
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 9

Problem 1 (8pts)

Let (X,F , µ) be a measure space. Suppose there exist A,B∈F such that A∩B=∅ and µ(A), µ(B)∈R+.

Show that the norm ‖·‖p on Lp(X) is not induced by an inner-product on Lp(X) for any p∈ [1,∞]−{2}.

Let f=1A and g=1B. Thus,

‖f‖p = µ(A)1/p, ‖g‖p = µ(B)1/p, ‖f+g‖p, ‖f−g‖p =
(

µ(A)+µ(B)
)1/p

.

If ‖ · ‖p is induced by an inner-product on Lp(X), then

‖f+g‖2p + ‖f−g‖2p = 2
(

‖f‖2p+‖g‖2p
)

,
(

µ(A)+µ(B)
)2/p

= µ(A)2/p + µ(B)2/p .

If 2/p<1 (resp. 2/p>1), then the left-hand above is smaller (resp. larger) than the right-hand side.
Thus, ‖ · ‖p is not induced by an inner-product on Lp(X) if p 6=2.

Problem 2 (15pts)

Let C0,2(R)⊂L2(R) denote the subspace of continuous square-integrable functions. Define

L2
0(R) =

{

f ∈L2(R) : f=0 a.e. on [0, 1]
}

, C0,2
0 (R) = L2

0(R)∩C
0,2(R) .

(a) Let f ∈C0,2(R) be such that f(x) 6=0 for some x∈R− [0, 1]. Show that there exists g ∈C0,2
0 (R)

such that 〈〈f, g〉〉2 6= 0. Conclude that f ∈ C0,2(R) has a projection to C0,2
0 (R) if and only if

f(0)=f(1)=0.

(b) Let f ∈L2(R). Determine the projection of f to L2
0(R).

(a; 10pts) Let f ∈ C0,2(R) and x∗ ∈ R− [0, 1] be such that f(x∗) 6= 0. By multiplying f by −1 if
necessary, we can assume that f(x∗)>0. Since f is continuous, there exists δ >0 such that f(x)>0
for all x∈(x∗−δ, x∗+δ). Since x∗ 6∈ [0, 1], by shrinking δ we can assume that

(

x∗−δ, x∗+δ
)

∩ [0, 1] = ∅.

Define g∈C0,2
0 (R) by

g : R −→R≥0, g(x) =

{

0, if x∈R−(x∗−δ, x∗+δ);

δ2−(x−x∗)2, if x∈ [x∗−δ, x∗+δ].

Thus,

〈〈f, g〉〉2 =

∫ x∗+δ

x∗−δ
fg dx > 0,

because fg is a continuous positive function on (x∗−δ, x∗+δ).

Suppose f ∈C0,2(R) and f0 ∈C0,2
0 (R) is its projection. Thus, 〈〈f−f0, g〉〉2 =0 for every g ∈C0,2

0 (R).
The previous paragraph then implies that f(x) = f0(x) for every x ∈ R− [0, 1]. By the continuity
of f , this implies that f(0) = f0(0) and f(1) = f0(1). Since f0 ∈C0,2

0 (R) is continuous and vanishes



almost everywhere on [0, 1], it in fact vanishes everywhere on [0, 1]. In particular, f0(0) = f0(1) = 0.
Combining this with the previous conclusion, we obtain f(0)=f(1)=0.

Suppose f ∈C0,2(R) and f(0)=f(1)=0. Define

f0 : R −→ R, f0(x) =

{

0, if x∈ [0, 1];

f(x), if x∈R−(0, 1).

By the assumption f(0)=f(1)=0, this function is well-defined. It is continuous because it is contin-
uous on two closed sets whose union is its domain. Thus, f0 ∈C0,2

0 (R). Since f(x)= f0(x) for every

x∈R−[0, 1], 〈〈f−f0, g〉〉2=0 for every g∈C0,2
0 (R). Thus, f0 is the projection of f to C0,2

0 (R).

(b; 5pts) Let f : R −→ R be a representative of an element of L2(R) (an element of L2(R) is an
equivalence class). Let

f0 = 1R−[0,1]f : R −→ R.

Thus, f0∈L2
0(R) and f(x)= f0(x) for every x∈R−[0, 1]. The latter implies that 〈〈f−f0, g〉〉2=0 for

every g ∈L2
0(R). Therefore, the element in L2(R) represented by f0 is the projection of the element

represented by f to L2
0(R).

Problem 3 (17pts)

(a) Let X1, X2 be sets, σ(S1) be the σ-field on X1 generated by a collection S1⊂2X1 of subsets of X1,

and σ(S2) be the σ-field on X2 generated by a collection S2⊂2X2 of subsets of X2. Show that the

σ-fields σ(S1×S2) and σ(σ(S1)×σ(S2)) on X1×X2 generated by the collections

S1×S2 =
{

A×B : A∈S1, B∈S2

}

and

σ(S1)×σ(S2) =
{

A×B : A∈σ(S1), B∈σ(S2)
}

,

respectively, are the same.

(b) For n ∈ Z+, let Mn ⊂ 2R
n

be the collection of Lebesgue measurable subsets as described in

Section 6.1. Show that

σ
(

Mn1
×Mn2

)

( Mn1+n2
∀ n1, n2∈Z+ ;

note the inequality above.

(a; 9pts) Since S1×S2⊂σ(S1)×σ(S2),

σ
(

S1×S2

)

⊂ σ
(

σ(S1)×σ(S2)
)

.

We need to show the opposite inclusion. Let

F1 =
{

A∈σ(S1) : A×X2∈σ
(

S1×S2

)}

, F2 =
{

B∈σ(S2) : X1×B∈σ
(

S1×S2

)}

.

Since X1×X2∈σ(S1×S2), X1∈F1. Since

X1×X2 −A×X2 = (X1−A)×X2

and the collection σ(S1×S2) is closed under complements, the collection F1 is also closed under
complements (if A∈F1, then Ac∈F1). Since

∞
⋃

n=1

(

An×X2

)

=

( ∞
⋃

n=1

An

)

×X2

2



and the collection σ(S1×S2) is closed under countable unions, the collection F1 is also closed under
countable unions (if A1, A2, . . .∈F1, then

⋃∞
n=1An ∈F1). Thus, F1 is a σ-field on X1. By definition

of F1,
S1 ⊂ F1 ⊂ σ(S1).

Since σ(F1) is the smallest σ-field containing S1, it follows that F1=σ(S1). By the same reasoning,
F2=σ(S2). Thus,

{

A×X2 : A∈σ(F1)
}

,
{

X1×B : B∈σ(F2)
}

⊂ σ(S1×S2).

Since the collection σ(S1×S2) is closed under pairwise (and more generally countable) intersections,
it follows that

σ(S1)×σ(S2) ≡
{

(A×X2)∩(X1×B) : A∈σ(F1), B∈σ(F2)
}

⊂ σ
(

S1×S2

)

⊂ σ
(

σ(S1)×σ(S2)
)

.

Since σ(σ(S1)×σ(S2)) is the smallest σ-field on X1×X2 containing σ(S1)×σ(S2), it follows that the
last inclusion above is in fact an equality.

(b; 8pts) The collection Mn ⊂ 2R
n

consists of the subsets E ⊂ Rn that satisfy (2.6) in the book
with the outer measure m∗≡m∗

n as in Definition 2.3 with the intervals and their lengths replaced by
n-dimensional “rectangles” and their volumes. This collection contains all n-dimensional “rectangles”
and all m∗

n-null subsets of R
n. The former implies that Mn contains the σ-field Bn generated by the

collection of n-dimensional “rectangles”. If E⊂ [0, 1] is a non-measurable subset as on p302, then

En ≡ E×[0, 1]n−1 ⊂ Rn

is a non-measurable subset with respect to m∗
n by the same reasoning as on p302.

Let n1, n2∈Z+. It is fairly immediate from the definition that

m∗
n1+n2

(A1×A2) ≤ m∗
n1
(A1) ·m

∗
n2
(A2) ∀A1⊂Rn1 , A2⊂Rn2 .

If E1∈Mn1
and E2∈Mn2

, there exist

B1, F1∈Mn1
and B2, F2∈Mn2

s.t.

E1=B1∪F1, B1∈Bn1
, m∗

n1
(F1)=0, E2=B2∪F2, B2∈Bn2

, m∗
n2
(F2)=0.

By (a), B1×B2∈Bn1+n2
and thus B1×B2∈Mn1+n2

. By the above inequality, B1×F2, F1×B2, and
F1×F2 are m∗

n1+n2
-null subsets of Rn1+n2 and thus belong to Mn1+n2

. Since Mn1+n2
is closed under

finite (and more generally countable) unions, it follows that

E1×E2 = B1×B2 ∪B1×F2 ∪B1×F2 ∪ F1×F2 ∈ Mn1+n2
.

Since σ(Mn1
×Mn2

) is the smallest σ-field containing Mn1
×Mn2

, we conclude that

σ
(

Mn1
×Mn2

)

⊂ Mn1+n2
;

If E⊂Rn1 , then E×{0n2} is m∗
n1+n2

-null and thus belongs to Mn1+n2
. Since

(

E×{0n2}
)

0n2
= E,

Theorem 6.4 implies that E×{0n2} does not belong to σ(Mn1
×Mn2

) if E is not m∗
n1
-measurable.

Thus,
σ
(

Mn1
×Mn2

)

6⊃ Mn1+n2
.
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