MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 5

Problem 1 (5pts)

Let (X, \mathcal{F}, μ) be a measure space and $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable functions. Show that

$$
\int_{X}\left(\sum_{n=1}^{\infty} f_{n}\right) \mathrm{d} \mu=\sum_{n=1}^{\infty}\left(\int_{X} f_{n} \mathrm{~d} \mu\right)
$$

The sequence $g_{k} \equiv \sum_{n=1}^{k} f_{n}$ of functions is increasing with k. Each of these functions is measurable, being a finite linear of combination of measurable functions. By the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{X}\left(\sum_{n=1}^{\infty} f_{n}\right) \mathrm{d} \mu & \equiv \int_{X}\left(\lim _{k \longrightarrow \infty} \sum_{n=1}^{k} f_{n}\right) \mathrm{d} \mu=\int_{X}\left(\lim _{k \longrightarrow \infty} g_{k}\right) \mathrm{d} \mu=\lim _{k \longrightarrow \infty}\left(\int_{X} g_{k} \mathrm{~d} \mu\right) \\
& =\lim _{k \longrightarrow \infty}\left(\int_{X}\left(\sum_{n=1}^{k} f_{n}\right) \mathrm{d} \mu\right)=\lim _{k \longrightarrow \infty} \sum_{n=1}^{k}\left(\int_{X} f_{n} \mathrm{~d} \mu\right) \equiv \sum_{n=1}^{\infty}\left(\int_{X} f_{n} \mathrm{~d} \mu\right) .
\end{aligned}
$$

The Monotone Convergence Theorem is used for the last equality on the first line above. The integral and finite sum on the second line can be switched because we have shown that

$$
\int_{X}(f+g) \mathrm{d} \mu=\int_{X} f+\int_{X} g
$$

for measurable functions $f, g: X \longrightarrow \overline{\mathbb{R}}$.

Problem 2 (10pts)

Let (X, \mathcal{F}, μ) be a measure space and $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable functions decreasing almost everywhere to $f: X \longrightarrow[0, \infty]$. Suppose $\int_{X} f_{1} \mathrm{~d} \mu<\infty$. Show that

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu=\lim _{n \longrightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu \tag{1}
\end{equation*}
$$

Let $X^{\prime} \subset X$ be the subset of points such that $f_{n}(x)$ does not converge to $f(x), X_{\infty} \subset X$ be the subset of points such that $f_{1}(x)=\infty$, and

$$
Y=X-X^{\prime}-X_{\infty}
$$

By the assumption, $X^{\prime} \in \mathcal{F}$ and $\mu\left(\mathcal{F}^{\prime}\right)=0$. Since f is measurable, $X_{\infty} \in \mathcal{F}$. Since $f_{1} \in \mathcal{F}^{1}(X)$, $\mu\left(X_{\infty}\right)=0$. Thus, $Y \in \mathcal{F}$ and

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu=\int_{Y} f \mathrm{~d} \mu+\int_{X^{\prime} \cup X_{\infty}} f \mathrm{~d} \mu=\int_{Y} f \mathrm{~d} \mu, \quad \int_{X} f_{n} \mathrm{~d} \mu=\int_{Y} f_{n} \mathrm{~d} \mu+\int_{X^{\prime} \cup X_{\infty}} f_{n} \mathrm{~d} \mu=\int_{Y} f_{n} \mathrm{~d} \mu \tag{2}
\end{equation*}
$$

because $\mu\left(X^{\prime} \cup X_{\infty}\right)=0$. Let $g_{n}=f_{1}-f_{n}$ on Y and $g_{n}=0$ on $X^{\prime} \cup X_{\infty}$. These functions are measurable, being differences of measurable functions. The sequence of these functions is increasing and $g_{n} \geq 0$ because the sequence f_{n} is decreasing. By the Monotone Convergence Theorem,

$$
\begin{equation*}
\int_{Y}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} \mu=\lim _{n \longrightarrow \infty}\left(\int_{Y} g_{n} \mathrm{~d} \mu\right) . \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \int_{Y}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} \mu=\int_{Y}\left(\lim _{n \longrightarrow \infty}\left(f_{1}-f_{n}\right)\right) \mathrm{d} \mu=\int_{Y}\left(f_{1}-\lim _{n \longrightarrow \infty} f\right) \mathrm{d} \mu=\int_{Y} f_{1} \mathrm{~d} \mu-\int_{Y}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} \mu \tag{4}\\
& \lim _{n \longrightarrow \infty}\left(\int_{Y} g_{n} \mathrm{~d} \mu\right)=\lim _{n \longrightarrow \infty}\left(\int_{Y}\left(f_{1}-f_{n}\right) \mathrm{d} \mu\right)=\lim _{n \longrightarrow \infty}\left(\int_{Y} f_{1} \mathrm{~d} \mu-\int_{Y} f_{n} \mathrm{~d} \mu\right) \\
&=\int_{Y} f_{1} \mathrm{~d} \mu-\lim _{n \longrightarrow \infty}\left(\int_{Y} f_{n} \mathrm{~d} \mu\right) . \tag{5}
\end{align*}
$$

By (3)-(5),

$$
\int_{Y} f_{1} \mathrm{~d} \mu-\int_{Y}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} \mu=\int_{Y} f_{1} \mathrm{~d} \mu-\lim _{n \longrightarrow \infty}\left(\int_{Y} f_{n} \mathrm{~d} \mu\right) .
$$

Since $\int_{Y} f_{1} \mathrm{~d} \mu=\int_{X} f_{1} \mathrm{~d} \mu<\infty$, this gives

$$
\int_{Y} f \mathrm{~d} \mu \equiv \int_{Y}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \longrightarrow \infty}\left(\int_{Y} f_{n} \mathrm{~d} \mu\right)
$$

Along with (2), this implies (1).

Problem 3 (10pts)

(a) Let (X, \mathcal{F}, μ) be a measure space and $f: X \longrightarrow[0, \infty)$ be a measurable function. For $n \in \mathbb{Z}$, define

$$
E_{n}=\left\{x \in X: 2^{n}<f(x) \leq 2^{n+1}\right\} .
$$

Show that f is integrable on X if and only if $\sum_{n \in \mathbb{Z}} 2^{n} \mu\left(E_{n}\right)<\infty$.
(b) Let $a \in \mathbb{R}$. Use (a) to show that the function $f(x)=x^{-a}$ is Lebesgue integrable on $(0,1)$ if and only if $a<1$.
(a) Since f is measurable, $E_{n} \in \mathcal{F}$ for every n. By the definition of E_{n},

$$
2^{n}<\left.f\right|_{E_{n}} \leq\left. 2^{n+1} \quad \Longrightarrow \quad 2^{n} \mathbb{1}_{E_{n}}\right|_{E_{n}}<\left.f\right|_{E_{n}} \leq\left. 2^{n+1} \mathbb{1}_{E_{n}}\right|_{E_{n}}
$$

Since $E_{n} \cap E_{n^{\prime}}=\emptyset$ for all $n \neq n^{\prime}$, it follows that

$$
\begin{gathered}
0 \leq \sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}} \leq f \leq \sum_{n \in \mathbb{Z}} 2^{n+1} \mathbb{1}_{E_{n}}=2 \sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}} \\
0 \leq \int_{X}\left(\sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}}\right) \mathrm{d} \mu \leq \int_{X} f \mathrm{~d} \mu \leq \int_{X}\left(2 \sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}}\right) \mathrm{d} \mu=2 \int_{X}\left(\sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}}\right) \mathrm{d} \mu
\end{gathered}
$$

By Problem 1,

$$
\int_{X}\left(\sum_{n \in \mathbb{Z}} 2^{n} \mathbb{1}_{E_{n}}\right) \mathrm{d} \mu=\sum_{n \in \mathbb{Z}} \int_{X} 2^{n} \mathbb{1}_{E_{n}} \mathrm{~d} \mu=\sum_{n \in \mathbb{Z}} 2^{n} \int_{X} \mathbb{1}_{E_{n}} \mathrm{~d} \mu=\sum_{n \in \mathbb{Z}} 2^{n} \mu\left(E_{n}\right)
$$

Thus,

$$
0 \leq \sum_{n \in \mathbb{Z}} 2^{n} \mu\left(E_{n}\right) \leq \int_{X} f \mathrm{~d} \mu \leq 2 \sum_{n \in \mathbb{Z}} 2^{n} \mu\left(E_{n}\right)
$$

This establishes the claim.
(b) If $a>0$, then

$$
\begin{gathered}
E_{n}=\left\{x \in(0,1): 2^{-(n+1) / a} \leq x<2^{-n / a}\right\} \\
\sum_{n \in \mathbb{Z}} 2^{n} \mu\left(E_{n}\right)=\sum_{n=0}^{\infty} 2^{n}\left(2^{-n / a}-2^{-(n+1) / a}\right)=\left(1-2^{-1 / a}\right) \sum_{n=0}^{\infty} 2^{n(1-1 / a)}
\end{gathered}
$$

The last sum above is a geometric series. It converges if $a \in(0,1)$ and diverges if $a \geq 1$. By part (a), this implies that x^{-a} is integrable on $(0,1)$ if $a \in(0,1)$ and is not integrable if $a \geq 1$. If $a \leq 0$, then $0 \leq x^{-a} \leq x^{-1 / 2}$ on $(0,1)$ and thus x^{-a} is also integrable.

Problem 4 (5pts)

Let (X, \mathcal{F}, μ) be a measure space and $f: X \longrightarrow \overline{\mathbb{R}}$ be a measurable function which is integrable on X. Show that $f \geq 0$ almost everywhere on X if and only if $\int_{E} f \mathrm{~d} \mu \geq 0$ for all $E \in \mathcal{F}$.

Let $X_{-}=\{x \in X: f(x)<0\}$. Since f is measurable, $X^{\prime} \in \mathcal{F}$. If $E \in \mathcal{F}$, then $E \cap X_{-}, E-X_{-} \in \mathcal{F}$ and

$$
\int_{E} f \mathrm{~d} \mu=\int_{E-X_{-}} f \mathrm{~d} \mu+\int_{E \cap X_{-}} f \mathrm{~d} \mu
$$

The middle integral above is nonnegative because $\left.f\right|_{E-X_{-}} \geq 0$. If $\mu\left(X_{-}\right)=0$ (i.e. $f \geq 0$ almost everywhere on X), then $\mu\left(E \cap X^{\prime}\right)=0$ and the last integral above vanishes. Thus, $\int_{E} f \mathrm{~d} \mu \geq 0$ for every $E \in \mathcal{F}$.

Suppose $\int_{E} f \mathrm{~d} \mu \geq 0$ for every $E \in \mathcal{F}$. We need to show that $\mu\left(X_{-}\right)=0$. In principle, this is the special case of the first statement of Theorem 4.22 obtained by replacing (f, g) by $(0, f)$. Below is a direct proof. For each $n \in \mathbb{Z}^{+}$, let

$$
E_{n}=\{x \in X: x \leq-1 / n\}
$$

Since $f(x) \leq-1 / n$ on E_{n},

$$
0 \leq \int_{E_{n}} f \mathrm{~d} \mu \leq \int_{E_{n}}(-1 / n) \mathrm{d} \mu=-\mu\left(E_{n}\right) / n
$$

Thus, $\mu\left(E_{n}\right)=0$ for every $n \in \mathbb{Z}^{+}$and so

$$
\mu\left(X_{-}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=0
$$

Problem 5 (10pts)

Show that the limit $\lim _{n \longrightarrow \infty} \int_{\mathbb{R}} x^{n} \mathrm{e}^{-n|x|} \mathrm{d} m \quad$ exists and find it.
The function $x \longrightarrow x \mathrm{e}^{-x}$ reaches the maximum at $x=1$ and this maximum is $e^{-1}<1$. Thus,

$$
\left|x^{n} \mathrm{e}^{-n|x|}\right|=\left(|x| \mathrm{e}^{-|x|}\right)^{n} \leq|x| \mathrm{e}^{-|x|} .
$$

Since

$$
\int_{\mathbb{R}}|x| \mathrm{e}^{-|x|} \mathrm{d} m=2 \int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x=2<\infty
$$

the Dominated Convergence Theorem says

$$
\lim _{n \longrightarrow \infty} \int_{\mathbb{R}} x^{n} \mathrm{e}^{-n|x|} \mathrm{d} m=\int_{\mathbb{R}}\left(\lim _{n \longrightarrow \infty}\left(x^{n} \mathrm{e}^{-n|x|}\right)\right) \mathrm{d} m=\int_{\mathbb{R}} 0 \mathrm{~d} m=0 .
$$

Below is a direct proof of this conclusion.
Since $|x| \mathrm{e}^{-|x|} \leq \mathrm{e}^{-1}$,

$$
\left|x^{n} \mathrm{e}^{-n|x|}\right|=\left(|x| \mathrm{e}^{-|x|}\right)^{n} \leq \mathrm{e}^{1-n}|x| \mathrm{e}^{-|x|} .
$$

Thus,

$$
\left|\int_{\mathbb{R}} x^{n} \mathrm{e}^{-n|x|} \mathrm{d} m\right| \leq \int_{\mathbb{R}}\left|x^{n} \mathrm{e}^{-n|x|}\right| \mathrm{d} m \leq \int_{\mathbb{R}}\left(\mathrm{e}^{1-n}|x| \mathrm{e}^{-|x|}\right) \mathrm{d} m=\mathrm{e}^{1-n} \int_{\mathbb{R}}\left(|x| \mathrm{e}^{-|x|}\right) \mathrm{d} m=2 \mathrm{e}^{1-n} .
$$

Thus, $\lim _{n \longrightarrow \infty} \int_{\mathbb{R}} x^{n} \mathrm{e}^{-n|x|} \mathrm{d} m=0$.

