MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 8

Problem 1 (10pts)

Let $(V,\langle\cdot, \cdot\rangle)$ be an inner-product space over \mathbb{C} and $e_{1}, e_{2}, \ldots \in V$ be a sequence of orthonormal vectors, i.e.

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1, & \text { if } i=j \tag{1}\\ 0, & \text { if } i \neq j\end{cases}
$$

Let $|\cdot|$ be the norm on V determined by $\langle\cdot, \cdot\rangle$. Show that
(a) the collection $\left\{e_{i}: i \in \mathbb{Z}^{+}\right\}$is linearly independent (no non-trivial finite linear combination of e_{i} 's with complex coefficients adds up to 0);
(b) $v-\sum_{i=1}^{i=k}\left\langle v, e_{i}\right\rangle e_{i}$ is orthogonal to e_{1}, \ldots, e_{k} for all $v \in V$;
(c) $\sum_{i=1}^{i=k}\left|\left\langle v, e_{i}\right\rangle\right|^{2} \leq|v|^{2}$ for all $v \in V$ and $k \in \mathbb{Z}$;
(d) the sequence $v_{k} \equiv \sum_{i=1}^{i=k}\left\langle v, e_{i}\right\rangle e_{i}$ is Cauchy in $(V,\langle\cdot, \cdot\rangle)$.
(a; 2pts) Suppose $c_{1}, \ldots, c_{k} \in \mathbb{C}$ are such that $\sum_{i=1}^{i=k} c_{i} e_{i}=0$. Taking inner-product of this equality with e_{j} for $j=1, \ldots, k$ and using (1), we obtain

$$
c_{j}=\sum_{i=1}^{i=k} c_{i}\left\langle e_{i}, e_{j}\right\rangle=0
$$

Thus, $c_{j}=0$ for all $j=1, \ldots, k$.
(b; 2pts) Let $j=1, \ldots, k$. By (1),

$$
\left\langle v-\sum_{i=1}^{i=k}\left\langle v, e_{i}\right\rangle e_{i}, e_{j}\right\rangle=\left\langle v, e_{j}\right\rangle-\sum_{i=1}^{i=k}\left\langle v, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle=\left\langle v, e_{j}\right\rangle-\left\langle v, e_{j}\right\rangle=0
$$

This establishes the claim.
($\mathrm{c} ; \mathbf{3 p t s}$) Let v_{k} denote the sum in (b) and v_{k}^{c} the difference. By (1),

$$
\begin{equation*}
\left|v_{k}\right|_{2}^{2}=\sum_{i=1}^{i=k}\left|\left\langle v, e_{i}\right\rangle\right|^{2}\left|e_{i}\right|^{2}+\sum_{i \neq j}\left\langle v, e_{i}\right\rangle \overline{\left\langle v, e_{j}\right\rangle}\left\langle e_{i}, e_{j}\right\rangle=\sum_{i=1}^{i=k}\left|\left\langle v, e_{i}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

By (b), $\left\langle v_{k}^{c}, v_{k}\right\rangle=0$. Since $v=v_{k}+v_{k}^{c}$,

$$
|v|^{2}=\left|v_{k}\right|^{2}+\left|v_{k}^{c}\right|^{2}+2 \operatorname{Re}\left\langle v_{k}^{c}, v_{k}\right\rangle=\left|v_{k}\right|^{2}+\left|v_{k}^{c}\right|^{2}
$$

Along with (2), this establishes the claim.
(d; 3pts) If $k \leq \ell$, then

$$
\left|v_{k}-v_{\ell}\right|^{2}=\left|\sum_{i=k+1}^{i=\ell}\left\langle v, e_{i}\right\rangle e_{i}\right|^{2}=\sum_{i=k+1}^{i=\ell}\left|\left\langle v, e_{i}\right\rangle\right|^{2} .
$$

By (c), the right-hand side above approaches 0 as $k, \ell \longrightarrow \infty$. Thus, the sequence v_{k} is Cauchy in $(V,\langle\cdot, \cdot\rangle)$.

Problem 2 (20pts)

Let $\mathbb{I}=[0,1], L^{2}(\mathbb{I} ; \mathbb{C})$ be the L^{2}-space of \mathbb{C}-valued functions on \mathbb{I}, and $f \in L^{2}(\mathbb{I} ; \mathbb{C})$. For each $n \in \mathbb{Z}$, define

$$
\begin{equation*}
\psi_{n}: \mathbb{I} \longrightarrow \mathbb{C}, \quad \psi_{n}(x)=\mathrm{e}^{2 \pi \mathrm{i} n x}, \quad c_{n}(f)=\left\langle\left\langle f, \psi_{n}\right\rangle\right\rangle_{2} \equiv \int_{\mathbb{I}} f \bar{\psi}_{n} \mathrm{~d} m \in \mathbb{C} . \tag{3}
\end{equation*}
$$

(a) Show that the collection $\left\{\psi_{n}: n \in \mathbb{Z}^{+}\right\}$consists of orthonormal elements of $L^{2}(\mathbb{I} ; \mathbb{C})$.
(b) Show that the sum

$$
\sum_{n \in \mathbb{Z}} c_{n}(f) \psi_{n} \equiv \lim _{k, m \longrightarrow \infty} \sum_{n=-k}^{n=m} c_{n}(f) \psi_{n}
$$

converges with respect to the L^{2}-norm to some $h_{f} \in L^{2}(\mathbb{I} ; \mathbb{C})$ so that $\left\|h_{f}\right\|_{2} \leq\|f\|_{2}$ and $\left\langle\left\langle f-h_{f}, \psi_{n}\right\rangle\right\rangle_{2}=0$ for all $n \in \mathbb{Z}$.
(c) Suppose f is twice continuously differentiable, $f(0)=f(1)$, and $f^{\prime}(0)=f^{\prime}(1)$. Show that

$$
c_{n}(f)=\frac{1}{2 \pi \mathfrak{i} n} c_{n}\left(f^{\prime}\right)=-\frac{1}{4 \pi^{2} n^{2}} c_{n}\left(f^{\prime \prime}\right) \quad \forall n \neq 0
$$

(d) Under the assumptions on f in (c), show that the sum in (b) converges uniformly to a continuous function $h_{f}: \mathbb{I} \longrightarrow \mathbb{C}$.
(a; 2pts) For $n, n^{\prime} \in \mathbb{Z}$,

$$
\left\langle\left\langle\psi_{n}, \psi_{n^{\prime}}\right\rangle\right\rangle_{2}=\int_{0}^{1} \psi_{n} \overline{\psi_{n^{\prime}}} \mathrm{d} x=\int_{0}^{1} \mathrm{e}^{2 \pi \mathrm{i}\left(n-n^{\prime}\right) x} \mathrm{~d} x= \begin{cases}1, & \text { if } n=n^{\prime} \\ 0, & \text { if } n \neq n^{\prime} .\end{cases}
$$

This establishes the claim.
(b; 6pts) By Problem 1(d) with $v=f$, the sequence

$$
f_{k, m} \equiv \sum_{n=-k}^{n=m} c_{n}(f) \psi_{n}
$$

is Cauchy with respect to the L^{2}-norm $\|\cdot\|_{2} \|$ for any identification of \mathbb{Z}^{2} with \mathbb{Z}^{+}. Since $L^{2}(\mathbb{I} ; \mathbb{C})$ is complete with respect to $\|\cdot\|_{2} \|$, this sequence converges to some $h_{f} \in L^{2}(\mathbb{I} ; \mathbb{C})$ with respect to $\|\cdot\|_{2} \|$. Furthermore,

$$
\left\|h_{f}\right\|_{2}=\lim _{k, m \longrightarrow \infty}\left\|\sum_{n=-k}^{n=m} c_{n}(f) \psi_{n}\right\|_{2}=\lim _{k, m \longrightarrow \infty} \sum_{n=-k}^{n=m}\left|c_{n}(f)\right|^{2} \leq\|f\|_{2}^{2}
$$

the second equality above holds by (a), while the last inequality holds by Problem 1(c).
By Problem 1(c), $\left\langle\left\langle f-f_{k, m}, \psi_{j}\right\rangle_{2}=0\right.$ for all $j, k, m \in \mathbb{Z}$. Thus,

$$
\left|\left\langle\left\langle f-h_{f}, \psi_{j}\right\rangle\right\rangle_{2}\right| \leq \mid\left\langle\left\langle f-f_{k, m}, \psi_{j}\right\rangle_{2}\right|+\left|\left\langle\left\langle f_{k, m}-h_{f}, \psi_{j}\right\rangle\right\rangle_{2}\right| \leq 0+\left\|f_{k, m}-h_{f}\right\|_{2}\left\|\psi_{j}\right\|_{2}=\left\|f_{k, m}-h_{f}\right\|_{2} ;
$$

the inequality above holds by Cauchy-Schwartz. Since $f_{k, m} \longrightarrow h_{f}$ as $k, m \longrightarrow h_{f}$, the right-hand side above tends to 0 as $k, m \longrightarrow h_{f}$. This establishes the last claim.
(c; 6pts) By integration by parts,

$$
\begin{aligned}
c_{n}(f)=\int_{0}^{1} f \mathrm{e}^{-2 \pi \mathrm{i} n x} \mathrm{~d} x=\frac{\mathfrak{i}}{2 \pi n} \int_{0}^{1} f \mathrm{de}^{-2 \pi \mathrm{i} n x} & =\frac{\mathfrak{i}}{2 \pi n}\left(\left.f \mathrm{e}^{-2 \pi \mathrm{i} n x}\right|_{0} ^{1}-\int_{0}^{1} f \mathrm{e}^{-2 \pi \mathrm{i} n x} \mathrm{~d} x\right) \\
& =\frac{1}{2 \pi \mathfrak{i} n}\left(-0+c_{n}\left(f^{\prime}\right)\right) ;
\end{aligned}
$$

the last equality holds because $f(0)=f(1)$. Thus,

$$
c_{n}(f)=\frac{1}{2 \pi \mathrm{i} n} c_{n}\left(f^{\prime}\right)=\frac{1}{2 \pi \mathrm{i} n} \cdot \frac{1}{2 \pi \mathrm{i} n} c_{n}\left(f^{\prime \prime}\right) .
$$

This establishes the claim.
(d; $\mathbf{6 p t s}$) By (c) and Problem 1(b),

$$
\left|c_{n}(f)\right|=\frac{\left|c_{n}\left(f^{\prime \prime}\right)\right|}{4 \pi^{2} n^{2}} \leq \frac{\left\|f^{\prime \prime}\right\|_{2}}{4 \pi^{2}} n^{-2} \quad \forall n \neq 0
$$

By (c),

$$
\begin{aligned}
\left|\sum_{n=k}^{\infty} c_{-n}(f) \psi_{n}(x)+\sum_{n=\ell}^{\infty} c_{n}(f) \psi_{n}(x)\right| & \leq \sum_{n=k}^{\infty}\left|c_{-n}(f)\right|\left|\psi_{n}(x)\right|+\sum_{n=\ell}^{\infty}\left|c_{n}(f)\right|\left|\psi_{n}(x)\right| \\
& \leq \frac{1}{4 \pi^{2}}\left(\sum_{n=k}^{\infty} \frac{1}{n^{2}}+\sum_{n=\ell}^{\infty} \frac{1}{n^{2}}\right) \quad \forall x \in \mathbb{I} .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} n^{-2}$ converges, it follows that the sequence $f_{k, m}$ for any identification of \mathbb{Z}^{2} with \mathbb{Z}^{+} converges uniformly to a function $h_{f}: \mathbb{I} \longrightarrow \mathbb{C}$. Since $f_{k, m}$ is a sequence of continuous functions, so is h_{f}.

Problem 3 (20pts)

Let $\mathbb{I}=[0,1], L^{2}(\mathbb{I} ; \mathbb{C})$ be the L^{2}-space of \mathbb{C}-valued functions on $\mathbb{I}, f \in L^{2}(\mathbb{I} ; \mathbb{C})$, and ψ_{n} and $c_{n}(f)$ be as in (3).
(a) Suppose f is continuous and $f(0)=f(1)$. Show that for every $\epsilon>0$ there exist $N \in \mathbb{Z}^{+}$and $a_{n} \in \mathbb{C}$ with $n \in \mathbb{Z}$ such that

$$
\left|f(x)-\sum_{n=-N}^{n=N} a_{n} \psi_{n}(x)\right| \leq \epsilon \quad \forall x \in \mathbb{I} .
$$

(b) Suppose f is twice continuously differentiable, $f(0)=f(1)$, and $f^{\prime}(0)=f^{\prime}(1)$. Show that

$$
\begin{equation*}
f=\sum_{n \in \mathbb{Z}} c_{n}(f) \mathrm{e}^{2 \pi \mathrm{i} n x} \tag{4}
\end{equation*}
$$

with the sum converging uniformly on \mathbb{I}.
(a; 12pts) Weierstrass Approximation Theorem or WAT (MAT 320). Let $a, b \in \mathbb{R}$ and $f:[a, b] \longrightarrow \mathbb{C}$ be a continuous function. For every $\epsilon>0$, there exist $N \in \mathbb{Z}^{+}$and $a_{n} \in \mathbb{C}$ with $n \in \mathbb{Z}^{\geq 0}$ such that

$$
\left|f(x)-\sum_{n=0}^{n=N} a_{n} x^{n}\right| \leq \epsilon \quad \forall x \in[a, b] .
$$

A continuous function $f:[0,1] \longrightarrow \mathbb{C}$ such that $f(0)=f(1)$ corresponds to a continuous function $S^{1} \longrightarrow \mathbb{C}$. This is a natural perspective for this question because the functions ψ_{n} are also natural functions on the circle. If S^{1} is identified with the unit circle, then

$$
\psi_{n}(z)= \begin{cases}z^{n} \equiv(x+\mathfrak{i} y)^{n}, & \text { if } n \in \mathbb{Z}^{\geq 0} \\ \bar{z}^{-n} \equiv(x-\mathfrak{i} y)^{-n}, & \text { if } n \in \mathbb{Z}^{\leq 0}\end{cases}
$$

WAT and the claim of (a) for S^{1} are special cases of the Stone-Weierstrass Theorem for metric (and more general topological) spaces. On the other hand, one could expect the S^{1} statement to be directly deducible from the statement of WAT. This is done below.

WAT II. Let $a, b, c, d \in \mathbb{R}$ and $f:[a, b] \times[c, d] \longrightarrow \mathbb{C}$ be a continuous function. For every $\epsilon>0$, there exist $N \in \mathbb{Z}^{+}$and $a_{m, n} \in \mathbb{C}$ with $m, n \in \mathbb{Z}^{\geq 0}$ such that

$$
\begin{equation*}
\left|f(x, y)-\sum_{m=0}^{N} \sum_{n=0}^{N} a_{m, n} x^{m} y^{n}\right| \leq \epsilon \quad \forall(x, y) \in[a, b] \times[c, d] \tag{5}
\end{equation*}
$$

Proof. We can assume that $a<b$ and $c<d$; otherwise, the statement reduces to WAT itself. Since the rectangle $[a, b] \times[c, d] \subset \mathbb{R}^{2}$ is closed and bounded, it is compact. Since f is continuous, it follows that it is uniformly continuous. Thus, there exists $\delta \in \mathbb{R}^{+}$such that

$$
\left|f(x, y)-f\left(x^{\prime}, y^{\prime}\right)\right| \leq \frac{\epsilon}{4} \quad \forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in[a, b] \times[c, d] \text { s.t. }\left|x-x^{\prime}\right|,\left|y-y^{\prime}\right| \leq \delta .
$$

Choose $N^{\prime} \in \mathbb{Z}^{+}$so that $N^{\prime} \geq(b-a) / \delta$ and let

$$
x_{i}=a+\frac{i}{N^{\prime}}(b-a), \quad \forall i=0,1, \ldots, N^{\prime} .
$$

By the above assumption on δ,

$$
\left|f(x, y)-f\left(x_{i-1}, y\right)\right|,\left|f(x, y)-f\left(x_{i}, y\right)\right| \leq \frac{\epsilon}{4} \quad \forall[x, y] \in\left[x_{i-1}, x_{i}\right] \times[c, d], i=1, \ldots, N^{\prime} .
$$

Thus,

$$
\begin{align*}
& \left|f\left((1-t) x_{i-1}+t x_{i}, y\right)-\left((1-t) f\left(x_{i-1}, y\right)+t f\left(x_{i}, y\right)\right)\right| \\
& \quad \leq(1-t)\left|f(x, y)-f\left(x_{i-1}, y\right)\right|+t\left|f(x, y)-f\left(x_{i}, y\right)\right| \leq \frac{\epsilon}{4} \forall t \in[0,1], y \in[a, b], i=1, \ldots, N^{\prime} . \tag{6}
\end{align*}
$$

By WAT, for every $i=0,1, \ldots, N^{\prime}$ there exist $N_{i} \in \mathbb{Z}^{+}$and $a_{i ; n} \in \mathbb{C}$ with $n \in \mathbb{Z}^{\geq 0}$ such that

$$
\left|f\left(x_{i}, y\right)-\sum_{n=0}^{N_{i}} a_{i, n} y^{n}\right| \leq \frac{\epsilon}{4} \quad \forall y \in[c, d] .
$$

Let N_{2}^{*} be the largest of the numbers $N_{0}, N_{1}, \ldots, N_{N^{\prime}}$. By replacing every N_{i} by N_{2}^{*} and taking $a_{i ; n}=0$ for $n>N_{i}$, we can assume that

$$
\begin{equation*}
\left|f\left(x_{i}, y\right)-\sum_{n=0}^{N_{2}^{*}} a_{i ; n} y^{n}\right| \leq \frac{\epsilon}{4} \quad \forall y \in[c, d], i=0,1, \ldots, N^{\prime} \tag{7}
\end{equation*}
$$

For every $n=0,1, \ldots, N_{2}^{*}$, let $f_{n}:[a, b] \longrightarrow \mathbb{C}$ be the piecewise linear function satisfying

$$
f_{n}\left((1-t) x_{i-1}+t x_{i}\right)=(1-t) a_{i-1 ; n}+t a_{i ; n} \quad \forall t \in[0,1], i=1, \ldots, N^{\prime} .
$$

By (6) and (7),

$$
\begin{aligned}
& \left|f\left((1-t) x_{i-1}+t x_{i}, y\right)-\sum_{n=0}^{N_{2}^{*}} f_{n}\left((1-t) x_{i-1}+t x_{i}\right) y^{n}\right| \\
& \quad \leq\left|f\left((1-t) x_{i-1}+t x_{i}, y\right)-\left((1-t) f\left(x_{i-1}, y\right)+t f\left(x_{i}, y\right)\right)\right| \\
& \quad+(1-t)\left|f\left(x_{i-1}, y\right)-\sum_{n=0}^{N_{2}^{*}} a_{i-1 ; n} y^{n}\right|+t\left|f\left(x_{i}, y\right)-\sum_{n=0}^{N_{2}^{*}} a_{i ; n} y^{n}\right| \leq \frac{\epsilon}{2}
\end{aligned}
$$

for all $t \in[0,1], y \in[c, d]$, and $i=1, \ldots, N^{\prime}$. Thus,

$$
\begin{equation*}
\left|f(x, y)-\sum_{n=0}^{N_{2}^{*}} f_{n}(x) y^{n}\right| \leq \frac{\epsilon}{2} \quad \forall(x, y) \in[a, b] \times[c, d] . \tag{8}
\end{equation*}
$$

By WAT, for every $n=0,1, \ldots, N_{2}^{*}$ there exist $N_{n} \in \mathbb{Z}^{+}$and $a_{m ; n} \in \mathbb{C}$ with $m \in \mathbb{Z}^{\geq 0}$ such that

$$
\left|f_{n}(x)-\sum_{m=0}^{N_{i}} a_{m ; n} x^{m}\right| \leq \frac{\epsilon}{2\left(1+N_{2}^{*}\right)(1+|c|+|d|)^{N_{2}^{*}}} \quad \forall x \in[a, b] .
$$

Let N_{1}^{*} be the largest of the numbers $N_{0}, N_{1}, \ldots, N_{N_{2}^{*}}$. By replacing every N_{n} by N_{1}^{*} and taking $a_{m ; n}=0$ for $m>N_{n}$, we can assume that

$$
\left|f_{n}(x)-\sum_{m=0}^{N_{1}^{*}} a_{m ; n} x^{m}\right| \leq \frac{\epsilon}{2\left(1+N_{2}^{*}\right)(1+|c|+|d|)^{N_{2}^{*}}} \quad \forall x \in[a, b] .
$$

Combining this with (8), we obtain

$$
\left|\sum_{n=0}^{N_{2}^{*}} f_{n}(x) y^{n}-\sum_{n=0}^{N_{2}^{*}} \sum_{m=0}^{N_{1}^{*}} a_{m ; n} x^{m} y^{n}\right| \leq \epsilon \quad \forall(x, y) \in[a, b] \times[c, d] .
$$

Along with (8), this implies (5).

We now return to the question in (a). Choose a continuous function

$$
\begin{equation*}
F:[-1,1] \times[-1,1] \longrightarrow \mathbb{C} \quad \text { s.t. } \quad F\left(\mathrm{e}^{2 \pi i \theta}\right)=f(\theta) \quad \forall \theta \in \mathbb{I} . \tag{9}
\end{equation*}
$$

Since $f(0)=f(1)$, the condition on $F(1,0)$ above is well-defined. For example,

$$
F\left(r \mathrm{e}^{2 \pi \mathrm{i} \theta}\right)=r f(\theta) \quad \forall r \in \mathbb{R}^{\geq 0}, \theta \in \mathbb{I},
$$

would do. By WAT II, there exist $N \in \mathbb{Z}^{+}$and $a_{m, n} \in \mathbb{C}$ with $m, n \in \mathbb{Z}^{\geq 0}$ such that

$$
\left|F(x, y)-\sum_{m=0}^{N} \sum_{n=0}^{N} a_{m, n} x^{m} y^{n}\right| \leq \epsilon \quad \forall x, y \in[-1,1] .
$$

Thus,

$$
\begin{equation*}
\left|f(\theta)-\sum_{m=0}^{N} \sum_{n=0}^{N} a_{m, n}(\cos (2 \pi \theta))^{m}(\sin (2 \pi \theta))^{n}\right| \leq \epsilon \quad \forall \theta \in \mathbb{I} . \tag{10}
\end{equation*}
$$

Since

$$
\cos (2 \pi \theta)=\frac{\psi_{1}(\theta)+\psi_{-1}(\theta)}{2}, \quad \sin (2 \pi \theta)=\frac{\psi_{1}(\theta)-\psi_{-1}(\theta)}{2 \mathfrak{i}}, \quad \text { and } \quad \psi_{ \pm 1}^{n}=\psi_{ \pm n},
$$

the claim follows from (10).
(b; $\mathbf{8 p t s}$) By Problem 2, the sum on the right-hand side of (4) converges uniformly to a continuous function $h_{f}: \mathbb{I} \longrightarrow \mathbb{C}$ such that $\left\langle\left\langle f-h_{f}, \psi_{n}\right\rangle_{2}=0\right.$ for all $n \in \mathbb{Z}$. Since $f(0)=f(1)$ and $\psi_{n}(0)=\psi_{n}(1)$ for all $n \in \mathbb{Z}$, the continuous function $f-h_{f}$ has the same property and thus satisfies the conclusion in (a). Let $\epsilon \in \mathbb{R}^{+}$. By (a), there exist $N \in \mathbb{Z}^{+}$and $a_{n} \in \mathbb{C}$ with $n \in \mathbb{Z}$ such that

$$
\left|\left(f(x)-h_{f}(x)\right)-\sum_{n=-N}^{n=N} a_{n} \psi_{n}(x)\right| \leq \epsilon \quad \forall x \in \mathbb{I} .
$$

Since $\left\langle\left\langle f-h_{f}, \psi_{n}\right\rangle_{2}=0\right.$ for all $n \in \mathbb{Z}$, it follows that

$$
\begin{aligned}
\left\|f-h_{f}\right\|_{2}^{2} & =\left\langle\left\langle f-h_{f}, f-h_{f}\right\rangle_{2}-\sum_{n=-N}^{n=N}\left\langle\left\langle f-h_{f}, a_{n} \psi_{n}\right\rangle\right\rangle_{2}=\left\langle\left\langle f-h_{f},\left(f-h_{f}\right)-\sum_{n=-N}^{n=N} a_{n} \psi_{n}\right\rangle\right\rangle\right. \\
& \leq\left\|f-h_{f}\right\|_{2}\left\|_{2}\right\|\left(f-h_{f}\right)-\sum_{n=-N}^{n=N} a_{n} \psi_{n}\left\|_{2} \leq\right\| f-h_{f} \|_{2} \epsilon \cdot 1^{1 / 2} ;
\end{aligned}
$$

the first inequality above follows from Cauchy-Schwartz. Since the above holds for every $\epsilon>0$, it follows that $\left\|f-h_{f}\right\|_{2}=0$ and thus $f-h_{f}=0$ almost everywhere on \mathbb{I}. Since this function is continuous, this implies that $f=h_{f}$.

