
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 7

Problem 1 (8pts)

Let (X,F , µ) be a measure space and p, q, r∈ [1,∞] be such that 1/p+1/q=1/r. Show that

∥

∥fg
∥

∥

r
≤ ‖f‖p‖g‖q

for all measurable functions f, g : X−→R (cases with p, q, r=∞ may require separate treatment).

If p=∞, then q=r and

∥

∥fg
∥

∥

r
≡

∥

∥|f |·|g|
∥

∥

q
≤

∥

∥‖f‖∞|g|
∥

∥

q
= ‖f‖p‖g‖q .

If r=∞, then p, q=∞. Thus, it remains to consider the case p, q, r<∞. Let p′=p/r and q′=q/r.
By the assumption on p, q, r, 1/p′+1/q′=1. By Hölder’s Inequality,

∥

∥fg
∥

∥

r
≡

(∥

∥|f |r|g|r
∥

∥

1

)1/r ≤
(∥

∥|f |r
∥

∥

p′

∥

∥|g|r
∥

∥

q′

)1/r ≡
(∥

∥|f |rp′
∥

∥

r/p

1

∥

∥|g|rq′
∥

∥

r/q

1

)1/r
= ‖f‖p‖g‖q .

Problem 2 (12pts)

Find a function f : R+ −→ R
+ which is in L2(R+), but not in Lp(R+) for any p ∈ [1,∞]−{2}.

Justify your answer.

For each n∈Z
+, define

fn : R
+−→R

+, fn(x) =

{

x−
1

2
+ 1

2n , if x≤1;

x−
1

2
− 1

2n , if x≥1.

By the Ratio Test, the sum

f(x) ≡
∞
∑

n=1

2−nfn(x)

converges for every x∈R
+. By the Monotone Convergence Theorem and Minkowski’s Inequality,

‖f‖22 ≡
∫

R+

(

lim
k−→∞

n=k
∑

n=1

2−nfn

)2

dm = lim
k−→∞

∫

R+

( n=k
∑

n=1

2−nfn

)2

dm

= lim
k−→∞

∥

∥

∥

∥

n=k
∑

n=1

2−nfn

∥

∥

∥

∥

2

2

≤
(

lim
k−→∞

n=k
∑

n=1

∥

∥

∥

∥

2−nfn

∥

∥

∥

∥

2

)2

=

( ∞
∑

n=1

2−n‖fn‖2
)2

.

Since ‖fn‖2=
√
2n, it follows that

‖f‖2 ≤
∞
∑

n=1

2−n
√
2n < ∞ .



Thus, f ∈L2(R+).

Since f1(x)−→∞ for as x−→ 0 and f ≥ f1, ‖f‖∞=∞ and f 6∈L∞(R+). If p∈ [1, 2), there exists
n∈Z

+ so that (1/2+1/2n)p<1 and thus

‖f‖ p
p ≥ ‖fn‖ p

p ≥
∫

(1,∞)
x−( 1

2
+ 1

2n
)pdm ≥

∫

(1,∞)
x−1dm =

∫ ∞

1
x−1dx = ∞.

Thus, f 6∈Lp(R+). If p∈(2,∞), there exists n∈Z
+ so that (1/2−1/2n)p>1 and thus

‖f‖ p
p ≥ ‖fn‖ p

p ≥
∫

(0,1)
x−( 1

2
− 1

2n
)pdm ≥

∫

(0,1)
x−1dm =

∫ 1

0
x−1dx = ∞.

Thus, f 6∈ Lp(R+). The equalities of Lebesgue and Riemann integrals in the two computations
above hold because x−1>0. This is also used to compute ‖fn‖2 above.

Problem 3 (10pts)

For each of the following sequences of measurable functions f1, f2,. . . : R
+−→R, determine whether

it (the sequence) lies in L1(R+), L2(R+), and if so whether it is Cauchy in there (this is between
2 and 4 questions for each sequence below). Justify your answers.

(a) fn = 1(0,n)/
√
x (b) fn = 1(0,n)/(x+1)

(a; 5pts) Since

‖fn‖1 ≡
∫

R+

|fn|dm =

∫

(0,n)
1/
√
x dm =

∫ n

0
1/
√
x dx = 2

√
n < ∞,

‖fn‖ 2
2 ≡

∫

R+

|fn|2dm =

∫

(0,n)
1/x dm =

∫ n

0
1/x dx = ∞,

fn∈L1(R+) and fn 6∈L2(R+). Let k, n∈Z
+ with k≤n. Since

∥

∥fk−fn
∥

∥

1
≡

∫

R+

|fk−fn|dm =

∫

[k,n]
1/
√
x dm =

∫ n

k
1/
√
x dm

= 2
(√

n−
√
k) −→ ∞ as n −→ ∞,

the sequence f1, f2, . . . is not Cauchy in L1(R+). Alternatively, fn−→ f ≡ 1/
√
x pointwise. Since

f 6∈L1(R+), the sequence f1, f2, . . . in not Cauchy in L1(R+).

(b; 5pts) Since

‖fn‖1 ≡
∫

R+

|fn|dm =

∫

(0,n)
1/(x+1) dm =

∫ n

0
1/(x+1) dx = ln(x) < ∞,

‖fn‖ 2
2 ≡

∫

R+

|fn|2dm =

∫

(0,n)
1/(x+1)2 dm =

∫ n

0
1/(x+1)2 dx = 1− 1

n+1
< ∞,

2



fn∈L1(R+), L2(R+). Let k, n∈Z
+ with k≤n. Since

∥

∥fk−fn
∥

∥

1
≡

∫

R+

|fk−fn|dm =

∫

[k,n]
1/(x+1) dm =

∫ n

k
1/(x+1) dm

= ln(n+1)−ln(k+1) −→ ∞ as n −→ ∞,

∥

∥fk−fn
∥

∥

2

2
≡

∫

R+

|fk−fn|2dm =

∫

[k,n]
1/(x+1)2 dm =

∫ n

k
1/(x+1)2 dm

= 1/(k+1)−1/(n+1) ≤ 1/(k+1) ∀n≥k,

the sequence f1, f2, . . . is not Cauchy in L1(R+) and is Cauchy in L2(R+). Alternatively,

fn −→ f≡1/(1+x)

pointwise. Since f 6∈L1(R+), the sequence f1, f2, . . . is not Cauchy in L1(R+). While f ∈L2(R+),
this cannot be used to conclude that the sequence f1, f2, . . . is Cauchy in L2(R+).

Problem 4 (20pts)

Let p, q∈ [1,∞] with 1/p+1/q=1. For a differentiable function f : R−→R, define

‖f‖p,1 = ‖f‖p + ‖f ′‖p .

(a) Show that this defines a norm on the vector space

C1,p(R) ≡
{

f ∈C1(R) : ‖f‖p,1<∞
}

.

Do not forget to justify why C1,p(R) is a vector space (C1(R) is the space of differentiable
functions f :R−→R).

(b) Show that

∣

∣f(x)−f(y)
∣

∣ ≤ ‖f ′‖p|x−y|1/q,
∣

∣

∣

∣

f(x)− 1

2

∫ x+1

x−1
f(y)dy

∣

∣

∣

∣

≤ ‖f ′‖p, ‖f‖∞ ≤ ‖f‖p,1

for all f ∈C1,p(R) and x, y∈R (cases with p, q=∞ may require separate treatment).

(c) Let f1, f2, . . .∈C1,p(R) be a Cauchy sequence with respect to the norm ‖ · ‖p,1. Show that it
converges uniformly to a bounded continuous function f :R−→R.

(a; 5pts) If f ∈C1,p(R) and c∈R, then

‖cf‖p,1 ≡ ‖cf‖p + ‖cf ′‖p = |c|‖f‖p + |c|‖f ′‖p ≡ |c|‖f‖p,1 < ∞; (1)

the equality in the middle holds because ‖ · ‖p satisfies this on Lp(X). Thus, cf ∈ C1,p(R). If
f, g∈C1,p(R),

‖f+g‖p,1 ≡ ‖f+g‖p + ‖f ′+g′‖p ≤
(

‖f‖p+‖g‖p
)

+
(

‖f ′‖p+‖g′‖p
)

≡ ‖f‖p,1+‖g‖p,1 ; (2)

3



the inequality in the middle holds by Minkowski’s inequality. Thus, f+g∈C1,p(R). We conclude
that C1,p(R) is a vector space. By (1) and (2), the function

‖ · ‖p : C1,p(R) −→ R
≥0 (3)

satisfies two of the three properties required of a norm. If f ∈C1,p(R) and ‖f‖p,1=0, then ‖f‖p=0
and so f=0 a.e. on R. Since f is continuous (because it is differentiable), it follows that f=0 and
so the map (3) also satisfies the remaining property required of a norm.

(b; 10pts) Let f ∈C1,p(R) and x, y∈R with x<y. By the Fundamental Theorem of Calculus and
Hölder’s Inequality,

∣

∣f(y)−f(x)
∣

∣ ≤
∣

∣

∣

∣

∫ y

x
f ′(t)dt

∣

∣

∣

∣

≤
∫ y

x

∣

∣f ′(t)
∣

∣dt =

∫

[x,y]
|f ′|dm ≡

∥

∥f ′ ·1[x,y]

∥

∥

1

≤ ‖f ′‖p
∥

∥1[x,y]

∥

∥

q
= ‖f ′‖p|x−y|1/q .

This establishes the first inequality. Using it, we obtain

∣

∣

∣

∣

f(x)− 1

2

∫ x+1

x−1
f(y)dy

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∫ x+1

x−1

(

f(x)− f(y)
)

dy

∣

∣

∣

∣

≤ 1

2

∫ x+1

x−1

∣

∣f(x)− f(y)
∣

∣dy

≤ 1

2

∫ x+1

x−1
‖f ′‖p|x−y|1/qdy = ‖f ′‖p

∫ 1

0
r1/qdr = ‖f ′‖p ·

q

q+1
≤ ‖f ′‖p .

This establishes the second inequality. Using it and Hölder’s Inequality, we obtain

∣

∣f(x)
∣

∣ ≤
∣

∣

∣

∣

f(x)− 1

2

∫ x+1

x−1
f(y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2

∫ x+1

x−1
f(y)dy

∣

∣

∣

∣

≤ ‖f ′‖p +
1

2

∥

∥f ·1[x−1,x+1]

∥

∥

1

≤ ‖f ′‖p +
1

2
‖f‖p

∥

∥1[x−1,x+1]

∣

∣

q
= ‖f ′‖p +

1

2
‖f‖p ·21/q ≤ ‖f ′‖p+‖f‖p ≡ ‖f‖p,1 .

This establishes the third inequality.

(c; 5pts) By the last inequality in (b) applied to the continuous functions fn and fm−fn, each
function fn is bounded and the sequence f1, f2, . . . is Cauchy with respect to the sup-norm on
the space of continuous functions. In particular, the sequence f1(x), f2(x), . . . is Cauchy in R for
every x ∈ R and thus converges to some f(x) ∈ R. This defines a function f : R −→ R so that
fn−→f pointwise on R. Since the sequence f1, f2, . . . is Cauchy with respect to the sup-norm, this
convergence is uniform. Since each function fn is continuous and bounded, it follows that so is f .
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