
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 8

Problem 1 (10pts)

Let (V, 〈·, ·〉) be an inner-product space over C and e1, e2, . . . ∈ V be a sequence of orthonormal
vectors, i.e.

〈ei, ej〉 =

{

1, if i=j;

0, if i 6=j.
(1)

Let | · | be the norm on V determined by 〈·, ·〉. Show that

(a) the collection {ei : i ∈ Z
+} is linearly independent (no non-trivial finite linear combination

of ei’s with complex coefficients adds up to 0);

(b) v−
i=k
∑

i=1

〈v, ei〉ei is orthogonal to e1, . . . , ek for all v∈V ;

(c)
i=k
∑

i=1

∣

∣〈v, ei〉
∣

∣

2
≤ |v|2 for all v∈V and k∈Z;

(d) the sequence vk≡
i=k
∑

i=1

〈v, ei〉ei is Cauchy in (V, 〈·, ·〉).

(a; 2pts) Suppose c1, . . . , ck ∈C are such that

i=k
∑

i=1

ciei = 0. Taking inner-product of this equality

with ej for j=1, . . . , k and using (1), we obtain

cj =
i=k
∑

i=1

ci〈ei, ej〉 = 0 .

Thus, cj=0 for all j=1, . . . , k.

(b; 2pts) Let j=1, . . . , k. By (1),

〈

v−
i=k
∑

i=1

〈v, ei〉ei, ej

〉

= 〈v, ej〉 −
i=k
∑

i=1

〈v, ei〉〈ei, ej〉 = 〈v, ej〉 − 〈v, ej〉 = 0.

This establishes the claim.

(c; 3pts) Let vk denote the sum in (b) and vck the difference. By (1),

|vk|
2
2 =

i=k
∑

i=1

∣

∣〈v, ei〉
∣

∣

2
|ei|

2 +
∑

i 6=j

〈v, ei〉〈v, ej〉〈ei, ej〉 =
i=k
∑

i=1

∣

∣〈v, ei〉
∣

∣

2
. (2)

By (b), 〈vck, vk〉=0. Since v=vk+v
c
k,

|v|2 = |vk|
2 + |vck|

2 + 2Re〈vck, vk〉 = |vk|
2 + |vck|

2 .



Along with (2), this establishes the claim.

(d; 3pts) If k≤ℓ, then

∣

∣vk−vℓ
∣

∣

2
=

∣

∣

∣

∣

i=ℓ
∑

i=k+1

〈v, ei〉ei

∣

∣

∣

∣

2

=
i=ℓ
∑

i=k+1

∣

∣〈v, ei〉
∣

∣

2
.

By (c), the right-hand side above approaches 0 as k, ℓ−→∞. Thus, the sequence vk is Cauchy in
(V, 〈·, ·〉).

Problem 2 (20pts)

Let I=[0, 1], L2(I;C) be the L2-space of C-valued functions on I, and f ∈L2(I;C). For each n∈Z,
define

ψn : I −→ C, ψn(x) = e2πinx , cn(f) = 〈〈f, ψn〉〉2 ≡

∫

I

fψndm ∈ C. (3)

(a) Show that the collection {ψn : n∈Z
+} consists of orthonormal elements of L2(I;C).

(b) Show that the sum
∑

n∈Z

cn(f)ψn ≡ lim
k,m−→∞

n=m
∑

n=−k

cn(f)ψn

converges with respect to the L2-norm to some hf ∈ L2(I;C) so that ‖hf‖2 ≤ ‖f‖2 and
〈〈f−hf , ψn〉〉2=0 for all n∈Z.

(c) Suppose f is twice continuously differentiable, f(0)=f(1), and f ′(0)=f ′(1). Show that

cn(f) =
1

2πin
cn(f

′) = −
1

4π2 n2
cn(f

′′) ∀ n 6=0.

(d) Under the assumptions on f in (c), show that the sum in (b) converges uniformly to a con-
tinuous function hf : I−→C.

(a; 2pts) For n, n′∈Z,

〈〈ψn, ψn′〉〉2 =

∫ 1

0
ψnψn′dx =

∫ 1

0
e2πi(n−n′)xdx =

{

1, if n=n′;

0, if n 6=n′.

This establishes the claim.

(b; 6pts) By Problem 1(d) with v=f , the sequence

fk,m ≡
n=m
∑

n=−k

cn(f)ψn

is Cauchy with respect to the L2-norm ‖ · ‖2‖ for any identification of Z2 with Z
+. Since L2(I;C)

is complete with respect to ‖ · ‖2‖, this sequence converges to some hf ∈ L2(I;C) with respect
to ‖ · ‖2‖. Furthermore,

‖hf‖2 = lim
k,m−→∞

∥

∥

∥

∥

n=m
∑

n=−k

cn(f)ψn

∥

∥

∥

∥

2

= lim
k,m−→∞

n=m
∑

n=−k

∣

∣cn(f)|
2 ≤ ‖f‖22;
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the second equality above holds by (a), while the last inequality holds by Problem 1(c).

By Problem 1(c), 〈〈f−fk,m, ψj〉〉2=0 for all j, k,m∈Z. Thus,

∣

∣〈〈f−hf , ψj〉〉2
∣

∣ ≤
∣

∣〈〈f−fk,m, ψj〉〉2
∣

∣+
∣

∣〈〈fk,m−hf , ψj〉〉2
∣

∣ ≤ 0 +
∥

∥fk,m−hf
∥

∥

2
‖ψj‖2 =

∥

∥fk,m−hf
∥

∥

2
;

the inequality above holds by Cauchy-Schwartz. Since fk,m −→hf as k,m−→hf , the right-hand
side above tends to 0 as k,m−→hf . This establishes the last claim.

(c; 6pts) By integration by parts,

cn(f) =

∫ 1

0
fe−2πinxdx =

i

2πn

∫ 1

0
fde−2πinx =

i

2πn

(

fe−2πinx
∣

∣

∣

1

0
−

∫ 1

0
fe−2πinxdx

)

=
1

2πin

(

− 0 + cn(f
′)
)

;

the last equality holds because f(0)=f(1). Thus,

cn(f) =
1

2πin
cn(f

′) =
1

2πin
·

1

2πin
cn(f

′′) .

This establishes the claim.

(d; 6pts) By (c) and Problem 1(b),

|cn(f)| =
|cn(f

′′)|

4π2n2
≤

‖f ′′‖2
4π2

n−2 ∀ n 6=0 .

By (c),

∣

∣

∣

∣

∞
∑

n=k

c−n(f)ψn(x) +
∞
∑

n=ℓ

cn(f)ψn(x)

∣

∣

∣

∣

≤
∞
∑

n=k

∣

∣c−n(f)
∣

∣|ψn(x)
∣

∣+
∞
∑

n=ℓ

∣

∣cn(f)
∣

∣

∣

∣ψn(x)
∣

∣

≤
1

4π2

( ∞
∑

n=k

1

n2
+

∞
∑

n=ℓ

1

n2

)

∀ x∈I.

Since
∞
∑

n=1

n−2 converges, it follows that the sequence fk,m for any identification of Z2 with Z
+

converges uniformly to a function hf : I−→C. Since fk,m is a sequence of continuous functions, so
is hf .

Problem 3 (20pts)

Let I= [0, 1], L2(I;C) be the L2-space of C-valued functions on I, f ∈L2(I;C), and ψn and cn(f)
be as in (3).

(a) Suppose f is continuous and f(0) = f(1). Show that for every ǫ > 0 there exist N ∈Z
+ and

an∈C with n∈Z such that

∣

∣

∣

∣

f(x)−
n=N
∑

n=−N

anψn(x)

∣

∣

∣

∣

≤ ǫ ∀ x∈I.
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(b) Suppose f is twice continuously differentiable, f(0)=f(1), and f ′(0)=f ′(1). Show that

f =
∑

n∈Z

cn(f)e
2πinx (4)

with the sum converging uniformly on I.

(a; 12pts) Weierstrass Approximation Theorem or WAT (MAT 320). Let a, b∈R and f : [a, b]−→C

be a continuous function. For every ǫ>0, there exist N ∈Z
+ and an∈C with n∈Z

≥0 such that

∣

∣

∣

∣

f(x)−
n=N
∑

n=0

anx
n

∣

∣

∣

∣

≤ ǫ ∀ x∈ [a, b].

A continuous function f : [0, 1]−→C such that f(0) = f(1) corresponds to a continuous function
S1−→C. This is a natural perspective for this question because the functions ψn are also natural
functions on the circle. If S1 is identified with the unit circle, then

ψn(z) =

{

zn≡(x+iy)n, if n∈Z
≥0;

z−n≡(x−iy)−n, if n∈Z
≤0.

WAT and the claim of (a) for S1 are special cases of the Stone-Weierstrass Theorem for metric
(and more general topological) spaces. On the other hand, one could expect the S1 statement to
be directly deducible from the statement of WAT. This is done below.

WAT II. Let a, b, c, d∈R and f : [a, b]×[c, d]−→C be a continuous function. For every ǫ>0, there
exist N ∈Z

+ and am,n∈C with m,n∈Z
≥0 such that

∣

∣

∣

∣

f(x, y)−
N
∑

m=0

N
∑

n=0

am,nx
myn

∣

∣

∣

∣

≤ ǫ ∀ (x, y)∈ [a, b]×[c, d]. (5)

Proof. We can assume that a<b and c<d; otherwise, the statement reduces to WAT itself. Since
the rectangle [a, b]×[c, d]⊂R

2 is closed and bounded, it is compact. Since f is continuous, it follows
that it is uniformly continuous. Thus, there exists δ∈R+ such that

∣

∣f(x, y)−f(x′, y′)
∣

∣ ≤
ǫ

4
∀ (x, y), (x′, y′)∈ [a, b]×[c, d] s.t. |x−x′|, |y−y′|≤δ.

Choose N ′∈Z
+ so that N ′≥(b−a)/δ and let

xi = a+
i

N ′
(b−a), ∀ i=0, 1, . . . , N ′.

By the above assumption on δ,

∣

∣f(x, y)−f(xi−1, y)
∣

∣,
∣

∣f(x, y)−f(xi, y)
∣

∣ ≤
ǫ

4
∀ [x, y]∈ [xi−1, xi]×[c, d], i=1, . . . , N ′.

Thus,
∣

∣

∣
f
(

(1−t)xi−1+txi, y
)

−
(

(1−t)f(xi−1, y)+tf(xi, y)
)

∣

∣

∣

≤ (1−t)
∣

∣f(x, y)−f(xi−1, y)
∣

∣+ t
∣

∣f(x, y)−f(xi, y)
∣

∣ ≤
ǫ

4
∀ t∈ [0, 1], y∈ [a, b], i=1, . . . , N ′.

(6)
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By WAT, for every i=0, 1, . . . , N ′ there exist Ni∈Z
+ and ai;n∈C with n∈Z

≥0 such that

∣

∣

∣

∣

f(xi, y)−

Ni
∑

n=0

ai;ny
n

∣

∣

∣

∣

≤
ǫ

4
∀ y∈ [c, d].

Let N∗
2 be the largest of the numbers N0, N1, . . . , NN ′ . By replacing every Ni by N

∗
2 and taking

ai;n=0 for n>Ni, we can assume that

∣

∣

∣

∣

f(xi, y)−

N∗

2
∑

n=0

ai;ny
n

∣

∣

∣

∣

≤
ǫ

4
∀ y∈ [c, d], i=0, 1, . . . , N ′. (7)

For every n=0, 1, . . . , N∗
2 , let fn : [a, b]−→C be the piecewise linear function satisfying

fn
(

(1−t)xi−1+txi
)

= (1−t)ai−1;n+tai;n ∀ t∈ [0, 1], i=1, . . . , N ′ .

By (6) and (7),

∣

∣

∣

∣

f
(

(1−t)xi−1+txi, y
)

−

N∗

2
∑

n=0

fn
(

(1−t)xi−1+txi
)

yn
∣

∣

∣

∣

≤
∣

∣

∣
f
(

(1−t)xi−1+txi, y
)

−
(

(1−t)f(xi−1, y)+tf(xi, y)
)

∣

∣

∣

+ (1−t)

∣

∣

∣

∣

f(xi−1, y)−

N∗

2
∑

n=0

ai−1;ny
n

∣

∣

∣

∣

+ t

∣

∣

∣

∣

f(xi, y)−

N∗

2
∑

n=0

ai;ny
n

∣

∣

∣

∣

≤
ǫ

2

for all t∈ [0, 1], y∈ [c, d], and i=1, . . . , N ′. Thus,

∣

∣

∣

∣

f(x, y)−

N∗

2
∑

n=0

fn(x)y
n

∣

∣

∣

∣

≤
ǫ

2
∀ (x, y)∈ [a, b]×[c, d]. (8)

By WAT, for every n=0, 1, . . . , N∗
2 there exist Nn∈Z

+ and am;n∈C with m∈Z
≥0 such that

∣

∣

∣

∣

fn(x)−

Ni
∑

m=0

am;nx
m

∣

∣

∣

∣

≤
ǫ

2(1+N∗
2 )(1+|c|+|d|)N

∗

2

∀ x∈ [a, b].

Let N∗
1 be the largest of the numbers N0, N1, . . . , NN∗

2
. By replacing every Nn by N∗

1 and taking
am;n=0 for m>Nn, we can assume that

∣

∣

∣

∣

fn(x)−

N∗

1
∑

m=0

am;nx
m

∣

∣

∣

∣

≤
ǫ

2(1+N∗
2 )(1+|c|+|d|)N

∗

2

∀ x∈ [a, b].

Combining this with (8), we obtain

∣

∣

∣

∣

N∗

2
∑

n=0

fn(x)y
n −

N∗

2
∑

n=0

N∗

1
∑

m=0

am;nx
myn

∣

∣

∣

∣

≤ ǫ ∀ (x, y)∈ [a, b]×[c, d].

Along with (8), this implies (5).
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We now return to the question in (a). Choose a continuous function

F : [−1, 1]×[−1, 1] −→ C s.t. F
(

e2πiθ
)

= f(θ) ∀ θ∈I. (9)

Since f(0)=f(1), the condition on F (1, 0) above is well-defined. For example,

F
(

re2πiθ
)

= rf(θ) ∀ r∈R
≥0, θ∈I,

would do. By WAT II, there exist N ∈Z
+ and am,n∈C with m,n∈Z

≥0 such that

∣

∣

∣

∣

F (x, y)−
N
∑

m=0

N
∑

n=0

am,nx
myn

∣

∣

∣

∣

≤ ǫ ∀ x, y∈ [−1, 1].

Thus,
∣

∣

∣

∣

f(θ)−
N
∑

m=0

N
∑

n=0

am,n

(

cos(2πθ)
)m(

sin(2πθ)
)n
∣

∣

∣

∣

≤ ǫ ∀ θ∈I. (10)

Since

cos(2πθ) =
ψ1(θ)+ψ−1(θ)

2
, sin(2πθ) =

ψ1(θ)−ψ−1(θ)

2i
, and ψn

±1 = ψ±n ,

the claim follows from (10).

(b; 8pts) By Problem 2, the sum on the right-hand side of (4) converges uniformly to a continuous
function hf : I−→C such that 〈〈f−hf , ψn〉〉2=0 for all n∈Z. Since f(0)=f(1) and ψn(0)=ψn(1)
for all n∈Z, the continuous function f−hf has the same property and thus satisfies the conclusion
in (a). Let ǫ∈R

+. By (a), there exist N ∈Z
+ and an∈C with n∈Z such that

∣

∣

∣

∣

(

f(x)−hf (x)
)

−

n=N
∑

n=−N

anψn(x)

∣

∣

∣

∣

≤ ǫ ∀ x∈I.

Since 〈〈f−hf , ψn〉〉2=0 for all n∈Z, it follows that

∥

∥f−hf
∥

∥

2

2
= 〈〈f−hf , f−hf 〉〉2 −

n=N
∑

n=−N

〈〈f−hf , anψn〉〉2 =

〈〈

f−hf , (f−hf )−
n=N
∑

n=−N

anψn

〉〉

≤
∥

∥f−hf
∥

∥

2

∥

∥

∥

∥

2

∥

∥

∥

∥

(

f−hf
)

−
n=N
∑

n=−N

anψn

∥

∥

∥

∥

2

≤
∥

∥f−hf
∥

∥

2
ǫ · 11/2 ;

the first inequality above follows from Cauchy-Schwartz. Since the above holds for every ǫ > 0,
it follows that ‖f−hf‖2 = 0 and thus f−hf = 0 almost everywhere on I. Since this function is
continuous, this implies that f=hf .
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