphic to M×R, and thus

SV = S(M×R) =M×S0 =M⊔M

is not connected. Conversely, if M is connected and SV is not connected, let SV + be one of the
components of SV . Since SV −→M is a covering projection, so is SV +−→M . Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V . Thus,
V is isomorphic to the trivial line bundle by Lemma 8.5.

If V is a complex vector space of dimension k, V has a canonical orientation as a real vector space
of dimension 2k. If {ei} is a basis for V over C, then

{
e1, ie1, . . . , ek, iek

}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V . If {fj} is another basis for V over C, B is the complex
change-of-basis matrix from {ei} to {fj}, A is the real change-of-basis matrix from

{
e1, ie1, . . . , ek, iek

}
to

{
f1, if1, . . . , fk, ifk

}
,

then
detA = (detB)detB ∈ R+.

Thus, the two bases over R induced by complex bases for V determine the same orientation for V .
This implies that every complex vector bundle V −→M is orientable as a real vector bundle.

A smooth manifold M is called orientable if its tangent bundle, TM−→M , is orientable.

Corollary 15.2. Let M be a smooth manifold. The following statements are equivalent:

(1) M is orientable;

(2) the bundle T ∗M−→M is orientable;

(3) M admits a volume form;

(4) there exists a collection of smooth charts {(Uα, ϕα)}α∈A that covers M such that

detJ (ϕα◦ϕ−1
β )x > 0 ∀x∈ϕβ(Uα∩Uβ), α, β∈A.

Proof. The equivalence of the first three conditions follows immediately from Lemma 15.1. If
{(Uα, ϕα)}α∈A is a collection of charts as in (4), then

hα= ϕ̃α : TM |Uα −→ Uα×Rm , v −→
(
π(v), v(ϕα)

)
,
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is a collection of trivializations of TM as in Lemma 15.1-(2) for V =TM , since

ϕ̃α◦ϕ̃−1
β : Uα∩Uβ × Rm −→ Uα∩Uβ × Rm , (p, v) −→

(
p,J (ϕα◦ϕ−1

β )ϕβ(p)v),

hα◦h−1
β : Uα∩Uβ × Rm −→ Uα∩Uβ × Rm , (p, v) −→

(
p, gαβ(p)v).

In particular, if such a collection of charts exists, then TM is orientable. Conversely, suppose
{(Uα, hα)}α∈A is a collection of trivializations of TM as in Lemma 15.1-(2), {(Uα, ϕα)}α∈A is any
collection of smooth charts on M , and Uα is connected. In particular,

ϕ̃α ◦ h−1
α : Uα×Rm −→ Uα×Rm , (p, v) −→

(
p, {h−1

α (p, v)}(ϕα)
)
,

is a smooth vector-bundle isomorphism. Thus, there is a smooth map

Aα : Uα −→ GLmR s.t. {h−1
α (p, v)}(ϕα) = Aα(p)v ∀ v∈Rm.

Since Uα is connected, detAα does not change sign on Uα. By changing the sign of the first
component of ϕα if necessary, it can be assumed that detAα(p)>0 for all p∈Uα and α∈A. Thus,

detJ (ϕα◦ϕ−1
β )ϕβ(p) = detAα(p) · det gαβ(p) · detA−1

β (p) > 0 ∀ p∈Uα∩Uβ , α, β∈A.
Thus, the collection {(Uα, ϕα)}α∈A satisfies (4).

An orientation for a smooth manifold M is an orientation for the vector bundle TM −→ M ; a
manifold with a choice of orientation is called oriented. A diffeomorphism f : M −→N between
oriented manifolds is called orientation-preserving (orientation-reversing) if the differential

dpf : TpM −→ Tf(p)N

is an orientation-preserving (orientation-reversing) isomorphism for every p∈M ; ifM is connected,
this is the case if and only if dpf is orientation-preserving (orientation-reversing) for a single point
p∈M .

If M is a smooth manifold, the sphere bundle

π : S
(
ΛtopT ∗M

)
−→M

is a two-to-one covering map. By Lemma 15.1 and Corollary 15.2, if M is connected, the domain
of π is connected if and only if M is not orientable. For each p∈M ,

π−1(p) ≡ {Ωp,−Ωp} ⊂ S
(
ΛtopT ∗

pM
)
⊂ ΛtopT ∗

pM

is a pair on nonzero top forms on T ∗
pM , which define opposite orientations of TpM . Thus,

S(ΛtopT ∗M) can be thought as the set of orientations on the fibers of M ; it is called the ori-

entation double cover of M .

Smooth maps f, g :M−→N are called smoothly homotopic if there exists a smooth map

H :M×[0, 1] −→ N s.t. H(p, 0) = f(p), H(p, 1) = g(p) ∀ p∈M.

Diffeomorphisms f, g : M −→N are called isotopic if there exists a smooth map H as above such
that the map

Ht :M −→ N, p −→ (p, t),

is a diffeomorphism for every t∈ [0, 1]. We leave proofs of the following lemmas as an exercise; both
can be proved using Corollary 15.2.
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Lemma 15.3. The orientation double cover of any smooth manifold is orientable.

Lemma 15.4. Let f, g : M −→N be isotopic diffeomorphisms between oriented manifolds. If f is
orientation-preserving (orientation-reversing), then so is g.

16 Connections

Definition 16.1. A connection in a smooth real vector bundle V −→M is an R-linear map

∇ : Γ(M ;V ) −→ Γ(M ;T ∗M⊗V ) s.t.

∇(fs) = df⊗s+ f∇s ∀ f ∈C∞(M), s∈Γ(M ;V ). (16.1)

If f is a smooth function on M supported in a neighborhood U of x∈M such that f(x)= 1 and
s∈Γ(M ;V ), then

∇s
∣∣
x
= ∇

(
fs)

∣∣
x
− dxf⊗s(x) (16.2)

by (16.1). The right-hand side of (16.2) depends only on ξ|U . Thus, a connection ∇ in V is a
local operator, i.e. the value of ∇s at a point x∈M depends only on the restriction of s to any
neighborhood U of x.

Let hα : V |Uα−→Uα×Rk be a trivialization of V and

sα;1, . . . , sα;k ∈ Γ(Uα;V ), sα;i(x) = h−1
α (x, ei), (16.3)

be a frame for V . By definition of ∇, there exist

θαij ∈ Γ(Uα;T
∗M) s.t. ∇sα;j =

i=k∑

i=1

sα;iθ
α
ij ≡

i=k∑

i=1

θαij⊗sα;i ∀ j=1, . . . , k.

We will call
θα ≡

(
θαij

)
i,j=1,...,k

∈ Γ
(
Uα;T

∗M⊗RMatk×kR
)

(16.4)

the connection one-form of ∇ for the trivialization hα. For an arbitrary section of V −→Uα, by (16.1)

∇
( j=k∑

j=1

f jsα;j

)
=

i=k∑

i=1

sα;i

(
df i +

j=k∑

j=1

θαijf
j
)
. (16.5)

Conversely, any θα as in (16.4) defines a connection in V |Uα−→Uα by (16.5). Thus, every vector
bundle V −→M admits a connection, since one can be obtained by patching together connections
over trivializations via partitions of unity.

If hβ : V |Uβ
−→Uβ×Rk is another trivialization of V and

hα ◦ h−1
β (x,w) = (x, gαβ(x)w) ∀ (x,w)∈Uα∩Uβ × Rk,

then by (16.3) and (16.5)

sβ;l
∣∣
Uα∩Uβ

=

j=k∑

j=1

(gαβ)jlsα;j
∣∣
Uα∩Uβ

=⇒ ∇sβ;l
∣∣
Uα∩Uβ

=
i=k∑

i=1

sα;i

(
(dgαβ)il +

j=k∑

j=1

θαij(gαβ)jl

)

=⇒ θβ = gβαθ
αgαβ + gβαdgαβ . (16.6)
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Conversely, if {(Uα, hα)}α∈A is a collection of trivializations covering M with transition data
{gαβ}α,β∈A, a collection {

θα∈Γ(Uα;T ∗M⊗Matk×kR)}α∈A
satisfying (16.6) determines a connection in V by (16.5).

If ∇ is a connection in a vector bundle π : V −→M , a smooth map f : X−→M induces a connection

∇f : Γ(X; f∗V ) −→ Γ(X;T ∗X⊗f∗V )

in the vector bundle f∗V −→ X as follows. Let {(Uα, hα)}α∈A be a collection of trivializations
for V covering M with transition data {gαβ}αβ∈A and {θα}α∈A the corresponding collection of
connection one-forms. Then, {(f−1(Uα), f

∗hα)}α∈A is a collection of trivializations for the vector
bundle f∗V −→X covering X with transition data {f∗gαβ}αβ∈A, while

{f∗θα ∈ Γ(f−1(Uα);T
∗X⊗Matk×kR)}α∈A

is a collection satisfying

f∗θβ = (f∗gβα)(f
∗θα)(f∗gαβ) + (f∗gβα)d(f

∗gαβ) ,

since f∗d = df∗. Thus, the collection {f∗θα}α∈A determines a connection ∇f in f∗V . The connec-
tion ∇f is independent of the choice of the collection {(Uα, hα)}α∈A, since any two such collections
can be joined into one, while ∇f is completely determined by any subcollection covering M .

Recall from Section 4 that a smooth curve on M is a smooth map γ : (a, b)−→M . For t∈ (a, b),
the tangent vector to a smooth curve γ at t is the vector

γ′(t) =
d

dt
γ(t) ≡ dtγ

(
∂e1 |t

)
∈ Tγ(t)M,

where e1=1∈R1 is the oriented unit vector. In particular, γ′∈Γ((a, b); γ∗TM).

Definition 16.2. LetM be a smooth manifold and ∇ a connection in the tangent bundle TM−→M
of M . A ∇-geodesic is a smooth curve

γ : (a, b) −→M s.t. ∇γγ′
∣∣ = 0 ∀ t ∈ (a, b). (16.7)

If ∇ is a connection in TM and ϕ=(x1, . . . , xm) : U −→Rm is a smooth chart on M , there exists
Γkij ∈ C∞(U) such that

∇ ∂

∂xj
=

k=m∑

k=1

i=m∑

i=1

Γkijdxi ⊗
∂

∂xk
∀ j = 1, 2, . . . ,m.

For any smooth map γ : (a, b)−→U ⊂M , let

(γ1, . . . , γm) = ϕ◦γ : (a, b) −→ Rm .

By the construction of ∇γ above,

∇γ
(
γ∗

∂

∂xj

)
=

k=m∑

k=1

i=m∑

i=1

γ∗(Γkijdxi)⊗
(
γ∗

∂

∂xk

)
=

k=m∑

k=1

i=m∑

i=1

(Γkij◦γ)
dγi
dt

dt⊗
(
γ∗

∂

∂xk

)
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for all j = 1, 2, . . . ,m. Thus, by (16.5),

∇γγ′(t) =
k=m∑

k=1

[
d2γk
dt2

+
i=m∑

i=1

j=m∑

j=1

(Γkij◦γ)
(
dγi
dt

)(
dγj
dt

)]
dt⊗

(
γ∗

∂

∂xk

)
. (16.8)

Thus, if t0∈R and γ : (a, b)−→M is a ∇-geodesic, then so is

γ̃ : (a−t0, b−t0) −→M, γ̃(t) = γ(t+t0).

Lemma 16.3. Let ∇ be a connection in the tangent bundle TM −→M of a smooth manifold M .
For every v∈TM , there exists a ∇-geodesic γ : (−ǫ, ǫ)−→M such that γ′(0)=v. If

γ, γ̃ : (−ǫ, ǫ) −→M

are two such ∇-geodesics, then γ= γ̃.
Proof. Let ϕ=(x1, . . . , xm) : (U, p)−→(Rm,0) be a smooth chart onM . By (16.8), γ : (−ǫ, ǫ)−→U
is a ∇-geodesic such that γ(0)=p and γ′(0)=v if and only if





d2γk
dt2

= −
i=m∑
i=1

j=m∑
j=1

(Γkij◦γ)
(
dγi
dt

)(
dγj
dt

)

γk(0) = 0, dγk
dt

∣∣∣∣
t=0

= v(xk)

∀ k = 1, 2, . . . ,m. (16.9)

This system of m second-order ODEs is equivalent to a system of 2m first-order ODEs. By the
Existence Theorem for First-Order Differential Equations [1, A.2], this system has a solution

(γ1, . . . , γm) : (−ǫ, ǫ) −→ Rm

for some ǫ > 0. By the Uniqueness Theorem for First-Order Differential Equations [1, A.1], any
two solutions of this initial-value problem must agree on the intersection of the domains of their
definition.

Corollary 16.4. Let ∇ be a connection in the tangent bundle TM−→M of a smooth manifold M .
If a, ã ∈ R−, b, b̃ ∈ R+, and γ : (a, b) −→ M and γ̃ : (ã, b̃) −→ M are ∇-geodesics such that
γ′(0)= γ̃′(0), then

γ|(a,b)∩(ã,b̃) = γ̃|(a,b)∩(ã,b̃) .
Proof. The subset

A ≡
{
t∈(a, b) ∩ (ã, b̃) : γ(t)= γ̃(t)

}
⊂ (a, b) ∩ (ã, b̃)

is nonempty (as it contains 0) and closed (as γ and γ̃ are continuous). Since (a, b) ∩ (ã, b̃) is
connected, it is sufficient to show that S is open. If

t0 ∈ S and (t0−ǫ, t0+ǫ) ⊂ (a, b) ∩ (ã, b̃),

define smooth curves

α, β : (−ǫ, ǫ) −→M by α(t) = γ(t+t0), β(t) = γ̃(t+t0).

Since γ and γ̃ are ∇-geodesics, so are α and β; see the sentence preceding Lemma 16.3. Since

α′(0) = γ′(t0) = γ̃′(t0) = β′(0),

α=β by Lemma 16.3 and thus (t0−ǫ, t0+ǫ) ⊂ (a, b) ∩ (ã, b̃).
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Corollary 16.5. Let ∇ be a connection in the tangent bundle TM−→M of a smooth manifold M .
For every v∈TM , there exists a unique maximal ∇-geodesic γv : (av, bv)−→M such that γ′v(0)=v,
where av∈ [−∞, 0) and bv∈(0,∞]. If t∈(av, bv), then

(
aγ′v(t), bγ′v(t)

)
= (av−t, bv−t), γ′γ′v(t)(−t) = v. (16.10)

Proof. (1) Let {γα : (aα, bα)−→M}α∈A be the collection of all ∇-geodesics such that γ′α(0) = v.
Define

(av, bv) =
⋃

α∈A

(aα, bα), γv : (av, bv) −→M, γv(t) = γα(t) ∀ t∈(aα, bα), α∈A.

By Corollary 16.4, γα(t) is independent of the choice of α∈A such that t∈ (aα, bα). Thus, γv is
well-defined. It is smooth, since its restriction to each open subset (aα, bα) is smooth and these
subsets cover (av, bv). It is a ∇-geodesic, since this is the case on the open subsets (aα, bα). It is
immediate that γ′v(0)=v. By construction, γv is a maximal ∇-geodesic.

(2) If t∈(av, bv), define

γ : (av−t, bv−t) −→M by γ(τ) = γv(τ+t).

By the sentence preceding Lemma 16.3, γ is a ∇-geodesic. Furthermore,

γ′(0) = γ′v(t), γ′(−t) = γ′v(0) = v.

Thus, by the first statement of Corollary 16.5,

(
aγ′v(t), bγ′v(t)

)
⊃ (av−t, bv−t), γγ′v(t)

∣∣
(av−t,bv−t)

= γ =⇒ − t ∈
(
aγ′v(t), bγ′v(t)

)
, γ′γ′v(t)(−t) = v

=⇒ (av, bv) =
(
aγ′

γ′v(t)
(−t), bγ′

γ′v(t)
(−t)

)
⊃

(
aγ′v(t)+t, bγ′v(t)+t

)
.

This confirms (16.10).

If ∇ is a connection in the tangent bundle TM−→M of a smooth manifold M and t∈R, let

Domt(∇) =
{
v∈TM : t∈(av, bv)

}
, Ψt : Domt(∇) −→ TM, Ψt(v) = γ′v(t).

Proposition 16.6. If ∇ is a connection in the tangent bundle π : TM −→M of a smooth mani-
fold M , then

(1) Dom0(∇)=TM , exp0=idTM , M⊂Domt(∇) for all t∈R, and

TM =
⋃

t>0

Domt(∇) =
⋃

t<0

Domt(∇) ;

(2) for all s, t∈R, Ψs+t=Ψs◦Ψt : Dom(Ψs◦Ψt)=Ψ−1
t

(
Doms(∇)

)
−→TM ;

(3) for all v∈TM , there exist an open neighborhood U of v in TM and ǫ∈R+ such that the map

Ψ: (−ǫ, ǫ)×U −→ TM, (t, v′) −→ Ψt(v
′) ≡ γ′v′(t), (16.11)

is defined and smooth;
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(4) for all t∈R, Domt(∇) ⊂ TM is an open subset;

(5) for all t∈R, Ψt : Domt(∇) −→ Dom−t(∇) is a diffeomorphism with inverse Ψ−t.

Proof. (1) By Lemma 16.3, for each v∈TM there exists a ∇-geodesic γ : (−ǫ, ǫ)−→M such that
γ′(0)= v. Thus, v∈Dom±ǫ/2(∇)⊂Dom0(∇); this implies the first and last claims in (1). For the
third claim, note that any constant map R−→M is a ∇-geodesic. The second claim follows from
the requirement that Ψ0(v)≡γ′v(0)=v for all v∈TM .

(2) Since Dom(Ψs)=Doms(∇), Dom(Ψs◦Ψt)=Ψ−1
t (Doms(∇)). If v∈Ψ−1

t (Doms(∇)),

s ∈
(
aΨt(v), bΨt(v)

)
=

(
aγ′v(t), bγ′v(t)

)
.

Thus, s+t∈(av, bv) by (16.10) and Ψ−1
t (Doms(∇)) ⊂ Dom(Ψs+t). Define

γ :
(
aΨt(v), bΨt(v)

)
−→ TM by γ(τ) = γv(τ+t);

by (16.10), γv(τ+t) is defined for all τ ∈(aΨt(v), bΨt(v)). By the sentence preceding Lemma 16.3, γ
is a ∇-geodesic. Furthermore, γ′(0)=γ′v(t)=Ψt(v). Thus, by Corollary 16.5, γ=γΨt(v) and so

Ψs+t(v) ≡ γv(s+t) = γ(s) = γΨ(v)(s) ≡ Ψs

(
Ψt(v)

)

for all s∈(aΨt(v), bΨt(v)).

(3) As in the proof of Lemma 16.3, the requirement for a smooth map γ : (a, b) −→ M to be
a ∇-geodesic with γ′(0) = v corresponds to an initial-value problem (16.9) in a smooth chart
around π(v). Thus, the claim follows from the smooth dependence of solutions of (16.9) on the
parameters [1, A.4].

(4) Since Dom0(∇)=TM , it is sufficient to prove this statement for t∈R∗. We consider the case
t∈R+; the case t∈R− is proved similarly. Let v∈Domt(∇) andW ⊂TM be an open neighborhood
of Ψt(v)=γ

′
v(t) in TM . Since the interval [0, t] is compact, by (3) and Lebesgue Number Lemma

(Lemma B.1.2), there exist ǫ> 0 and a neighborhood U of γ′v([0, t]) such that the map (16.11) is
defined and smooth. Let n∈Z+ be such that t/n<ǫ. We inductively define subsets Wi⊂TM by

Wn =W, Wi = Ψ−1
t/n(Wi+1) ∩ U =

{
Ψt/n|U

}−1
(Wi+1) ∀ i = 0, 1, . . . , n−1.

By induction, Wi⊂U is an open neighborhood of γ′v(it/n), Wi⊂Ψ−1
t/n(Dom(Ψ(n−1−i)t/n)), and thus

Ψ(n−i)t/n = Ψt/n ◦Ψ(n−1−i)t/n :Wi −→ U ⊂ TM

by (2). It follows that W0⊂TM is an open neighborhood of v in TM such that W0⊂ Domt(∇).

(5) By (16.10) and (2), ImΨt = Dom−t(∇) and Ψ−t is the inverse of Ψt. If v∈Domt(∇) and W0

is a neighborhood of v in TM as in the proof of (4), Ψt|W0 is a smooth map. Thus, Ψt is smooth
on the open subset Domt(∇)⊂TM .

Definition 16.7. Let ∇ be a connection in the tangent bundle π : TM −→M of M of a smooth
manifold M . The exponential map for ∇ is the map

exp∇ : Dom1(∇) −→M, v −→ π(Ψ1(v)) = γv(1).
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Remark 16.8. A connection ∇ in a vector bundle π : V −→M provides a splitting of the short
exact sequence (11.2), i.e. a vector-bundle homomorphism

j∇ : π∗TM −→ TV s.t. dπ ◦ j∇ = idπ∗TM

over (the total space of) V , as follows. If s∈Γ(M ;V ), p∈M , and w∈TpM , let

j∇
(
s(p), w

)
≡ dps(w)− ι̃(∇vs).

By a direct check in a trivialization, j∇(fs(p), w)= j∇(s(p), w) for any f ∈C∞(M) with f(p)=1.
Thus, the bundle homomorphism j is well-defined. A connection ∇ in TM−→M also determines
a smooth vector field X∇ on TM by

X∇(v) = j∇(v, v) ∈ Tv(TM).

A smooth curve γ : (a, b)−→M is a ∇-geodesic if and only if γ′ : (a, b)−→TM is an integral flow
for vector field X∇ on TM ; see Definition 17.1. Thus, Lemma 16.3, Corollaries 16.4 and 16.5, and
Proposition 16.6 are special cases of Lemma 17.2, Corollaries 17.3 and 17.4, and Proposition 17.7,
respectively. We include their proofs for the same of completeness, since the primary purpose of
Section 17 is completely independent of the primary purpose of this section.

By Proposition 16.6, exp∇ is a smooth map from an open neighborhood ofM in TM toM restricts
to the identity on M . By the construction of exp∇,

dp exp
∇=

(
idTpM , idTpM

)
: Tp(TM) ≈ TpM ⊕ TpM −→ TpM ∀ p∈M (16.12)

under the canonical isomorphism Tp(TM) ≈ TpM⊕TpM induced by the map ι̃ of Example 11.6.

Proposition 16.9. If X is a compact submanifold of a smooth manifold M , there exists a diffeo-
morphism between neighborhoods W and W ′ of X in NXM and in M , respectively,

f :W −→W ′ s.t. f(p)=p ∀ p∈X.

Proof. (1) Let ∇ be a connection in the tangent bundle π : TM −→M and exp∇ : U −→M its
exponential map, where U is a neighborhood of M in TM . Let

TX⊥ ≡ {v∈TM |X : 〈v, w〉=0 ∀w∈Tπ(v)X
}

be the orthogonal complement of the subbundle TX⊂TM |X with respect to a Riemannian met-
ric 〈, 〉 in TM |X . Since TX⊥∩U ⊂U is a smooth submanifold, the restriction

exp: TX⊥∩U −→M

is a smooth map which restricts to the identity on X. By (16.12),

dp exp: Tp(TX
⊥) = TpX⊕TpX⊥ −→ TpM

is the inclusion map on each component and thus an isomorphism. By the Inverse Function
Theorem for Manifolds (Corollary 4.9), for each p ∈ X there are neighborhoods Up and U ′

p of p

in TX⊥ and M , respectively, such that the restriction exp∇ : Up−→U ′
p is a diffeomorphism. Let

U0 =
⋃

p∈X

Up, Uk =
{
v∈U0 : 〈v, v〉<1/k

}
∀ k=1, 2, . . . ;
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these are neighborhoods of X in TX⊥. Since exp is a local diffeomorphism on U0, exp(Uk)⊂M
is an open subset. We show below that exp is injective on Uk if k is sufficiently large and thus a
diffeomorphism from the neighborhood Uk of X in TX⊥ to the neighborhood exp(Uk) of X in M .
Since NXM,TX⊥−→X are isomorphic vector bundles, this implies the claim.

(2) Let vk, wk∈Uk be two sequences such that vk 6=wk, but exp(vk)=exp(wk). Since X is compact,
after passing to subsequences if necessary, we can assume that vk −→ p and wk −→ q for some
p, q ∈ X. Since exp is injective on Up and vk ∈ Up for all k sufficiently large, wk 6∈ Up for all k
sufficiently large and thus p 6=q. Let U ′

p and U ′
q be disjoint neighborhoods of p and q in M . Since

vk ∈ exp−1(U ′
p) and wk ∈ exp−1(U ′

q) for all k sufficiently large, exp(vk) 6= exp(wk) for such values
of k, contrary to the assumption.

Exercises

1. Let π : V −→M be a vector bundle. Show that

(a) the scalar-multiplication map (7.1) is smooth;

(b) the space V×MV is a smooth submanifold of V×V and the addition map (7.2) is smooth.

2. Let π : V −→ M be a smooth vector bundle of rank k and {(Uα, hα)}α∈A a collection of
trivializations covering M . Show that a section s of π is continuous (smooth) if and only if the
map

sα ≡ π2◦hα◦s : Uα −→ Rk ,

where π2 : Uα×Rk−→Rk is the projection on the second component, is continuous (smooth) for
every α∈A.

3. Let π : V −→M be a submersion satisfying (RVB1)-(RVB3) in Definition 7.1. Show that

(a) if s1, . . . , sk : U−→V |U are smooth sections over an open subset U⊂M such that {si(x)}i
is a basis for Vx for all x∈U , then the map (8.2) is a diffeomorphism;

(b) π : V −→ M is a vector bundle of rank k if and only if for every p ∈ M there exist a
neighborhood U of p in M and smooth sections s1, . . . , sk : U−→V |U such that {si(p)}i is
a basis for Vp.

4. Show that the two versions of the last condition on f̃ in (2) in Definition 8.2 are indeed equiv-
alent.

5. Let M be a smooth manifold and X,Y, Z∈VF(M). Show that

(a) [X,Y ] is indeed a smooth vector field on M and

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X ∀ f, g ∈ C∞(M);

(b) [·, ·] is bilinear, anti-symmetric, and

[
X, [Y, Z]

]
+

[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0.

6. Verify all claims made in Example 7.5, thus establishing that the tangent bundle TM of a
smooth manifold is indeed a vector bundle. What is its transition data?
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7. Show that the tangent bundle TS1 of S1 is isomorphic to the trivial real line bundle over S1.

8. Show that the tautological line bundle γn−→RPn is non-trivial for n≥1.

9. Show that the complex tautological line bundle γn−→CPn is indeed a complex line bundle as
claimed in Example 7.8. What is its transition data? Why is it non-trivial for n≥1?

10. Let q : M̃−→M be a smooth covering projection. Show that

(a) the map dq : M̃−→M is a covering projection and a bundle homomorphism covering q as
in (8.4);

(b) there is a natural isomorphism

VF(M) ≈ V F (M̃)dq ≡
{
X∈VF: dp1q(X(p1))=dp2q(X(p2)) ∀ p1, p2∈M s.t. q(p1)=q(p2)

}
.

11. Let M be a smooth m-manifold. Show that

(TM1) the topology on TM constructed in Example 7.5 is the unique one so that π : TM−→M
is a topological vector bundle with the canonical vector-space structure on the fibers
and so that for every vector field X on TM and smooth function f : U −→R, where U
is an open subset of R, the function X(f) : U −→ R is continuous if and only if X is
continuous;

(TM2) the smooth structure on TM constructed in Example 7.5 is the unique one so that
π : TM −→M is a smooth vector bundle with the canonical vector-space structure on
the fibers and so that for every vector field X on TM and smooth function f : U−→R,
where U is an open subset of R, the function X(f) : U−→R is smooth if and only if X
is smooth.

12. Suppose that f :M−→N is a smooth map and π : V −→N is a smooth vector bundle of rank k
with transition data {gαβ : Uα∩Uβ−→ GLnR}α,β∈A. Show that

(a) the space f∗V defined by (10.1) is a smooth submanifold of M ×V and the projection
π1 : f

∗V −→M is a vector bundle of rank k with transition data
{
f∗gαβ=gαβ◦f : f−1(Uα)∩f−1(Uβ)−→ GLnR}α,β∈A ;

(b) if M is an embedded submanifold of N and f is the inclusion map, then the projection
π2 : f

∗V −→V induces an isomorphism f∗V −→V |M of vector bundles over M .

13. Let f :M−→V be a smooth map and V −→N a vector bundle. Show that

(a) if V −→N is a trivial vector bundle, then so is f∗V −→M ;

(b) f∗V −→M may be trivial even if V −→N is not.

14. Let f : M −→N be a smooth map. Show that the bundle homomorphisms in diagrams (10.4)
and (10.5) are indeed smooth.

15. Verify Lemma 10.2.

16. Let f : M −→N be a smooth map and ϕ : V −→W a smooth vector-bundle homomorphism
over N . Show that the pullback vector-bundle homomorphism f∗ϕ : f∗V −→ f∗W is also
smooth.
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17. Let π : V −→M be a smooth vector bundle of rank k and V ′⊂V a smooth submanifold so that
V ′
p≡Vp∩V ′ is a k′-dimensional linear subspace of Vp for every p∈M . Show that

(a) for every p∈M=s0(M) there exist an open neighborhood U of p in V ′ and smooth charts

ϕ : U −→ Rm×Rk′ and ψ : U∩M −→ Rm s.t. ψ ◦ π = π1 ◦ ϕ ,

where π1 : R
m×Rk′−→Rm is the projection on the first component;

(b) V ′⊂V is a vector subbundle of rank k′.

18. Let ϕ : V −→W be a smooth surjective vector-bundle homomorphism over a smooth mani-
fold M . Show that

kerϕ ≡
{
v∈V : ϕ(v)=0

}
−→M

is a subbundle of V .

19. Let D⊂TM a rank 1 distribution on a smooth manifold M . Show that Γ(M ;D) ⊂ VF(M) is
a Lie subalgebra. Hint: use Exercise 5.

20. Let {ια :Mα−→N}α∈A be a foliation of Nn by immersions from m-manifolds. Show that

D ≡
⋃

α∈A

⋃

p∈Mα

Imdpια ⊂ TN

is a subbundle of rank m.

21. Verify all claims made in Examples 11.4 and 11.5.

22. Verify all claims made in Example 11.7.

23. Let V −→M be a vector bundle of rank k and V ′⊂V a smooth subbundle of rank k′. Show that

(a) there exists a collection {(Uα, hα)}α∈A of trivializations for V covering M so that (11.3)
holds and thus the corresponding transition data has the form

gαβ =

(
∗ ∗
0 ∗

)
: Uα∩ Uβ −→ GLkR,

where the top left block is k′×k′;
(b) the vector-bundle structure on V/V ′ described in Section 11 is the unique one so that the

natural projection map V −→V/V ′ is a smooth vector-bundle homomorphism;

(c) if ϕ : V −→W is a vector-bundle homomorphism over M such that ϕ(v)=0 for all v∈V ′,
then the induced vector-bundle homomorphism ϕ̄ : V/V ′−→W is smooth.

24. Verify Lemmas 11.8 and 11.9.

25. Obtain Corollary 11.12 from Theorem 11.11.

26. Let f=(f1, . . . , fk) : R
m−→Rk be a smooth map, q∈Rk a regular value of f , and X=f−1(q).

Denote by ∇fi the gradient of fi. Show that

TX =
{
(p, v)∈X×Rm : ∇fi|p ·v=0 ∀ i=1, 2, . . . , k

}

under the canonical identifications TX⊂TRm|X and TRm=Rm×Rm. Use this description of
TX to give a trivialization of NRmX.
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27. Let V, V ′ −→ M be smooth vector bundles. Show that the two constructions of V ⊕V ′ in
Section 12 produce the same vector bundle and that this is the unique vector-bundle structure
on the total space of

V ⊕V ′ =
⊔

p∈M

Vp⊕V ′
p

so that

(VB
⊕

1) the projection maps V ⊕V ′−→V, V ′ are smooth bundle homomorphisms over M ;

(VB
⊕

2) the inclusion maps V, V ′−→V ⊕V ′ are smooth bundle homomorphisms over M .

28. Let πV : V −→M and πW : W −→N be smooth vector bundles and πM , πN : M×N −→M,N
the component projection maps. Show that the total of the vector bundle

π : π∗MV ⊕ π∗NW −→M×N

is V ×W (with the product smooth structure) and π=πV ×πW .

29. Verify Lemmas 12.1 and 12.2.

30. Let M and N be smooth manifolds and πM , πN : M×N −→M,N the projection maps. Show
that dπM and dπN viewed as maps from T (M×N) to

(a) TM and TN , respectively, induce a diffeomorphism T (M×N)−→TM×TN that commutes
with the projections from the tangent bundles to the manifolds and is linear on the fibers
of these projections;

(b) π∗MTM and π∗NTN , respectively, induce a vector-bundle isomorphism

T (M×N) −→ π∗MTM⊕π∗NTN.

Why are the above two statements the same?

31. Verify Lemmas 12.3 and 12.4.

32. Show that the vector-bundle structure on the total space of V ∗ constructed in Section 12 is the
unique one so that the map (12.2) is smooth.

33. Verify Lemmas 13.1-13.3.

34. Show that the sets of isomorphism classes of real and complex line bundles form abelian group
under the tensor product.

35. Let V −→M be a smooth vector bundle of rank k and W ⊂ V a smooth subbundle of V of
rank k′. Show that

Ann(W ) ≡
{
α∈V ∗

p : α(w)=0 ∀w∈W, p∈M
}

is a smooth subbundle of V ∗ of rank k−k′.

36. Verify Lemmas 13.4-13.7.

37. Let π : V −→M be a vector bundle. Show that there is an isomorphism

Λk(V ∗) −→
(
ΛkV )∗

of vector bundles over M .
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38. Let Ω be a volume form an m-manifold M . Show that for every p ∈M there exists a chart
(x1, . . . , xm) : U−→Rm around p such that

Ω|U = dx1 ∧ . . . ∧ dxm.

39. Verify Lemmas 14.2 and 14.5.

40. Show that every real vector bundle over a smooth manifold admits a Riemannian metric and
every complex vector bundle over a smooth manifold admits a Hermitian metric.

41. Let π : L−→M be a real line bundle over a smooth manifold. Show that L⊗2 ≈ τR1 as real line
bundles over M .

42. Let V,W −→M be vector bundles. Show that

(a) if V is orientable, then W is orientable if and only if V ⊕W is;

(b) if V and W are non-orientable, then V ⊕W may be orientable or non-orientable.

43. Let M be a connected manifold. Show that every real line bundle L−→M is orientable if and
only if π1(M) contains no subgroup of index 2.

44. Let M and N be nonempty smooth manifolds. Show that M×N is orientable if and only if M
and N are.

45. (a) Let ϕ : M −→RN be an immersion. Show that M is orientable if and only if the normal
bundle to the immersion ϕ is orientable.

(b) Show that the unit sphere Sn with its natural smooth structure is orientable.

46. Verify Lemmas 15.3 and 15.4.

47. (a) Show that the antipodal map on Sn⊂Rn+1 (i.e. x−→−x) is orientation-preserving if n is
odd and orientation-reversing if n is even.

(b) Show that RPn is orientable if and only if n is odd.

(c) Describe the orientable double cover of RPn×RPn with n even.

48. Let γn −→ CPn be the tautological line bundle as in Example 7.8. If P : Cn+1 −→ C is a
homogeneous polynomial of degree d≥0, let

sP : CPn−→γ∗n,
{
sP (ℓ)

}
(ℓ, v⊗d) = P (v) ∀ (ℓ, v) ∈ γn ⊂ CPn×Cn+1 .

Show that

(a) sP is a well-defined holomorphic section of γ∗⊗dn ;

(b) if s is a holomorphic section of γ∗⊗dn with d ≥ 0, then s = sP for some homogeneous
polynomial P : Cn+1−→C of degree d;

(c) the line bundle γ⊗n −→CPn admits no nonzero holomorphic section for any d∈Z+.

49. Let γn−→CPn be the tautological line bundle as in Example 7.8. Show that there is a short
exact sequence

0 −→ CPn×C −→ (n+1)γ∗n −→ TCPn −→ 0

of complex (even holomorphic) vector bundles over CPn.
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50. Suppose k<n and let γk−→CP k be the tautological line bundle as in Example 7.8. Show that
the map

ι : CP k −→ CPn, [X0, . . . , Xk] −→ [X0, . . . , Xk, 0, . . . , 0︸ ︷︷ ︸
n−k

],

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the
charts that determine the complex structures on CP k and CPn) and that the normal bundle to
this immersion, Nι, is isomorphic to

(n−k)γ∗k ≡ γ∗k ⊕ . . .⊕ γ∗k︸ ︷︷ ︸
n−k

as a complex (even holomorphic) vector bundle over CP k. Hint: there are a number of ways of
doing this, including:

(i) use Exercise 49;

(ii) construct an isomorphism between the two vector bundles;

(iii) determine transition data for Nι and (n−k)γ∗k ;
(iv) show that there exists a holomorphic diffeomorphism between (n− k)γ∗k and a neighbor-

hood of ι(CP k) in CPn, fixing ι(CP k), and use Lemma 11.10.

51. Let γn−→CPn and ΛnCTCP
n−→CPn be the tautological line bundle as in Example 7.8 and

the top exterior power of the vector bundle TCPn taken over C, respectively. Show that there
is an isomorphism

ΛnCTCP
n ≈ γ∗⊗(n+1)

n ≡ γ∗n ⊗ . . .⊗ γ∗n︸ ︷︷ ︸
n+1

of complex (even holomorphic) line bundles over CPn. Hint: see suggestions for Exercise 50.
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