MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 4

Problem 1 (10pts)

- (a) Write each $x \in [0,1]$ as $x = \sum_{n=1}^{\infty} \frac{a_n(x)}{2^n}$ with each $a_n(x) \in \{0,1\}$ taking the infinite expansion for all $x \neq 0$. Show that the function $a_n : [0,1] \longrightarrow \mathbb{R}$ is measurable.
- (b) Show that the function

$$f: [0,1] \longrightarrow \mathbb{R}, \qquad f(x) = \sum_{n=1}^{\infty} \frac{2a_n(x)}{3^n},$$

is measurable, injective, and takes values in the Cantor set C.

(a) For each $n \in \mathbb{Z}^+$, let

$$A_n = \bigcup_{k=1}^{2^{n-1}} \left(\frac{2k-1}{2^n}, \frac{2k}{2^n} \right].$$

The function $a_n: [0,1] \longrightarrow \mathbb{R}$ takes value 1 on A_n and 0 on $[0,1] - A_n$. Thus, $a_n = \mathbb{1}_{A_n}$. Since A_n is a finite union of intervals, $A_n \in \mathcal{M}$. Thus, the indicator function $\mathbb{1}_{A_n}$ is measurable.

(b) Since each function a_n is measurable, so is each function

$$f_k(x) \equiv \sum_{n=1}^k \frac{2}{3^n} a_n(x), \qquad k \in \mathbb{Z}^+,$$

because it is a finite linear combination of measurable functions. Since $f = \lim_{k \to \infty} f_k$, f is measurable as well.

If $x, x' \in [0, 1]$ and x < x', let

 $m = \min\left\{n \in \mathbb{Z}^+ : a_n(x) \neq a_{n'}(x)\right\} < \infty.$

Since x < x', $a_m(x) = 0$ and $a_m(x') = 1$. Thus,

$$f(x) \le \sum_{n=1}^{m-1} \frac{2a_n(x)}{3^n} + \sum_{n=m+1}^{\infty} \frac{2}{3^n} = \sum_{n=1}^{m-1} \frac{2a'_n(x)}{3^n} + \frac{1}{3^m} < f(x').$$

Thus, the function f is strictly increasing (and in particular injective). It takes values between f(0)=0 and f(1)=1.

Every point $y \in (0, 1]$ can be written uniquely as a non-terminating infinite sum

$$y = \sum_{n=1}^{\infty} \frac{b_n(y)}{3^n}, \qquad b_n(y) \in \{0, 1, 2\}.$$

If such y lies in the image of f, then $b_n(y) \neq 1$ for all $n \in \mathbb{Z}^+$. Since the Cantor set C consists of the points $y \in (0, 1]$ satisfying this condition along with the point 0, it follows that the image of f lies in C.

Problem 2 (17pts)

(a) Let $f: X \longrightarrow Y$ be any map, $S \subset 2^Y$, and $\mathcal{F}_Y \subset 2^Y$ be the σ -field generated by S (i.e. the smallest σ -field on Y containing S). Show that

$$\mathcal{F}_X \equiv \left\{ f^{-1}(B) \colon B \in \mathcal{F}_Y \right\}$$

is the σ -field generated by $\{f^{-1}(B): B \in \mathcal{S}\}$.

- (b) Let (X, \mathcal{F}, μ) be a measure space and $f: X \longrightarrow \mathbb{R}$ be a measurable function. Show that $f^{-1}(B) \in \mathcal{F}$ for every Borel subset $B \subset \mathbb{R}$ (i.e. $B \in \mathcal{B}$).
- (c) Give an example of a measurable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ and a measurable subset $E \subset \mathbb{R}$ (*i.e.* $E \in \mathcal{M}$) so that $f^{-1}(E)$ is not measurable.
- (d) Give an example of measurable functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ so that $f \circ g: \mathbb{R} \longrightarrow \mathbb{R}$ is not measurable.
- (a) Since $\mathcal{S} \subset \mathcal{F}_Y$,

$$f^{-1}(\mathcal{S}) \equiv \left\{ f^{-1}(B) \colon B \in \mathcal{S} \right\} \subset \mathcal{F}_X.$$

Since $Y \in \mathcal{F}_Y$ (because \mathcal{F}_Y is a σ -field on Y), $X = f^{-1}(Y) \in \mathcal{F}_X$. If $A \in \mathcal{F}_X$, then $A = f^{-1}(B)$ for some $B \in \mathcal{F}_Y$ and

$$X - A = X - f^{-1}(B) = f^{-1}(Y - B) \in \mathcal{F}_X$$

because $Y - B \in \mathcal{F}_Y$. If $A_1, A_2, \ldots \in \mathcal{F}_X$, then $A_1 = f^{-1}(B_1), A_2 = f^{-1}(B_2), \ldots$ for some $B_1, B_2, \ldots \in \mathcal{F}_Y$ and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} f^{-1}(B_n) = f^{-1}\left(\bigcup_{n=1}^{\infty} B_n\right) \in \mathcal{F}_X$$

because $\bigcup B_n \in \mathcal{F}_Y$. Thus, \mathcal{F}_X is a σ -field on X containing $f^{-1}(\mathcal{S})$.

Suppose \mathcal{F}'_X is any σ -field on X containing $f^{-1}(\mathcal{S})$. Let

$$\mathcal{F}_Y' = \left\{ B \in \mathcal{F}_Y \colon f^{-1}(B) \in \mathcal{F}_X' \right\}.$$

Since $f^{-1}(\mathcal{S}) \subset \mathcal{F}'_X$, $\mathcal{S} \subset \mathcal{F}'_Y$. Since $X = f^{-1}(Y) \in \mathcal{F}'_X$ (because \mathcal{F}'_X is a σ -field on X), $Y \in \mathcal{F}'_X$. If $B \in \mathcal{F}'_Y$, then $f^{-1}(B) \in \mathcal{F}'_X$, $Y - B \in \mathcal{F}_Y$, and

$$f^{-1}(Y-B) = X - f^{-1}(B) \in \mathcal{F}'_X;$$

thus, $Y - B \in \mathcal{F}'_Y$. If $B_1, B_2, \ldots \in \mathcal{F}'_Y$, then $f^{-1}(B_1), f^{-1}(B_2), \ldots \in \mathcal{F}'_X, \bigcup B_n \in \mathcal{F}_Y$, and

$$f^{-1}\left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(B_n) \in \mathcal{F}'_X;$$

thus, $\bigcup B_n \in \mathcal{F}'_Y$. We conclude that $\mathcal{F}'_Y \subset \mathcal{F}_Y$ is a σ -field on Y containing \mathcal{S} and thus $\mathcal{F}'_Y = \mathcal{F}_Y$. Therefore, $\mathcal{F}_X \subset \mathcal{F}'_X$ and so \mathcal{F}_X is the smallest σ -field on X containing \mathcal{S} .

(b) Since \mathcal{B} is the σ -field on \mathbb{R} generated by the collection \mathcal{S} of the intervals $I \subset \mathbb{R}$, part (a) implies that

$$f^{-1}(\mathcal{B}) \equiv \left\{ f^{-1}(B) \colon B \in \mathcal{B} \right\} \subset 2^X$$

is the σ -field on X generated by the set

$$f^{-1}(\mathcal{S}) \equiv \left\{ f^{-1}(I) \colon I \in \mathcal{S} \right\}.$$

Since f is a measurable function, $f^{-1}(\mathcal{S}) \subset \mathcal{F}$. Since \mathcal{F} is a σ -field on X, it follows that $f^{-1}(\mathcal{B}) \subset \mathcal{F}$.

(c) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined on [0,1] as in Problem 1(b) and given by f(x) = x for $x \notin [0,1]$. This function is measurable on $\mathbb{R} - [0,1]$ because it agrees with the continuous function f(x) = x there and is measurable on [0,1] by Problem 1(b). It is also injective because it is injective on $\mathbb{R} - [0,1]$, takes values in $\mathbb{R} - [0,1]$ there, and is injective on [0,1], and takes values in [0,1] there.

Let $B \subset [0,1]$ be a non-measurable subset, e.g. as constructed on p302, and E = f(B). Since E is contained in the Cantor set C, it is a null set and thus $E \in \mathcal{M}$. Since f is injective, $f^{-1}(E) = B$ is a non-measurable set.

(d) Let f and E be as in (c) and $g = \mathbb{1}_E : \mathbb{R} \longrightarrow \mathbb{R}$. Since E is a measurable set, its indicator function g is measurable. However, the function

$$h \equiv g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$$

is not measurable because

$$h^{-1}(1) = f^{-1}(g^{-1}(1)) = f^{-1}(E)$$

is not a measurable set.

Problem 3 (15pts)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Show that the set

$$E'_f \equiv \left\{ x \in \mathbb{R} \colon f \text{ is differentiable at } x \right\}$$

is measurable.

For $r \in \mathbb{R}^+$, we let $\mathbb{Q}_r^* \subset \mathbb{Q}$ denote the subset of rational numbers $q \neq 0$ such that |q| < r. Recall that

$$f'(x) = \lim_{y \to 0} \frac{f(x+y) - f(x)}{y}$$

if this limit exists (and is finite); the limit here is taken over $y \in \mathbb{R}^* \equiv \mathbb{R} - \{0\}$. We first note that it is sufficient to take this limit over $y \in \mathbb{Q}^* \equiv \mathbb{Q} - \{0\}$, i.e.

$$E'_{f} = \left\{ x \in \mathbb{R} \colon \lim_{\substack{q \in \mathbb{Q}^{*} \\ q \longrightarrow 0}} \frac{f(x+q) - f(x)}{q} \text{ exists (and is finite)} \right\}.$$
 (1)

Suppose the last limit exists for some x and equals $c \in \mathbb{R}$. For every $\varepsilon > 0$, there then exists $\delta > 0$ such that

$$\left|\frac{f(x+q)-f(x)}{q}-c\right| < \frac{\varepsilon}{2} \qquad \forall \ q \in \mathbb{Q}_{\delta}^*.$$

Since the function

$$\mathbb{R}^* \longrightarrow \mathbb{R}, \qquad y \longrightarrow \frac{f(x\!+\!y)\!-\!f(x)}{y} - c,$$

is continuous, for every $y\!\in\!\mathbb{R}^*$ there exists $\delta_y\!\in\!(0,|y|)$ such that

$$\left| \left(\frac{f(x+q) - f(x)}{q} - c \right) - \left(\frac{f(x+y) - f(x)}{y} - c \right) \right| < \frac{\varepsilon}{2} \qquad \forall \ q \in \mathbb{Q}^* \text{ s.t. } |y-q| < \delta_y.$$

Combining the two bounds above, we find that

$$\left|\frac{f(x+y)-f(x)}{y}-c\right|<\varepsilon\qquad\forall y\in\mathbb{R}^* \text{ s.t. } |y|<\delta.$$

This establishes (1).

For each $n \in \mathbb{Z}^+$, define

$$g_n \colon \mathbb{R} \longrightarrow \mathbb{R}, \qquad g_n(x) = \left(f(x+1/n) - f(x)\right)/(1/n) = n\left(f(x+1/n) - f(x)\right).$$

Each of these functions is measurable, being a finite linear combination of measurable functions. The function

$$g \equiv \inf_{n \in \mathbb{Z}^+} g_n \colon \mathbb{R} \longrightarrow [-\infty, \infty), \qquad g(x) = \inf \left\{ g_n(x) \colon n \in \mathbb{Z}^+ \right\},$$

is thus also measurable. In particular, the set $E \equiv g^{-1}(\mathbb{R})$ is measurable.

If the derivative f'(x) of f at x exists (and is finite), then $x \in E$ and f'(x) = g(x). However, even if $x \in E$, f'(x) need not exist. For each $q \in \mathbb{Q}^*$, define

$$h_q \colon \mathbb{R} \longrightarrow [0,\infty], \qquad h_q(x) = \left| \frac{f(x+q) - f(x)}{q} - g(x) \right|.$$

Since h_q is the absolute value of a finite linear combination of measurable functions, it is measurable. Let

$$F = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q \in \mathbb{Q}^*_{1/m}} \Big\{ x \in \mathbb{R} : g_q(x) < \frac{1}{n} \Big\}.$$

Since F is a countable intersection of countable unions of countable intersections of measurable subsets of \mathbb{R} , it is measurable. By (1), $E'_f = E \cap F$. Thus, E'_f is measurable.

Problem 4 (8pts)

A car leaves point A at random between 1pm and 2pm and travels at 50mph towards point B, which is 20 miles away. Find the probability distribution of the distance at 1:50pm.

Let $\omega \in [0, 1]$ denote the starting time measured as a fraction of an hour from 1pm and $X(\omega) \in [0, 20]$ denote the distance from B at 1:50, i.e. at the time 5/6 in these units. Since it takes 2/5 of a unit to get from A to B,

$$X(\omega) = \begin{cases} 0, & \text{if } \omega \in [0, 13/30];\\ 50\omega - \frac{65}{3} & \text{if } \omega \in (13/30, 5/6);\\ 20, & \text{if } \omega \in [5/6, 1]. \end{cases}$$

If $B \subset \mathbb{R}$, then

$$\begin{aligned} X^{-1}(B) &= \left\{ \omega \in [0, 13/30] \colon 0 \in B \right\} \cup \left\{ \omega \in (13/30, 5/6) \colon 50\omega - \frac{65}{3} \in B \right\} \cup \left\{ \omega \in [5/6, 1] \colon 20 \in B \right\} \\ &= \frac{1}{50} \big((0, 20) \cap B + 65/3 \big) \cup \begin{cases} [0, 13/30], & \text{if } 0 \in B; \\ \emptyset, & \text{if } 0 \notin B; \end{cases} \cup \begin{cases} [5/6, 1], & \text{if } 20 \in B; \\ \emptyset, & \text{if } 20 \notin B. \end{cases} \end{aligned}$$

Thus, if B is Borel (or even measurable),

$$P_X(B) \equiv m(X^{-1}(B)) = \frac{1}{50}m([0,20]\cap B) + \begin{cases} 13/30, & \text{if } 0 \in B; \\ \emptyset, & \text{if } 0 \notin B; \end{cases} + \begin{cases} 1/6, & \text{if } 20 \in B; \\ \emptyset, & \text{if } 20 \notin B; \end{cases}$$

In other words, $P_X = \frac{13}{30}\delta_0 + \frac{1}{6}\delta_{20} + \frac{1}{50}m_{[0,20]} \colon \mathbb{R} \longrightarrow [0,1].$

Problem 5 (10pts)

Let $F: [0,1] \longrightarrow [0,1]$ be the Lebesgue function defined at the top of p20. Find $\int_{[0,1]} F dm$. For each $n \in \mathbb{Z}^{\geq 0}$, let

$$S_n = \left\{ \sum_{k=1}^n \frac{a_k}{3^k} : a_k \in \{0, 2\} \right\}$$

be the set of the left endpoints of the 2^n intervals making up the set C_n on page 19. For each $n \in \mathbb{Z}^+$, define

$$A_n = \bigcup_{a \in S_{n-1}} \left(a + \frac{1}{3^n}, \frac{3}{3^n} \right], \qquad \varphi_n = \sum_{\ell=1}^n \frac{1}{2^\ell} \mathbb{1}_{A_\ell} : [0, 1] \longrightarrow [0, \infty).$$

Since φ_n is a finite sum of step functions as in Definition 4.1, it is also a step function as in Definition 4.1 and

$$\int_{[0,1]} \varphi_n \mathrm{d}m = \sum_{\ell=1}^n \frac{1}{2^\ell} m(A_\ell) = \sum_{\ell=1}^n \frac{1}{2^\ell} 2^{\ell-1} \frac{2}{3^\ell} = \frac{1}{2} \left(1 - 3^{-n} \right)$$

Furthermore, $\varphi_1 \leq \varphi_2$ and $\varphi_n(x) \longrightarrow F(x)$ as $n \longrightarrow \infty$ for all $x \in [0, 1]$. By the Monotone Convergence Theorem, this implies that

$$\int_{[0,1]} F \mathrm{d}m = \lim_{n \to \infty} \int_{[0,1]} \varphi_n \mathrm{d}m = \lim_{n \to \infty} \frac{1}{2} (1 - 3^{-n}) = \frac{1}{2}.$$

However, this is later in the book. Below is a direct argument.

Since $\varphi_n \leq F$,

$$\int_{[0,1]} F \mathrm{d}m \ge \int_{[0,1]} \varphi_n \mathrm{d}m = \frac{1}{2} (1 - 3^{-n}) \qquad \forall \ n \in \mathbb{Z}^+.$$

Since

$$F(x) - \varphi_n(x) \le \sum_{\ell=n+1}^{\infty} \frac{1}{2^{\ell}} = \frac{1}{2^n} \quad \forall x \in [0,\infty], n \in \mathbb{Z}^+,$$

we find that

$$\int_{[0,1]} F \mathrm{d}m \le \int_{[0,1]} \left(\varphi_n + 2^{-n}\right) \mathrm{d}m = \frac{1}{2} \left(1 - 3^{-n}\right) + 2^{-n}.$$

Combining this with the above estimate, we obtain

$$\frac{1}{2} - \frac{1}{2} 3^{-n} \le \int_{[0,1]} F dm \le \frac{1}{2} - \frac{1}{2} 3^{-n} + 2^{-n} \qquad \forall \ n \in \mathbb{Z}^+.$$

This implies that $\int_{[0,1]} F dm = \frac{1}{2}$.