MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 7

Problem 1 (8pts)

Let (X, \mathcal{F}, μ) be a measure space and $p, q, r \in[1, \infty]$ be such that $1 / p+1 / q=1 / r$. Show that

$$
\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

for all measurable functions $f, g: X \longrightarrow \mathbb{R}$ (cases with $p, q, r=\infty$ may require separate treatment).
If $p=\infty$, then $q=r$ and

$$
\|f g\|_{r} \equiv\||f| \cdot|g|\|_{q} \leq\| \| f\left\|_{\infty}|g|\right\|_{q}=\|f\|_{p}\|g\|_{q} .
$$

If $r=\infty$, then $p, q=\infty$. Thus, it remains to consider the case $p, q, r<\infty$. Let $p^{\prime}=p / r$ and $q^{\prime}=q / r$. By the assumption on $p, q, r, 1 / p^{\prime}+1 / q^{\prime}=1$. By Hölder's Inequality,

$$
\|f g\|_{r} \equiv\left(\left\||f|^{r}|g|^{r}\right\|_{1}\right)^{1 / r} \leq\left(\left\||f|^{r}\right\|_{p^{\prime}}\left\||g|^{r}\right\|_{q^{\prime}}\right)^{1 / r} \equiv\left(\left\||f|^{r p^{\prime}}\right\|_{1}^{r / p}\left\||g|^{r q^{\prime}}\right\|_{1}^{r / q}\right)^{1 / r}=\|f\|_{p}\|g\|_{q} .
$$

Problem 2 (12pts)

Find a function $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$which is in $L^{2}\left(\mathbb{R}^{+}\right)$, but not in $L^{p}\left(\mathbb{R}^{+}\right)$for any $p \in[1, \infty]-\{2\}$. Justify your answer.

For each $n \in \mathbb{Z}^{+}$, define

$$
f_{n}: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}, \quad f_{n}(x)= \begin{cases}x^{-\frac{1}{2}+\frac{1}{2 n}}, & \text { if } x \leq 1 \\ x^{-\frac{1}{2}-\frac{1}{2 n}}, & \text { if } x \geq 1\end{cases}
$$

By the Ratio Test, the sum

$$
f(x) \equiv \sum_{n=1}^{\infty} 2^{-n} f_{n}(x)
$$

converges for every $x \in \mathbb{R}^{+}$. By the Monotone Convergence Theorem and Minkowski's Inequality,

$$
\begin{aligned}
\|f\|_{2}^{2} & \equiv \int_{\mathbb{R}^{+}}\left(\lim _{k \longrightarrow \infty} \sum_{n=1}^{n=k} 2^{-n} f_{n}\right)^{2} \mathrm{~d} m=\lim _{k \longrightarrow \infty} \int_{\mathbb{R}^{+}}\left(\sum_{n=1}^{n=k} 2^{-n} f_{n}\right)^{2} \mathrm{~d} m \\
& =\lim _{k \longrightarrow \infty}\left\|\sum_{n=1}^{n=k} 2^{-n} f_{n}\right\|_{2}^{2} \leq\left(\lim _{k \longrightarrow \infty} \sum_{n=1}^{n=k}\left\|2^{-n} f_{n}\right\|_{2}\right)^{2}=\left(\sum_{n=1}^{\infty} 2^{-n}\left\|f_{n}\right\|_{2}\right)^{2} .
\end{aligned}
$$

Since $\left\|f_{n}\right\|_{2}=\sqrt{2 n}$, it follows that

$$
\|f\|_{2} \leq \sum_{n=1}^{\infty} 2^{-n} \sqrt{2 n}<\infty
$$

Thus, $f \in L^{2}\left(\mathbb{R}^{+}\right)$.
Since $f_{1}(x) \longrightarrow \infty$ for as $x \longrightarrow 0$ and $f \geq f_{1},\|f\|_{\infty}=\infty$ and $f \notin L^{\infty}\left(\mathbb{R}^{+}\right)$. If $p \in[1,2)$, there exists $n \in \mathbb{Z}^{+}$so that $(1 / 2+1 / 2 n) p<1$ and thus

$$
\|f\|_{p}^{p} \geq\left\|f_{n}\right\|_{p}^{p} \geq \int_{(1, \infty)} x^{-\left(\frac{1}{2}+\frac{1}{2 n}\right) p} \mathrm{~d} m \geq \int_{(1, \infty)} x^{-1} \mathrm{~d} m=\int_{1}^{\infty} x^{-1} \mathrm{~d} x=\infty
$$

Thus, $f \notin L^{p}\left(\mathbb{R}^{+}\right)$. If $p \in(2, \infty)$, there exists $n \in \mathbb{Z}^{+}$so that $(1 / 2-1 / 2 n) p>1$ and thus

$$
\|f\|_{p}^{p} \geq\left\|f_{n}\right\|_{p}^{p} \geq \int_{(0,1)} x^{-\left(\frac{1}{2}-\frac{1}{2 n}\right) p} \mathrm{~d} m \geq \int_{(0,1)} x^{-1} \mathrm{~d} m=\int_{0}^{1} x^{-1} \mathrm{~d} x=\infty
$$

Thus, $f \notin L^{p}\left(\mathbb{R}^{+}\right)$. The equalities of Lebesgue and Riemann integrals in the two computations above hold because $x^{-1}>0$. This is also used to compute $\left\|f_{n}\right\|_{2}$ above.

Problem 3 (10pts)

For each of the following sequences of measurable functions $f_{1}, f_{2}, \ldots: \mathbb{R}^{+} \longrightarrow \mathbb{R}$, determine whether it (the sequence) lies in $L^{1}\left(\mathbb{R}^{+}\right), L^{2}\left(\mathbb{R}^{+}\right)$, and if so whether it is Cauchy in there (this is between 2 and 4 questions for each sequence below). Justify your answers.
(a) $f_{n}=\mathbb{1}_{(0, n)} / \sqrt{x}$
(b) $f_{n}=\mathbb{1}_{(0, n)} /(x+1)$
(a; 5pts) Since

$$
\begin{aligned}
& \left\|f_{n}\right\|_{1} \equiv \int_{\mathbb{R}^{+}}\left|f_{n}\right| \mathrm{d} m=\int_{(0, n)} 1 / \sqrt{x} \mathrm{~d} m=\int_{0}^{n} 1 / \sqrt{x} \mathrm{~d} x=2 \sqrt{n}<\infty \\
& \left\|f_{n}\right\|_{2}^{2} \equiv \int_{\mathbb{R}^{+}}\left|f_{n}\right|^{2} \mathrm{~d} m=\int_{(0, n)} 1 / x \mathrm{~d} m=\int_{0}^{n} 1 / x \mathrm{~d} x=\infty
\end{aligned}
$$

$f_{n} \in L^{1}\left(\mathbb{R}^{+}\right)$and $f_{n} \notin L^{2}\left(\mathbb{R}^{+}\right)$. Let $k, n \in \mathbb{Z}^{+}$with $k \leq n$. Since

$$
\begin{aligned}
\left\|f_{k}-f_{n}\right\|_{1} & \equiv \int_{\mathbb{R}^{+}}\left|f_{k}-f_{n}\right| \mathrm{d} m=\int_{[k, n]} 1 / \sqrt{x} \mathrm{~d} m=\int_{k}^{n} 1 / \sqrt{x} \mathrm{~d} m \\
& =2(\sqrt{n}-\sqrt{k}) \longrightarrow \infty \quad \text { as } n \longrightarrow \infty
\end{aligned}
$$

the sequence f_{1}, f_{2}, \ldots is not Cauchy in $L^{1}\left(\mathbb{R}^{+}\right)$. Alternatively, $f_{n} \longrightarrow f \equiv 1 / \sqrt{x}$ pointwise. Since $f \notin L^{1}\left(\mathbb{R}^{+}\right)$, the sequence f_{1}, f_{2}, \ldots in not Cauchy in $L^{1}\left(\mathbb{R}^{+}\right)$.
(b; 5pts) Since

$$
\begin{aligned}
& \left\|f_{n}\right\|_{1} \equiv \int_{\mathbb{R}^{+}}\left|f_{n}\right| \mathrm{d} m=\int_{(0, n)} 1 /(x+1) \mathrm{d} m=\int_{0}^{n} 1 /(x+1) \mathrm{d} x=\ln (x)<\infty \\
& \left\|f_{n}\right\|_{2}^{2} \equiv \int_{\mathbb{R}^{+}}\left|f_{n}\right|^{2} \mathrm{~d} m=\int_{(0, n)} 1 /(x+1)^{2} \mathrm{~d} m=\int_{0}^{n} 1 /(x+1)^{2} \mathrm{~d} x=1-\frac{1}{n+1}<\infty
\end{aligned}
$$

$f_{n} \in L^{1}\left(\mathbb{R}^{+}\right), L^{2}\left(\mathbb{R}^{+}\right)$. Let $k, n \in \mathbb{Z}^{+}$with $k \leq n$. Since

$$
\begin{aligned}
\left\|f_{k}-f_{n}\right\|_{1} & \equiv \int_{\mathbb{R}^{+}}\left|f_{k}-f_{n}\right| \mathrm{d} m=\int_{[k, n]} 1 /(x+1) \mathrm{d} m=\int_{k}^{n} 1 /(x+1) \mathrm{d} m \\
& =\ln (n+1)-\ln (k+1) \longrightarrow \infty \quad \text { as } n \longrightarrow \infty, \\
\left\|f_{k}-f_{n}\right\|_{2}^{2} & \equiv \int_{\mathbb{R}^{+}}\left|f_{k}-f_{n}\right|^{2} \mathrm{~d} m=\int_{[k, n]} 1 /(x+1)^{2} \mathrm{~d} m=\int_{k}^{n} 1 /(x+1)^{2} \mathrm{~d} m \\
& =1 /(k+1)-1 /(n+1) \leq 1 /(k+1) \quad \forall n \geq k,
\end{aligned}
$$

the sequence f_{1}, f_{2}, \ldots is not Cauchy in $L^{1}\left(\mathbb{R}^{+}\right)$and is Cauchy in $L^{2}\left(\mathbb{R}^{+}\right)$. Alternatively,

$$
f_{n} \longrightarrow f \equiv 1 /(1+x)
$$

pointwise. Since $f \notin L^{1}\left(\mathbb{R}^{+}\right)$, the sequence f_{1}, f_{2}, \ldots is not Cauchy in $L^{1}\left(\mathbb{R}^{+}\right)$. While $f \in L^{2}\left(\mathbb{R}^{+}\right)$, this cannot be used to conclude that the sequence f_{1}, f_{2}, \ldots is Cauchy in $L^{2}\left(\mathbb{R}^{+}\right)$.

Problem 4 (20pts)

Let $p, q \in[1, \infty]$ with $1 / p+1 / q=1$. For a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$, define

$$
\|f\|_{p, 1}=\|f\|_{p}+\left\|f^{\prime}\right\|_{p}
$$

(a) Show that this defines a norm on the vector space

$$
C^{1, p}(\mathbb{R}) \equiv\left\{f \in C^{1}(\mathbb{R}):\|f\|_{p, 1}<\infty\right\}
$$

Do not forget to justify why $C^{1, p}(\mathbb{R})$ is a vector space $\left(C^{1}(\mathbb{R})\right.$ is the space of differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R})$.
(b) Show that

$$
|f(x)-f(y)| \leq\left\|f^{\prime}\right\|_{p}|x-y|^{1 / q}, \quad\left|f(x)-\frac{1}{2} \int_{x-1}^{x+1} f(y) \mathrm{d} y\right| \leq\left\|f^{\prime}\right\|_{p}, \quad\|f\|_{\infty} \leq\|f\|_{p, 1}
$$

for all $f \in C^{1, p}(\mathbb{R})$ and $x, y \in \mathbb{R}$ (cases with $p, q=\infty$ may require separate treatment).
(c) Let $f_{1}, f_{2}, \ldots \in C^{1, p}(\mathbb{R})$ be a Cauchy sequence with respect to the norm $\|\cdot\|_{p, 1}$. Show that it converges uniformly to a bounded continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$.
(a; 5pts) If $f \in C^{1, p}(\mathbb{R})$ and $c \in \mathbb{R}$, then

$$
\begin{equation*}
\|c f\|_{p, 1} \equiv\|c f\|_{p}+\left\|c f^{\prime}\right\|_{p}=|c|\|f\|_{p}+|c|\left\|f^{\prime}\right\|_{p} \equiv|c|\|f\|_{p, 1}<\infty ; \tag{1}
\end{equation*}
$$

the equality in the middle holds because $\|\cdot\|_{p}$ satisfies this on $\mathcal{L}^{p}(X)$. Thus, $c f \in C^{1, p}(\mathbb{R})$. If $f, g \in C^{1, p}(\mathbb{R})$,

$$
\begin{equation*}
\|f+g\|_{p, 1} \equiv\|f+g\|_{p}+\left\|f^{\prime}+g^{\prime}\right\|_{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)+\left(\left\|f^{\prime}\right\|_{p}+\left\|g^{\prime}\right\|_{p}\right) \equiv\|f\|_{p, 1}+\|g\|_{p, 1} \tag{2}
\end{equation*}
$$

the inequality in the middle holds by Minkowski's inequality. Thus, $f+g \in C^{1, p}(\mathbb{R})$. We conclude that $C^{1, p}(\mathbb{R})$ is a vector space. By (1) and (2), the function

$$
\begin{equation*}
\|\cdot\|_{p}: C^{1, p}(\mathbb{R}) \longrightarrow \mathbb{R}^{\geq 0} \tag{3}
\end{equation*}
$$

satisfies two of the three properties required of a norm. If $f \in C^{1, p}(\mathbb{R})$ and $\|f\|_{p, 1}=0$, then $\|f\|_{p}=0$ and so $f=0$ a.e. on \mathbb{R}. Since f is continuous (because it is differentiable), it follows that $f=0$ and so the map (3) also satisfies the remaining property required of a norm.
(b; 10pts) Let $f \in C^{1, p}(\mathbb{R})$ and $x, y \in \mathbb{R}$ with $x<y$. By the Fundamental Theorem of Calculus and Hölder's Inequality,

$$
\begin{aligned}
|f(y)-f(x)| \leq\left|\int_{x}^{y} f^{\prime}(t) \mathrm{d} t\right| & \leq \int_{x}^{y}\left|f^{\prime}(t)\right| \mathrm{d} t=\int_{[x, y]}\left|f^{\prime}\right| \mathrm{d} m \equiv\left\|f^{\prime} \cdot \mathbb{1}_{[x, y]}\right\|_{1} \\
& \leq\left\|f^{\prime}\right\|_{p}\left\|\mathbb{1}_{[x, y]}\right\|_{q}=\left\|f^{\prime}\right\|_{p}|x-y|^{1 / q}
\end{aligned}
$$

This establishes the first inequality. Using it, we obtain

$$
\begin{aligned}
\left|f(x)-\frac{1}{2} \int_{x-1}^{x+1} f(y) \mathrm{d} y\right| & =\frac{1}{2}\left|\int_{x-1}^{x+1}(f(x)-f(y)) \mathrm{d} y\right| \leq \frac{1}{2} \int_{x-1}^{x+1}|f(x)-f(y)| \mathrm{d} y \\
& \leq \frac{1}{2} \int_{x-1}^{x+1}\left\|f^{\prime}\right\|_{p}|x-y|^{1 / q} \mathrm{~d} y=\left\|f^{\prime}\right\|_{p} \int_{0}^{1} r^{1 / q} \mathrm{~d} r=\left\|f^{\prime}\right\|_{p} \cdot \frac{q}{q+1} \leq\left\|f^{\prime}\right\|_{p}
\end{aligned}
$$

This establishes the second inequality. Using it and Hölder's Inequality, we obtain

$$
\begin{aligned}
|f(x)| & \leq\left|f(x)-\frac{1}{2} \int_{x-1}^{x+1} f(y) \mathrm{d} y\right|+\left|\frac{1}{2} \int_{x-1}^{x+1} f(y) \mathrm{d} y\right| \leq\left\|f^{\prime}\right\|_{p}+\frac{1}{2}\left\|f \cdot \mathbb{1}_{[x-1, x+1]}\right\|_{1} \\
& \leq\left\|f^{\prime}\right\|_{p}+\frac{1}{2}\|f\|_{p}\left\|\left.\mathbb{1}_{[x-1, x+1]}\right|_{q}=\right\| f^{\prime}\left\|_{p}+\frac{1}{2}\right\| f\left\|_{p} \cdot 2^{1 / q} \leq\right\| f^{\prime}\left\|_{p}+\right\| f\left\|_{p} \equiv\right\| f \|_{p, 1} .
\end{aligned}
$$

This establishes the third inequality.
(c; $\mathbf{5} \mathbf{p t s}$) By the last inequality in (b) applied to the continuous functions f_{n} and $f_{m}-f_{n}$, each function f_{n} is bounded and the sequence f_{1}, f_{2}, \ldots is Cauchy with respect to the sup-norm on the space of continuous functions. In particular, the sequence $f_{1}(x), f_{2}(x), \ldots$ is Cauchy in \mathbb{R} for every $x \in \mathbb{R}$ and thus converges to some $f(x) \in \mathbb{R}$. This defines a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ so that $f_{n} \longrightarrow f$ pointwise on \mathbb{R}. Since the sequence f_{1}, f_{2}, \ldots is Cauchy with respect to the sup-norm, this convergence is uniform. Since each function f_{n} is continuous and bounded, it follows that so is f.

