
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 6

Problem 1 (8pts)

Let (X,F , µ) be a measure space and fn : X−→R be a sequence of measurable functions converging

almost everywhere to a function f . Suppose

lim sup
m−→∞

(
∫

X

(

sup
n≤m

|fn|
)

dµ

)

< ∞. (1)

Show that

∫

fdµ = lim
n−→∞

(
∫

fndµ

)

.

The sequence of measurable functions

gm ≡ sup
n≤m

|fn|, gm(x) = sup
{

|fn(x)| : n=1, . . . ,m
}

,

is non-decreasing and thus converges to some measurable function g : X−→R. Furthermore, gm≥0
for all m. By the Monotone Convergence Theorem and (1),

∫

X

g dµ ≡

∫

X

(

lim
m−→∞

gm
)

dµ = lim
m−→∞

(
∫

X

gmdµ

)

= lim sup
m−→∞

(
∫

X

(

sup
n≤m

|fn|
)

dµ

)

< ∞.

Thus, g∈L1(X). By the definition of g, |fn|≤g for all n. The desired statement now follows from
the Dominated Convergence Theorem.

Problem 2 (17pts)

Let (X,F , µ) be a measure space. Suppose f1, f2, . . . : X−→R is a sequence of measurable functions

converging a.e. to a measurable function f and g1, g2, . . . : X −→ R is a sequence of integrable

functions converging a.e. to an integrable function g such that

|fn| ≤ gn a.e. and

∫

X

gdµ = lim
n−→∞

(
∫

X

gndµ

)

. (2)

Show that
∫

X

fdµ = lim
n−→∞

(
∫

X

fndµ

)

. (3)

Suppose first that fn≥0 for all n. By Fatou’s Lemma,

∫

X

f dµ =

∫

X

(

lim
n−→∞

fn
)

dµ =

∫

X

(

lim inf
n−→∞

fn
)

dµ ≤ lim inf
n−→∞

(
∫

X

fndµ

)

. (4)

For each n∈Z
+, let hn=gn−fn. This function is not defined for x∈X such that fn(x)=gn(x)=∞;

we set hn(x)=0 for such x. Since gn∈L1(X), the set of such x has measure 0 and thus does not



affect any statements below. By the first condition in (2), hn≥0 a.e. Thus, Fatou’s Lemma applies
and gives

∫

X

(

lim inf
n−→∞

(gn−fn)
)

dµ≡

∫

X

(

lim inf
n−→∞

hn
)

dµ ≤ lim inf
n−→∞

(
∫

X

hndµ

)

= lim inf
n−→∞

(
∫

X

(gn−fn)dµ

)

. (5)

Using fn−→f , gn−→g, and g∈L1(X), we obtain

∫

X

(

lim inf
n−→∞

(gn−fn)
)

dµ =

∫

X

(g−f)dµ =

∫

X

g dµ−

∫

X

fdµ . (6)

Using gn∈L1(X) and the second condition in (2), we obtain

lim inf
n−→∞

(
∫

X

(gn−fn)dµ

)

= lim inf
n−→∞

(
∫

X

gndµ−

∫

X

fndµ

)

= lim inf
n−→∞

(
∫

X

gndµ

)

− lim sup
n−→∞

(
∫

X

fndµ

)

=

∫

X

g dµ− lim sup
n−→∞

(
∫

X

fndµ

)

.

(7)

Combining (5)-(7), we find that

∫

X

g dµ−

∫

X

fdµ ≤

∫

X

g dµ− lim sup
n−→∞

(
∫

X

fndµ

)

.

Since g∈L1(X), this gives
∫

X

fdµ ≥ lim sup
n−→∞

(
∫

X

fndµ

)

.

Combining this with (4), we obtain

lim sup
n−→∞

(
∫

X

fndµ

)

≤

∫

X

fdµ ≤ lim inf
n−→∞

(
∫

X

fndµ

)

≤ lim sup
n−→∞

(
∫

X

fndµ

)

.

Thus, all inequalities above are equalities, which establishes (3) if fn≥0 for all n.

In the general case, let hn =fn+gn. This function is not defined for x∈X such that fn(x)=−∞
and gn(x) = ∞ (at the same time); we set hn(x) = 0 for such x. Since gn ∈ L1(X), the set of
such x has measure 0 and thus does not affect any statements below. Since fn−→f , gn−→g, and
gn, g∈L1(X), it follows that

hn −→ f+g a.e., 2gn−→2g a.e., 2gn, 2g∈L1(X).

By (2),

0 ≤ hn ≤ 2gn a.e. and

∫

X

(2g)dµ = lim
n−→∞

(
∫

X

(2gn)dµ

)

.

From the conclusion in the previous paragraph, we thus obtain

∫

X

(f+g)dµ = lim
n−→∞

(
∫

X

hndµ

)

= lim
n−→∞

(
∫

X

(fn+gn)dµ

)

. (8)
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Since gn, g∈L1(X),

∫

X

(f+g)dµ =

∫

X

f dµ+

∫

X

g dµ,

lim
n−→∞

(
∫

X

(fn+gn)dµ

)

= lim
n−→∞

(
∫

X

fndµ+

∫

X

gndµ

)

= lim
n−→∞

(
∫

X

fndµ

)

+ lim
n−→∞

(
∫

X

gndµ

)

= lim
n−→∞

(
∫

X

fndµ

)

+

∫

X

g dµ.

Combining these two equations with (8), we obtain

∫

X

f dµ+

∫

X

g dµ = lim
n−→∞

(
∫

X

fndµ

)

+

∫

X

g dµ .

Since g∈L1(X), this establishes (3).

Problem 3 (10pts)

For each n∈Z
+, define

fn, gn : [0,∞) −→ R, fn(x) =
n2xe−n2x2

1+x
, gn(x) =

xe−x2

1+x/n
.

(a) Find

∫ ∞

0

(

lim
n−→∞

fn
)

dx and

∫ ∞

0

(

lim
n−→∞

gn
)

dx.

(b) Show that

lim
n−→∞

(
∫ ∞

0
fndx

)

= lim
n−→∞

(
∫ ∞

0
gndx

)

and find this limit.

(c) Show that there exists no Lebesgue integrable function F : [0,∞) −→ [0,∞] such that fn≤F
a.e. on [0,∞] for all n∈Z

+.

(a; 3pts) Since fn(0)=0 for all n, fn(0)−→0. Since en
2x2

with x>0 dominates every polynomial
in n as n−→∞, fn(x)−→0 for all x>0 as well. It is immediate that

gn(x) −→
xe−x2

1+0
= xe−x2

as n−→∞.

Thus,

∫ ∞

0

(

lim
n−→∞

fn
)

dx =

∫ ∞

0
0dx = 0,

∫ ∞

0

(

lim
n−→∞

gn
)

dx =

∫ ∞

0
xe−x2

dx = −
1

2
e−x2

∣

∣

∣

∞

0
=

1

2
.
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(b; 4pts) By the change of variables x−→nx,

∫ ∞

0
fndx =

∫ ∞

0

(nx)e−(nx)2

1+(nx)/n
d(nx) =

∫ n·∞

n·0

xe−x2

1+x/n
dx =

∫ ∞

0
gndx .

This implies that the two limits in the statement are the same. Since gn(x)≥0 and gn(x)րxe−x2

for all x∈ [0,∞),

lim
n−→∞

(
∫ ∞

0
gndx

)

= lim
n−→∞

(
∫

[0,∞)
gndm

)

=

∫

[0,∞)

(

lim
n−→∞

gn
)

dm =

∫

[0,∞)
xe−x2

dm =

∫ ∞

0
xe−x2

dx =
1

2
;

the second equality above holds by the Monotone Convergence Theorem.

(c; 3pts) Suppose such F exists. Since fn≥0, the assumption implies that |fn|≤F for all n∈Z
+.

By the Dominated Convergence Theorem and part (a), we would then have

lim
n−→∞

(
∫ ∞

0
fndx

)

=

∫ ∞

0

(

lim
n−→∞

fn
)

dx = 0.

However, this contradicts part (b).

Problem 4 (15pts)

Show that the function

f : [0,∞) −→ R, f(x) =

{

sinx
x

, if x∈R
+;

0, if x=1;

has an improper Riemann integral over [0,∞), but is not Lebesgue integrable on [0,∞).

The function f has an improper Riemann integral over [0,∞) if the limit

∫ ∞

0
f(x)dx ≡ lim

a−→∞

∫ a

0
f(x)dx

exists. It is Lebesgue integrable on [0,∞) if the limits

∫

[0,∞)
f±dm = lim

n−→∞

∫

[0,n]
f±dm = lim

n−→∞

∫ n

0
f±dx

exist (and are finite), where f± : [0,∞)−→ [0,∞) are given by

f+(x) =

{

| sinx|
x

, if x∈ [π(n−1), πn] for some n∈Z
+−2Z+;

0, otherwise;

f−(x) =

{

| sinx|
x

, if x∈ [π(n−1), πn] for some n∈2Z+;

0, otherwise.
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For each n∈Z
+, let

an =

∫ πn

π(n−1)

| sinx|

x
dx ≥ 0.

Since | sin(x)|≥1/2 if x∈ [π(n−1)+π/6, πn−π/6],

an ≥
1

2·πn
·
2π

3
=

1

3n
.

Thus,

lim
n−→∞

∫

[0,n]
f+dm ≥

∞
∑

n=1

1

3n
=

1

3

∞
∑

n=1

1

n
= ∞,

because the harmonic series diverges (by the Integral Test for the infinite series). We conclude f
is not Lebesgue integrable.

Since | sin(x)|≤1,

an ≤

∫ πn

π(n−1)

1

x
dx ≤

1

n−1
−→ 0 as n −→ 0.

Since | sin(x+π)|= | sin(x)|,

an =

∫ πn

π(n−1)

| sin(x+π)|

x
dx ≥

∫ πn

π(n−1)

| sin(x+π)|

x+π
dx =

∫ π(n+1)

πn

| sin(x+π)|

x
dx = an+1 .

By the Alternating Series, the infinite series

∞
∑

n=1

(−1)n−1an ≡ lim
k−→∞

k
∑

n=1

(−1)n−1an = lim
k−→∞

∫ πk

0

sinx

x
dx

thus converges. Since

∫ π(k−1)

0

sinx

x
dx ≤

∫ a

0

sinx

x
dx ≤

∫ πk

0

sinx

x
dx if a∈ [π(k−1), πk], k∈Z

+−2Z+,

∫ πk

0

sinx

x
dx ≤

∫ a

0

sinx

x
dx ≤

∫ π(k−1)

0

sinx

x
dx if a∈ [π(k−1), πk], k∈2Z+ ,

it follows that
∫ ∞

0
f(x)dx ≡ lim

a−→∞

∫ a

0
f(x)dx = lim

k−→∞

k
∑

n=1

(−1)n−1an

exists. Thus, f has an improper Riemann integral over [0,∞).
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