MAT 324: Real Analysis, Fall 2017
 Solutions to Problem Set 9

Problem 1 (8pts)

Let (X, \mathcal{F}, μ) be a measure space. Suppose there exist $A, B \in \mathcal{F}$ such that $A \cap B=\emptyset$ and $\mu(A), \mu(B) \in \mathbb{R}^{+}$. Show that the norm $\|\cdot\|_{p}$ on $L^{p}(X)$ is not induced by an inner-product on $L^{p}(X)$ for any $p \in[1, \infty]-\{2\}$.

Let $f=\mathbb{1}_{A}$ and $g=\mathbb{1}_{B}$. Thus,

$$
\|f\|_{p}=\mu(A)^{1 / p}, \quad\|g\|_{p}=\mu(B)^{1 / p}, \quad\|f+g\|_{p},\|f-g\|_{p}=(\mu(A)+\mu(B))^{1 / p}
$$

If $\|\cdot\|_{p}$ is induced by an inner-product on $L^{p}(X)$, then

$$
\|f+g\|_{p}^{2}+\|f-g\|_{p}^{2}=2\left(\|f\|_{p}^{2}+\|g\|_{p}^{2}\right), \quad(\mu(A)+\mu(B))^{2 / p}=\mu(A)^{2 / p}+\mu(B)^{2 / p} .
$$

If $2 / p<1$ (resp. $2 / p>1$), then the left-hand above is smaller (resp. larger) than the right-hand side. Thus, $\|\cdot\|_{p}$ is not induced by an inner-product on $L^{p}(X)$ if $p \neq 2$.

Problem 2 (15pts)

Let $C^{0,2}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ denote the subspace of continuous square-integrable functions. Define

$$
L_{0}^{2}(\mathbb{R})=\left\{f \in L^{2}(\mathbb{R}): f=0 \text { a.e. on }[0,1]\right\}, \quad C_{0}^{0,2}(\mathbb{R})=L_{0}^{2}(\mathbb{R}) \cap C^{0,2}(\mathbb{R})
$$

(a) Let $f \in C^{0,2}(\mathbb{R})$ be such that $f(x) \neq 0$ for some $x \in \mathbb{R}-[0,1]$. Show that there exists $g \in C_{0}^{0,2}(\mathbb{R})$ such that $\langle\langle f, g\rangle\rangle_{2} \neq 0$. Conclude that $f \in C^{0,2}(\mathbb{R})$ has a projection to $C_{0}^{0,2}(\mathbb{R})$ if and only if $f(0)=f(1)=0$.
(b) Let $f \in L^{2}(\mathbb{R})$. Determine the projection of f to $L_{0}^{2}(\mathbb{R})$.
(a; 10pts) Let $f \in C^{0,2}(\mathbb{R})$ and $x^{*} \in \mathbb{R}-[0,1]$ be such that $f\left(x^{*}\right) \neq 0$. By multiplying f by -1 if necessary, we can assume that $f\left(x^{*}\right)>0$. Since f is continuous, there exists $\delta>0$ such that $f(x)>0$ for all $x \in\left(x^{*}-\delta, x^{*}+\delta\right)$. Since $x^{*} \notin[0,1]$, by shrinking δ we can assume that

$$
\left(x^{*}-\delta, x^{*}+\delta\right) \cap[0,1]=\emptyset .
$$

Define $g \in C_{0}^{0,2}(\mathbb{R})$ by

$$
g: \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}, \quad g(x)= \begin{cases}0, & \text { if } x \in \mathbb{R}-\left(x^{*}-\delta, x^{*}+\delta\right) ; \\ \delta^{2}-\left(x-x^{*}\right)^{2}, & \text { if } x \in\left[x^{*}-\delta, x^{*}+\delta\right] .\end{cases}
$$

Thus,

$$
\langle\langle f, g\rangle\rangle_{2}=\int_{x^{*}-\delta}^{x^{*}+\delta} f g \mathrm{~d} x>0
$$

because $f g$ is a continuous positive function on $\left(x^{*}-\delta, x^{*}+\delta\right)$.
Suppose $f \in C^{0,2}(\mathbb{R})$ and $f_{0} \in C_{0}^{0,2}(\mathbb{R})$ is its projection. Thus, $\left\langle\left\langle f-f_{0}, g\right\rangle_{2}=0\right.$ for every $g \in C_{0}^{0,2}(\mathbb{R})$. The previous paragraph then implies that $f(x)=f_{0}(x)$ for every $x \in \mathbb{R}-[0,1]$. By the continuity of f, this implies that $f(0)=f_{0}(0)$ and $f(1)=f_{0}(1)$. Since $f_{0} \in C_{0}^{0,2}(\mathbb{R})$ is continuous and vanishes
almost everywhere on $[0,1]$, it in fact vanishes everywhere on $[0,1]$. In particular, $f_{0}(0)=f_{0}(1)=0$. Combining this with the previous conclusion, we obtain $f(0)=f(1)=0$.

Suppose $f \in C^{0,2}(\mathbb{R})$ and $f(0)=f(1)=0$. Define

$$
f_{0}: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_{0}(x)= \begin{cases}0, & \text { if } x \in[0,1] \\ f(x), & \text { if } x \in \mathbb{R}-(0,1)\end{cases}
$$

By the assumption $f(0)=f(1)=0$, this function is well-defined. It is continuous because it is continuous on two closed sets whose union is its domain. Thus, $f_{0} \in C_{0}^{0,2}(\mathbb{R})$. Since $f(x)=f_{0}(x)$ for every $x \in \mathbb{R}-[0,1],\left\langle\left\langle f-f_{0}, g\right\rangle\right\rangle_{2}=0$ for every $g \in C_{0}^{0,2}(\mathbb{R})$. Thus, f_{0} is the projection of f to $C_{0}^{0,2}(\mathbb{R})$.
(b; 5pts) Let $f: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be a representative of an element of $L^{2}(\mathbb{R})$ (an element of $L^{2}(\mathbb{R})$ is an equivalence class). Let

$$
f_{0}=\mathbb{1}_{\mathbb{R}-[0,1]} f: \mathbb{R} \longrightarrow \mathbb{R}
$$

Thus, $f_{0} \in L_{0}^{2}(\mathbb{R})$ and $f(x)=f_{0}(x)$ for every $x \in \mathbb{R}-[0,1]$. The latter implies that $\left\langle\left\langle f-f_{0}, g\right\rangle\right\rangle_{2}=0$ for every $g \in L_{0}^{2}(\mathbb{R})$. Therefore, the element in $L^{2}(\mathbb{R})$ represented by f_{0} is the projection of the element represented by f to $L_{0}^{2}(\mathbb{R})$.

Problem 3 (17pts)

(a) Let X_{1}, X_{2} be sets, $\sigma\left(\mathcal{S}_{1}\right)$ be the σ-field on X_{1} generated by a collection $\mathcal{S}_{1} \subset 2^{X_{1}}$ of subsets of X_{1}, and $\sigma\left(\mathcal{S}_{2}\right)$ be the σ-field on X_{2} generated by a collection $\mathcal{S}_{2} \subset 2^{X_{2}}$ of subsets of X_{2}. Show that the σ-fields $\sigma\left(S_{1} \times S_{2}\right)$ and $\sigma\left(\sigma\left(\mathcal{S}_{1}\right) \times \sigma\left(\mathcal{S}_{2}\right)\right)$ on $X_{1} \times X_{2}$ generated by the collections

$$
\begin{aligned}
\mathcal{S}_{1} \times \mathcal{S}_{2} & =\left\{A \times B: A \in \mathcal{S}_{1}, B \in \mathcal{S}_{2}\right\} \quad \text { and } \\
\sigma\left(\mathcal{S}_{1}\right) \times \sigma\left(\mathcal{S}_{2}\right) & =\left\{A \times B: A \in \sigma\left(\mathcal{S}_{1}\right), B \in \sigma\left(\mathcal{S}_{2}\right)\right\}
\end{aligned}
$$

respectively, are the same.
(b) For $n \in \mathbb{Z}^{+}$, let $\mathcal{M}_{n} \subset 2^{\mathbb{R}^{n}}$ be the collection of Lebesgue measurable subsets as described in Section 6.1. Show that

$$
\sigma\left(\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}\right) \subsetneq \mathcal{M}_{n_{1}+n_{2}} \quad \forall n_{1}, n_{2} \in \mathbb{Z}^{+}
$$

note the inequality above.
(a; 9pts) Since $\mathcal{S}_{1} \times \mathcal{S}_{2} \subset \sigma\left(\mathcal{S}_{1}\right) \times \sigma\left(\mathcal{S}_{2}\right)$,

$$
\sigma\left(S_{1} \times S_{2}\right) \subset \sigma\left(\sigma\left(\mathcal{S}_{1}\right) \times \sigma\left(\mathcal{S}_{2}\right)\right)
$$

We need to show the opposite inclusion. Let

$$
\mathcal{F}_{1}=\left\{A \in \sigma\left(S_{1}\right): A \times X_{2} \in \sigma\left(S_{1} \times S_{2}\right)\right\}, \quad \mathcal{F}_{2}=\left\{B \in \sigma\left(S_{2}\right): X_{1} \times B \in \sigma\left(S_{1} \times S_{2}\right)\right\}
$$

Since $X_{1} \times X_{2} \in \sigma\left(S_{1} \times S_{2}\right), X_{1} \in \mathcal{F}_{1}$. Since

$$
X_{1} \times X_{2}-A \times X_{2}=\left(X_{1}-A\right) \times X_{2}
$$

and the collection $\sigma\left(S_{1} \times S_{2}\right)$ is closed under complements, the collection \mathcal{F}_{1} is also closed under complements (if $A \in \mathcal{F}_{1}$, then $A^{c} \in \mathcal{F}_{1}$). Since

$$
\bigcup_{n=1}^{\infty}\left(A_{n} \times X_{2}\right)=\left(\bigcup_{n=1}^{\infty} A_{n}\right) \times X_{2}
$$

and the collection $\sigma\left(S_{1} \times S_{2}\right)$ is closed under countable unions, the collection \mathcal{F}_{1} is also closed under countable unions (if $A_{1}, A_{2}, \ldots \in \mathcal{F}_{1}$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}_{1}$). Thus, \mathcal{F}_{1} is a σ-field on X_{1}. By definition of \mathcal{F}_{1},

$$
S_{1} \subset \mathcal{F}_{1} \subset \sigma\left(S_{1}\right)
$$

Since $\sigma\left(\mathcal{F}_{1}\right)$ is the smallest σ-field containing S_{1}, it follows that $\mathcal{F}_{1}=\sigma\left(S_{1}\right)$. By the same reasoning, $\mathcal{F}_{2}=\sigma\left(S_{2}\right)$. Thus,

$$
\left\{A \times X_{2}: A \in \sigma\left(\mathcal{F}_{1}\right)\right\},\left\{X_{1} \times B: B \in \sigma\left(\mathcal{F}_{2}\right)\right\} \subset \sigma\left(S_{1} \times S_{2}\right) .
$$

Since the collection $\sigma\left(S_{1} \times S_{2}\right)$ is closed under pairwise (and more generally countable) intersections, it follows that

$$
\sigma\left(S_{1}\right) \times \sigma\left(S_{2}\right) \equiv\left\{\left(A \times X_{2}\right) \cap\left(X_{1} \times B\right): A \in \sigma\left(\mathcal{F}_{1}\right), B \in \sigma\left(\mathcal{F}_{2}\right)\right\} \subset \sigma\left(S_{1} \times S_{2}\right) \subset \sigma\left(\sigma\left(S_{1}\right) \times \sigma\left(S_{2}\right)\right)
$$

Since $\sigma\left(\sigma\left(S_{1}\right) \times \sigma\left(S_{2}\right)\right)$ is the smallest σ-field on $X_{1} \times X_{2}$ containing $\sigma\left(S_{1}\right) \times \sigma\left(S_{2}\right)$, it follows that the last inclusion above is in fact an equality.
(b; 8pts) The collection $\mathcal{M}_{n} \subset 2^{\mathbb{R}^{n}}$ consists of the subsets $E \subset \mathbb{R}^{n}$ that satisfy (2.6) in the book with the outer measure $m^{*} \equiv m_{n}^{*}$ as in Definition 2.3 with the intervals and their lengths replaced by n-dimensional "rectangles" and their volumes. This collection contains all n-dimensional "rectangles" and all m_{n}^{*}-null subsets of \mathbb{R}^{n}. The former implies that \mathcal{M}_{n} contains the σ-field \mathcal{B}_{n} generated by the collection of n-dimensional "rectangles". If $E \subset[0,1]$ is a non-measurable subset as on p302, then

$$
E_{n} \equiv E \times[0,1]^{n-1} \subset \mathbb{R}^{n}
$$

is a non-measurable subset with respect to m_{n}^{*} by the same reasoning as on p302.
Let $n_{1}, n_{2} \in \mathbb{Z}^{+}$. It is fairly immediate from the definition that

$$
m_{n_{1}+n_{2}}^{*}\left(A_{1} \times A_{2}\right) \leq m_{n_{1}}^{*}\left(A_{1}\right) \cdot m_{n_{2}}^{*}\left(A_{2}\right) \quad \forall A_{1} \subset \mathbb{R}^{n_{1}}, A_{2} \subset \mathbb{R}^{n_{2}} .
$$

If $E_{1} \in \mathcal{M}_{n_{1}}$ and $E_{2} \in \mathcal{M}_{n_{2}}$, there exist

$$
\begin{array}{cccl}
B_{1}, F_{1} \in \mathcal{M}_{n_{1}} & \text { and } & B_{2}, F_{2} \in \mathcal{M}_{n_{2}} & \text { s.t. } \\
E_{1}=B_{1} \cup F_{1}, & B_{1} \in \mathcal{B}_{n_{1}}, & m_{n_{1}}^{*}\left(F_{1}\right)=0, & E_{2}=B_{2} \cup F_{2},
\end{array} \quad B_{2} \in \mathcal{B}_{n_{2}}, \quad m_{n_{2}}^{*}\left(F_{2}\right)=0 .
$$

By (a), $B_{1} \times B_{2} \in \mathcal{B}_{n_{1}+n_{2}}$ and thus $B_{1} \times B_{2} \in \mathcal{M}_{n_{1}+n_{2}}$. By the above inequality, $B_{1} \times F_{2}, F_{1} \times B_{2}$, and $F_{1} \times F_{2}$ are $m_{n_{1}+n_{2}}^{*}$-null subsets of $\mathbb{R}^{n_{1}+n_{2}}$ and thus belong to $\mathcal{M}_{n_{1}+n_{2}}$. Since $\mathcal{M}_{n_{1}+n_{2}}$ is closed under finite (and more generally countable) unions, it follows that

$$
E_{1} \times E_{2}=B_{1} \times B_{2} \cup B_{1} \times F_{2} \cup B_{1} \times F_{2} \cup F_{1} \times F_{2} \in \mathcal{M}_{n_{1}+n_{2}} .
$$

Since $\sigma\left(\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}\right)$ is the smallest σ-field containing $\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}$, we conclude that

$$
\sigma\left(\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}\right) \subset \mathcal{M}_{n_{1}+n_{2}}
$$

If $E \subset \mathbb{R}^{n_{1}}$, then $E \times\left\{0^{n_{2}}\right\}$ is $m_{n_{1}+n_{2}}^{*}$-null and thus belongs to $\mathcal{M}_{n_{1}+n_{2}}$. Since

$$
\left(E \times\left\{0^{n_{2}}\right\}\right)_{0^{n_{2}}}=E
$$

Theorem 6.4 implies that $E \times\left\{0^{n_{2}}\right\}$ does not belong to $\sigma\left(\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}\right)$ if E is not $m_{n_{1}}^{*}$-measurable. Thus,

$$
\sigma\left(\mathcal{M}_{n_{1}} \times \mathcal{M}_{n_{2}}\right) \not \supset \mathcal{M}_{n_{1}+n_{2}} .
$$

