MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 9

Problem 1 (8pts)

Let (X, \mathcal{F}, μ) be a measure space. Suppose there exist $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$ and $\mu(A), \mu(B) \in \mathbb{R}^+$. Show that the norm $\|\cdot\|_p$ on $L^p(X)$ is not induced by an inner-product on $L^p(X)$ for any $p \in [1, \infty] - \{2\}$.

Let $f = \mathbb{1}_A$ and $g = \mathbb{1}_B$. Thus,

$$||f||_p = \mu(A)^{1/p}, \quad ||g||_p = \mu(B)^{1/p}, \quad ||f+g||_p, ||f-g||_p = (\mu(A) + \mu(B))^{1/p}.$$

If $\|\cdot\|_p$ is induced by an inner-product on $L^p(X)$, then

$$\|f+g\|_p^2 + \|f-g\|_p^2 = 2\left(\|f\|_p^2 + \|g\|_p^2\right), \qquad \left(\mu(A) + \mu(B)\right)^{2/p} = \mu(A)^{2/p} + \mu(B)^{2/p}.$$

If 2/p < 1 (resp. 2/p > 1), then the left-hand above is smaller (resp. larger) than the right-hand side. Thus, $\|\cdot\|_p$ is not induced by an inner-product on $L^p(X)$ if $p \neq 2$.

Problem 2 (15pts)

Let $C^{0,2}(\mathbb{R}) \subset L^2(\mathbb{R})$ denote the subspace of continuous square-integrable functions. Define

$$L_0^2(\mathbb{R}) = \left\{ f \in L^2(\mathbb{R}) \colon f = 0 \text{ a.e. on } [0,1] \right\}, \qquad C_0^{0,2}(\mathbb{R}) = L_0^2(\mathbb{R}) \cap C^{0,2}(\mathbb{R}) \,.$$

- (a) Let $f \in C^{0,2}(\mathbb{R})$ be such that $f(x) \neq 0$ for some $x \in \mathbb{R} [0,1]$. Show that there exists $g \in C_0^{0,2}(\mathbb{R})$ such that $\langle\!\langle f, g \rangle\!\rangle_2 \neq 0$. Conclude that $f \in C^{0,2}(\mathbb{R})$ has a projection to $C_0^{0,2}(\mathbb{R})$ if and only if f(0) = f(1) = 0.
- (b) Let $f \in L^2(\mathbb{R})$. Determine the projection of f to $L^2_0(\mathbb{R})$.

(a; **10pts**) Let $f \in C^{0,2}(\mathbb{R})$ and $x^* \in \mathbb{R} - [0,1]$ be such that $f(x^*) \neq 0$. By multiplying f by -1 if necessary, we can assume that $f(x^*) > 0$. Since f is continuous, there exists $\delta > 0$ such that f(x) > 0 for all $x \in (x^* - \delta, x^* + \delta)$. Since $x^* \notin [0, 1]$, by shrinking δ we can assume that

$$(x^* - \delta, x^* + \delta) \cap [0, 1] = \emptyset.$$

Define $g \in C_0^{0,2}(\mathbb{R})$ by

$$g \colon \mathbb{R} \longrightarrow \mathbb{R}^{\ge 0}, \qquad g(x) = \begin{cases} 0, & \text{if } x \in \mathbb{R} - (x^* - \delta, x^* + \delta); \\ \delta^2 - (x - x^*)^2, & \text{if } x \in [x^* - \delta, x^* + \delta]. \end{cases}$$

Thus,

$$\langle\!\langle f,g \rangle\!\rangle_2 = \int_{x^*-\delta}^{x^*+\delta} fg \,\mathrm{d}x > 0,$$

because fg is a continuous positive function on $(x^* - \delta, x^* + \delta)$.

Suppose $f \in C^{0,2}(\mathbb{R})$ and $f_0 \in C^{0,2}_0(\mathbb{R})$ is its projection. Thus, $\langle \langle f - f_0, g \rangle \rangle_2 = 0$ for every $g \in C^{0,2}_0(\mathbb{R})$. The previous paragraph then implies that $f(x) = f_0(x)$ for every $x \in \mathbb{R} - [0, 1]$. By the continuity of f, this implies that $f(0) = f_0(0)$ and $f(1) = f_0(1)$. Since $f_0 \in C^{0,2}_0(\mathbb{R})$ is continuous and vanishes almost everywhere on [0, 1], it in fact vanishes everywhere on [0, 1]. In particular, $f_0(0) = f_0(1) = 0$. Combining this with the previous conclusion, we obtain f(0) = f(1) = 0.

Suppose $f \in C^{0,2}(\mathbb{R})$ and f(0) = f(1) = 0. Define

$$f_0 \colon \mathbb{R} \longrightarrow \mathbb{R}, \qquad f_0(x) = \begin{cases} 0, & \text{if } x \in [0, 1]; \\ f(x), & \text{if } x \in \mathbb{R} - (0, 1). \end{cases}$$

By the assumption f(0) = f(1) = 0, this function is well-defined. It is continuous because it is continuous on two closed sets whose union is its domain. Thus, $f_0 \in C_0^{0,2}(\mathbb{R})$. Since $f(x) = f_0(x)$ for every $x \in \mathbb{R} - [0, 1]$, $\langle \langle f - f_0, g \rangle \rangle_2 = 0$ for every $g \in C_0^{0,2}(\mathbb{R})$. Thus, f_0 is the projection of f to $C_0^{0,2}(\mathbb{R})$.

(b; **5pts**) Let $f : \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be a representative of an element of $L^2(\mathbb{R})$ (an element of $L^2(\mathbb{R})$ is an equivalence class). Let

$$f_0 = \mathbb{1}_{\mathbb{R} - [0,1]} f \colon \mathbb{R} \longrightarrow \mathbb{R}.$$

Thus, $f_0 \in L_0^2(\mathbb{R})$ and $f(x) = f_0(x)$ for every $x \in \mathbb{R} - [0, 1]$. The latter implies that $\langle \langle f - f_0, g \rangle \rangle_2 = 0$ for every $g \in L_0^2(\mathbb{R})$. Therefore, the element in $L^2(\mathbb{R})$ represented by f_0 is the projection of the element represented by f to $L_0^2(\mathbb{R})$.

Problem 3 (17pts)

(a) Let X_1, X_2 be sets, $\sigma(S_1)$ be the σ -field on X_1 generated by a collection $S_1 \subset 2^{X_1}$ of subsets of X_1 , and $\sigma(S_2)$ be the σ -field on X_2 generated by a collection $S_2 \subset 2^{X_2}$ of subsets of X_2 . Show that the σ -fields $\sigma(S_1 \times S_2)$ and $\sigma(\sigma(S_1) \times \sigma(S_2))$ on $X_1 \times X_2$ generated by the collections

$$\mathcal{S}_1 \times \mathcal{S}_2 = \{A \times B \colon A \in \mathcal{S}_1, B \in \mathcal{S}_2\} \quad and$$
$$\sigma(\mathcal{S}_1) \times \sigma(\mathcal{S}_2) = \{A \times B \colon A \in \sigma(\mathcal{S}_1), B \in \sigma(\mathcal{S}_2)\},$$

respectively, are the same.

(b) For $n \in \mathbb{Z}^+$, let $\mathcal{M}_n \subset 2^{\mathbb{R}^n}$ be the collection of Lebesgue measurable subsets as described in Section 6.1. Show that

$$\sigma(\mathcal{M}_{n_1} \times \mathcal{M}_{n_2}) \subsetneq \mathcal{M}_{n_1+n_2} \qquad \forall \ n_1, n_2 \in \mathbb{Z}^+;$$

note the inequality above.

(a; **9pts**) Since $S_1 \times S_2 \subset \sigma(S_1) \times \sigma(S_2)$,

$$\sigma(S_1 \times S_2) \subset \sigma(\sigma(S_1) \times \sigma(S_2)).$$

We need to show the opposite inclusion. Let

$$\mathcal{F}_1 = \left\{ A \in \sigma(S_1) \colon A \times X_2 \in \sigma(S_1 \times S_2) \right\}, \qquad \mathcal{F}_2 = \left\{ B \in \sigma(S_2) \colon X_1 \times B \in \sigma(S_1 \times S_2) \right\}.$$

Since $X_1 \times X_2 \in \sigma(S_1 \times S_2), X_1 \in \mathcal{F}_1$. Since

$$X_1 \times X_2 - A \times X_2 = (X_1 - A) \times X_2$$

and the collection $\sigma(S_1 \times S_2)$ is closed under complements, the collection \mathcal{F}_1 is also closed under complements (if $A \in \mathcal{F}_1$, then $A^c \in \mathcal{F}_1$). Since

$$\bigcup_{n=1}^{\infty} (A_n \times X_2) = \left(\bigcup_{n=1}^{\infty} A_n\right) \times X_2$$

and the collection $\sigma(S_1 \times S_2)$ is closed under countable unions, the collection \mathcal{F}_1 is also closed under countable unions (if $A_1, A_2, \ldots \in \mathcal{F}_1$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_1$). Thus, \mathcal{F}_1 is a σ -field on X_1 . By definition of \mathcal{F}_1 ,

$$S_1 \subset \mathcal{F}_1 \subset \sigma(S_1).$$

Since $\sigma(\mathcal{F}_1)$ is the smallest σ -field containing S_1 , it follows that $\mathcal{F}_1 = \sigma(S_1)$. By the same reasoning, $\mathcal{F}_2 = \sigma(S_2)$. Thus,

$$\{A \times X_2 \colon A \in \sigma(\mathcal{F}_1)\}, \{X_1 \times B \colon B \in \sigma(\mathcal{F}_2)\} \subset \sigma(S_1 \times S_2).$$

Since the collection $\sigma(S_1 \times S_2)$ is closed under pairwise (and more generally countable) intersections, it follows that

$$\sigma(S_1) \times \sigma(S_2) \equiv \left\{ (A \times X_2) \cap (X_1 \times B) \colon A \in \sigma(\mathcal{F}_1), B \in \sigma(\mathcal{F}_2) \right\} \subset \sigma\left(S_1 \times S_2\right) \subset \sigma\left(\sigma(S_1) \times \sigma(S_2)\right).$$

Since $\sigma(\sigma(S_1) \times \sigma(S_2))$ is the smallest σ -field on $X_1 \times X_2$ containing $\sigma(S_1) \times \sigma(S_2)$, it follows that the last inclusion above is in fact an equality.

(b; **8pts**) The collection $\mathcal{M}_n \subset 2^{\mathbb{R}^n}$ consists of the subsets $E \subset \mathbb{R}^n$ that satisfy (2.6) in the book with the outer measure $m^* \equiv m_n^*$ as in Definition 2.3 with the intervals and their lengths replaced by *n*-dimensional "rectangles" and their volumes. This collection contains all *n*-dimensional "rectangles" and all m_n^* -null subsets of \mathbb{R}^n . The former implies that \mathcal{M}_n contains the σ -field \mathcal{B}_n generated by the collection of *n*-dimensional "rectangles". If $E \subset [0, 1]$ is a non-measurable subset as on p302, then

$$E_n \equiv E \times [0,1]^{n-1} \subset \mathbb{R}^n$$

is a non-measurable subset with respect to m_n^* by the same reasoning as on p302.

Let $n_1, n_2 \in \mathbb{Z}^+$. It is fairly immediate from the definition that

$$m_{n_1+n_2}^*(A_1 \times A_2) \le m_{n_1}^*(A_1) \cdot m_{n_2}^*(A_2) \qquad \forall A_1 \subset \mathbb{R}^{n_1}, A_2 \subset \mathbb{R}^{n_2}.$$

If $E_1 \in \mathcal{M}_{n_1}$ and $E_2 \in \mathcal{M}_{n_2}$, there exist

$$B_1, F_1 \in \mathcal{M}_{n_1} \quad \text{and} \quad B_2, F_2 \in \mathcal{M}_{n_2} \quad \text{s.t.}$$
$$E_1 = B_1 \cup F_1, \quad B_1 \in \mathcal{B}_{n_1}, \quad m_{n_1}^*(F_1) = 0, \qquad E_2 = B_2 \cup F_2, \quad B_2 \in \mathcal{B}_{n_2}, \quad m_{n_2}^*(F_2) = 0.$$

By (a), $B_1 \times B_2 \in \mathcal{B}_{n_1+n_2}$ and thus $B_1 \times B_2 \in \mathcal{M}_{n_1+n_2}$. By the above inequality, $B_1 \times F_2$, $F_1 \times B_2$, and $F_1 \times F_2$ are $m^*_{n_1+n_2}$ -null subsets of $\mathbb{R}^{n_1+n_2}$ and thus belong to $\mathcal{M}_{n_1+n_2}$. Since $\mathcal{M}_{n_1+n_2}$ is closed under finite (and more generally countable) unions, it follows that

$$E_1 \times E_2 = B_1 \times B_2 \cup B_1 \times F_2 \cup B_1 \times F_2 \cup F_1 \times F_2 \in \mathcal{M}_{n_1+n_2}.$$

Since $\sigma(\mathcal{M}_{n_1} \times \mathcal{M}_{n_2})$ is the smallest σ -field containing $\mathcal{M}_{n_1} \times \mathcal{M}_{n_2}$, we conclude that

$$\sigma(\mathcal{M}_{n_1} \times \mathcal{M}_{n_2}) \subset \mathcal{M}_{n_1+n_2};$$

If $E \subset \mathbb{R}^{n_1}$, then $E \times \{0^{n_2}\}$ is $m_{n_1+n_2}^*$ -null and thus belongs to $\mathcal{M}_{n_1+n_2}$. Since

$$\left(E \times \{0^{n_2}\}\right)_{0^{n_2}} = E_{2}$$

Theorem 6.4 implies that $E \times \{0^{n_2}\}$ does not belong to $\sigma(\mathcal{M}_{n_1} \times \mathcal{M}_{n_2})$ if E is not $m_{n_1}^*$ -measurable. Thus,

$$\sigma(\mathcal{M}_{n_1} imes \mathcal{M}_{n_2})
ot \supset \mathcal{M}_{n_1+n_2}$$