
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 5

Problem 1 (5pts)

Let (X,F , µ) be a measure space and fn : X −→ [0,∞] be a sequence of measurable functions.
Show that

∫

X

( ∞
∑

n=1

fn

)

dµ =
∞
∑

n=1

(
∫

X
fndµ

)

.

The sequence gk ≡
k

∑

n=1

fn of functions is increasing with k. Each of these functions is measur-

able, being a finite linear of combination of measurable functions. By the Monotone Convergence
Theorem,

∫

X

( ∞
∑

n=1

fn

)

dµ ≡

∫

X

(

lim
k−→∞

k
∑

n=1

fn

)

dµ =

∫

X

(

lim
k−→∞

gk
)

dµ = lim
k−→∞

(
∫

X
gkdµ

)

= lim
k−→∞

(
∫

X

( k
∑

n=1

fn

)

dµ

)

= lim
k−→∞

k
∑

n=1

(
∫

X
fndµ

)

≡
∞
∑

n=1

(
∫

X
fndµ

)

.

The Monotone Convergence Theorem is used for the last equality on the first line above. The
integral and finite sum on the second line can be switched because we have shown that

∫

X
(f+g)dµ =

∫

X
f +

∫

X
g

for measurable functions f, g : X−→R.

Problem 2 (10pts)

Let (X,F , µ) be a measure space and fn : X −→ [0,∞] be a sequence of measurable functions

decreasing almost everywhere to f : X−→ [0,∞]. Suppose

∫

X
f1dµ<∞. Show that

∫

X
fdµ = lim

n−→∞

∫

X
fndµ . (1)

Let X ′ ⊂X be the subset of points such that fn(x) does not converge to f(x), X∞ ⊂X be the
subset of points such that f1(x)=∞, and

Y = X −X ′ −X∞ .

By the assumption, X ′ ∈ F and µ(F ′) = 0. Since f is measurable, X∞ ∈ F . Since f1 ∈ F1(X),
µ(X∞)=0. Thus, Y ∈F and

∫

X
fdµ =

∫

Y
fdµ+

∫

X′∪X∞

fdµ =

∫

Y
fdµ,

∫

X
fndµ =

∫

Y
fndµ+

∫

X′∪X∞

fndµ =

∫

Y
fndµ (2)



because µ(X ′∪X∞)=0. Let gn=f1−fn on Y and gn=0 onX ′∪X∞. These functions are measurable,
being differences of measurable functions. The sequence of these functions is increasing and gn≥0
because the sequence fn is decreasing. By the Monotone Convergence Theorem,

∫

Y

(

lim
n−→∞

gn
)

dµ = lim
n−→∞

(
∫

Y
gndµ

)

. (3)

On the other hand,
∫

Y

(

lim
n−→∞

gn
)

dµ =

∫

Y

(

lim
n−→∞

(f1−fn)
)

dµ =

∫

Y

(

f1− lim
n−→∞

f
)

dµ =

∫

Y
f1dµ−

∫

Y

(

lim
n−→∞

fn
)

dµ (4)

lim
n−→∞

(
∫

Y
gndµ

)

= lim
n−→∞

(
∫

Y
(f1−fn)dµ

)

= lim
n−→∞

(
∫

Y
f1dµ−

∫

Y
fndµ

)

=

∫

Y
f1dµ− lim

n−→∞

(
∫

Y
fndµ

)

.

(5)

By (3)-(5),
∫

Y
f1dµ−

∫

Y

(

lim
n−→∞

fn
)

dµ =

∫

Y
f1dµ− lim

n−→∞

(
∫

Y
fndµ

)

.

Since

∫

Y
f1dµ=

∫

X
f1dµ<∞, this gives

∫

Y
fdµ ≡

∫

Y

(

lim
n−→∞

fn
)

dµ = lim
n−→∞

(
∫

Y
fndµ

)

.

Along with (2), this implies (1).

Problem 3 (10pts)

(a) Let (X,F , µ) be a measure space and f : X −→ [0,∞) be a measurable function. For n ∈ Z,
define

En =
{

x∈X : 2n<f(x)≤2n+1
}

.

Show that f is integrable on X if and only if
∑

n∈Z

2nµ(En) < ∞.

(b) Let a∈R. Use (a) to show that the function f(x)=x−a is Lebesgue integrable on (0, 1) if and
only if a<1.

(a) Since f is measurable, En∈F for every n. By the definition of En,

2n < f
∣

∣

En

≤ 2n+1 =⇒ 2n1En

∣

∣

En

< f
∣

∣

En

≤ 2n+1
1En

∣

∣

En

.

Since En∩En′ =∅ for all n 6=n′, it follows that

0 ≤
∑

n∈Z

2n1En
≤ f ≤

∑

n∈Z

2n+1
1En

= 2
∑

n∈Z

2n1En
,

0 ≤

∫

X

(

∑

n∈Z

2n1En

)

dµ ≤

∫

X
fdµ ≤

∫

X

(

2
∑

n∈Z

2n1En

)

dµ = 2

∫

X

(

∑

n∈Z

2n1En

)

dµ.
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By Problem 1,
∫

X

(

∑

n∈Z

2n1En

)

dµ =
∑

n∈Z

∫

X
2n1En

dµ =
∑

n∈Z

2n
∫

X
1En

dµ =
∑

n∈Z

2nµ(En).

Thus,

0 ≤
∑

n∈Z

2nµ(En) ≤

∫

X
fdµ ≤ 2

∑

n∈Z

2nµ(En) .

This establishes the claim.

(b) If a>0, then

En =
{

x∈(0, 1) : 2−(n+1)/a≤x<2−n/a
}

,

∑

n∈Z

2nµ(En) =
∞
∑

n=0

2n
(

2−n/a−2−(n+1)/a
)

=
(

1−2−1/a
)

∞
∑

n=0

2n(1−1/a) .

The last sum above is a geometric series. It converges if a∈(0, 1) and diverges if a≥1. By part (a),
this implies that x−a is integrable on (0, 1) if a∈ (0, 1) and is not integrable if a≥1. If a≤0, then
0≤x−a≤x−1/2 on (0, 1) and thus x−a is also integrable.

Problem 4 (5pts)

Let (X,F , µ) be a measure space and f : X−→R be a measurable function which is integrable on X.
Show that f≥0 almost everywhere on X if and only if

∫

E fdµ≥0 for all E∈ F .

Let X−={x∈X : f(x)<0}. Since f is measurable, X ′∈F . If E∈F , then E∩X−, E−X−∈F and
∫

E
fdµ =

∫

E−X−

fdµ+

∫

E∩X−

fdµ .

The middle integral above is nonnegative because f |E−X−
≥ 0. If µ(X−) = 0 (i.e. f ≥ 0 almost

everywhere on X), then µ(E∩X ′)= 0 and the last integral above vanishes. Thus,
∫

E fdµ≥ 0 for
every E∈ F .

Suppose
∫

E fdµ≥ 0 for every E ∈ F . We need to show that µ(X−) = 0. In principle, this is the
special case of the first statement of Theorem 4.22 obtained by replacing (f, g) by (0, f). Below is
a direct proof. For each n∈Z

+, let

En =
{

x∈X : x≤−1/n
}

.

Since f(x)≤−1/n on En,

0 ≤

∫

En

fdµ ≤

∫

En

(−1/n)dµ = −µ(En)/n .

Thus, µ(En)=0 for every n∈Z
+ and so

µ(X−) = µ

( ∞
⋃

n=1

En

)

= 0.
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Problem 5 (10pts)

Show that the limit lim
n−→∞

∫

R

xne−n|x|dm exists and find it.

The function x−→xe−x reaches the maximum at x=1 and this maximum is e−1<1. Thus,

∣

∣xne−n|x|
∣

∣ =
(

|x|e−|x|
)n

≤ |x|e−|x| .

Since
∫

R

|x|e−|x|dm = 2

∫ ∞

0
xe−xdx = 2 < ∞ ,

the Dominated Convergence Theorem says

lim
n−→∞

∫

R

xne−n|x|dm =

∫

R

(

lim
n−→∞

(

xne−n|x|
)

)

dm =

∫

R

0dm = 0.

Below is a direct proof of this conclusion.

Since |x|e−|x|≤e−1,
∣

∣xne−n|x|
∣

∣ =
(

|x|e−|x|
)n

≤ e1−n|x|e−|x| .

Thus,

∣

∣

∣

∣

∫

R

xne−n|x|dm

∣

∣

∣

∣

≤

∫

R

∣

∣xne−n|x|
∣

∣dm ≤

∫

R

(

e1−n|x|e−|x|
)

dm = e1−n

∫

R

(

|x|e−|x|
)

dm = 2e1−n .

Thus, lim
n−→∞

∫

R

xne−n|x|dm=0.
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