
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 4

Problem 1 (10pts)

(a) Write each x∈ [0, 1] as x=
∞
∑

n=1

an(x)

2n
with each an(x)∈{0, 1} taking the infinite expansion for

all x 6=0. Show that the function an : [0, 1]−→R is measurable.

(b) Show that the function

f : [0, 1] −→ R, f(x) =
∞
∑

n=1

2an(x)

3n
,

is measurable, injective, and takes values in the Cantor set C.

(a) For each n∈Z+, let

An =
2n−1

⋃

k=1

(

2k−1

2n
,
2k

2n

]

.

The function an : [0, 1]−→R takes value 1 on An and 0 on [0, 1]−An. Thus, an=1An . Since An is a
finite union of intervals, An∈M. Thus, the indicator function 1An is measurable.

(b) Since each function an is measurable, so is each function

fk(x) ≡
k

∑

n=1

2

3n
an(x) , k∈Z+ ,

because it is a finite linear combination of measurable functions. Since f= lim
k−→∞

fk, f is measurable

as well.

If x, x′∈ [0, 1] and x<x′, let

m = min
{

n∈Z+ : an(x) 6=an′(x)
}

< ∞.

Since x<x′, am(x)=0 and am(x′)=1. Thus,

f(x) ≤
m−1
∑

n=1

2an(x)

3n
+

∞
∑

n=m+1

2

3n
=

m−1
∑

n=1

2a′n(x)

3n
+

1

3m
< f(x′).

Thus, the function f is strictly increasing (and in particular injective). It takes values between
f(0)=0 and f(1)=1.

Every point y∈(0, 1] can be written uniquely as a non-terminating infinite sum

y =
∞
∑

n=1

bn(y)

3n
, bn(y) ∈ {0, 1, 2}.

If such y lies in the image of f , then bn(y) 6=1 for all n∈Z+. Since the Cantor set C consists of the
points y ∈ (0, 1] satisfying this condition along with the point 0, it follows that the image of f lies
in C.



Problem 2 (17pts)

(a) Let f : X−→Y be any map, S⊂2Y , and FY ⊂2Y be the σ-field generated by S (i.e. the smallest
σ-field on Y containing S). Show that

FX ≡
{

f−1(B) : B∈FY

}

is the σ-field generated by {f−1(B) : B∈S}.

(b) Let (X,F , µ) be a measure space and f : X−→R be a measurable function. Show that f−1(B)∈
F for every Borel subset B⊂R (i.e. B∈B).

(c) Give an example of a measurable function f : R −→ R and a measurable subset E ⊂ R

(i.e. E∈M) so that f−1(E) is not measurable.

(d) Give an example of measurable functions f, g : R−→R so that f ◦g : R−→R is not measurable.

(a) Since S⊂FY ,
f−1(S) ≡

{

f−1(B) : B∈S
}

⊂ FX .

Since Y ∈FY (because FY is a σ-field on Y ), X = f−1(Y ) ∈FX . If A ∈FX , then A= f−1(B) for
some B∈FY and

X−A = X−f−1(B) = f−1(Y −B) ∈ FX

because Y−B∈FY . If A1, A2, . . .∈FX , then A1=f−1(B1), A2=f−1(B2), . . . for some B1, B2, . . .∈FY

and
∞
⋃

n=1

An =

∞
⋃

n=1

f−1(Bn) = f−1

( ∞
⋃

n=1

Bn

)

∈ FX

because
⋃

Bn∈FY . Thus, FX is a σ-field on X containing f−1(S).

Suppose F ′
X is any σ-field on X containing f−1(S). Let

F ′
Y =

{

B∈FY : f−1(B)∈F ′
X

}

.

Since f−1(S)⊂F ′
X , S ⊂F ′

Y . Since X = f−1(Y )∈F ′
X (because F ′

X is a σ-field on X), Y ∈F ′
X . If

B∈F ′
Y , then f−1(B)∈F ′

X , Y −B∈FY , and

f−1(Y −B) = X−f−1(B) ∈ F ′
X ;

thus, Y −B∈F ′
Y . If B1, B2, . . .∈F ′

Y , then f−1(B1), f
−1(B2), . . .∈F ′

X ,
⋃

Bn∈FY , and

f−1

( ∞
⋃

n=1

Bn

)

=
∞
⋃

n=1

f−1(Bn) ∈ F ′
X ;

thus,
⋃

Bn ∈ F ′
Y . We conclude that F ′

Y ⊂ FY is a σ-field on Y containing S and thus F ′
Y = FY .

Therefore, FX⊂F ′
X and so FX is the smallest σ-field on X containing S.

(b) Since B is the σ-field on R generated by the collection S of the intervals I⊂R, part (a) implies
that

f−1(B) ≡
{

f−1(B) : B∈B
}

⊂ 2X
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is the σ-field on X generated by the set

f−1(S) ≡
{

f−1(I) : I∈S
}

.

Since f is a measurable function, f−1(S)⊂F . Since F is a σ-field on X, it follows that f−1(B)⊂F .

(c) Let f : R−→R be the function defined on [0, 1] as in Problem 1(b) and given by f(x) = x for
x 6∈ [0, 1]. This function is measurable on R− [0, 1] because it agrees with the continuous function
f(x) = x there and is measurable on [0, 1] by Problem 1(b). It is also injective because it is injec-
tive on R−[0, 1], takes values in R−[0, 1] there, and is injective on [0, 1], and takes values in [0, 1] there.

Let B ⊂ [0, 1] be a non-measurable subset, e.g. as constructed on p302, and E = f(B). Since E is
contained in the Cantor set C, it is a null set and thus E∈M. Since f is injective, f−1(E)=B is a
non-measurable set.

(d) Let f and E be as in (c) and g = 1E : R −→ R. Since E is a measurable set, its indicator
function g is measurable. However, the function

h≡g◦f : R −→ R

is not measurable because
h−1(1) = f−1

(

g−1(1)
)

= f−1(E)

is not a measurable set.

Problem 3 (15pts)

Let f : R−→R be a continuous function. Show that the set

E′
f ≡

{

x∈R : f is differentiable at x
}

is measurable.

For r∈R+, we let Q∗
r⊂Q denote the subset of rational numbers q 6=0 such that |q|<r. Recall that

f ′(x) = lim
y−→0

f(x+y)−f(x)

y

if this limit exists (and is finite); the limit here is taken over y∈R∗≡R−{0}. We first note that it
is sufficient to take this limit over y∈Q∗≡Q−{0}, i.e.

E′
f =

{

x∈R : lim
q∈Q∗

q−→0

f(x+q)−f(x)

q
exists (and is finite)

}

. (1)

Suppose the last limit exists for some x and equals c∈R. For every ε > 0, there then exists δ > 0
such that

∣

∣

∣

∣

f(x+q)−f(x)

q
− c

∣

∣

∣

∣

<
ε

2
∀ q∈Q∗

δ .

Since the function

R∗ −→ R, y −→
f(x+y)−f(x)

y
− c,
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is continuous, for every y∈R∗ there exists δy∈(0, |y|) such that
∣

∣

∣

∣

(

f(x+q)−f(x)

q
− c

)

−

(

f(x+y)−f(x)

y
− c

)∣

∣

∣

∣

<
ε

2
∀ q∈Q∗ s.t. |y−q|<δy.

Combining the two bounds above, we find that
∣

∣

∣

∣

f(x+y)−f(x)

y
− c

∣

∣

∣

∣

< ε ∀ y∈R∗ s.t. |y|<δ .

This establishes (1).

For each n∈Z+, define

gn : R −→ R, gn(x) =
(

f(x+1/n)−f(x)
)

/(1/n) = n
(

f(x+1/n)−f(x)
)

.

Each of these functions is measurable, being a finite linear combination of measurable functions.
The function

g≡ inf
n∈Z+

gn : R −→ [−∞,∞), g(x) = inf
{

gn(x) : n∈Z+
}

,

is thus also measurable. In particular, the set E≡g−1(R) is measurable.

If the derivative f ′(x) of f at x exists (and is finite), then x∈E and f ′(x)=g(x). However, even if
x∈E, f ′(x) need not exist. For each q∈Q∗, define

hq : R −→ [0,∞], hq(x) =

∣

∣

∣

∣

f(x+q)−f(x)

q
− g(x)

∣

∣

∣

∣

.

Since hq is the absolute value of a finite linear combination of measurable functions, it is measurable.
Let

F =
∞
⋂

n=1

∞
⋃

m=1

⋂

q∈Q∗

1/m

{

x∈R : gq(x)<
1

n

}

.

Since F is a countable intersection of countable unions of countable intersections of measurable
subsets of R, it is measurable. By (1), E′

f =E∩F . Thus, E′
f is measurable.

Problem 4 (8pts)

A car leaves point A at random between 1pm and 2pm and travels at 50mph towards point B, which
is 20 miles away. Find the probability distribution of the distance at 1:50pm.

Let ω∈ [0, 1] denote the starting time measured as a fraction of an hour from 1pm and X(ω)∈ [0, 20]
denote the distance from B at 1 :50, i.e. at the time 5/6 in these units. Since it takes 2/5 of a unit
to get from A to B,

X(ω) =











0, if ω∈ [0, 13/30];

50ω− 65
3 if ω∈(13/30, 5/6);

20, if ω∈ [5/6, 1].

If B⊂R, then

X−1(B) =
{

ω∈ [0, 13/30] : 0∈B
}

∪
{

ω∈(13/30, 5/6) : 50ω−
65

3
∈B

}

∪
{

ω∈ [5/6, 1] : 20∈B
}

=
1

50

(

(0, 20)∩B+65/3
)

∪

{

[0, 13/30], if 0∈B;

∅, if 0 6∈B;
∪

{

[5/6, 1], if 20∈B;

∅, if 20 6∈B.

4



Thus, if B is Borel (or even measurable),

PX(B) ≡ m
(

X−1(B)
)

=
1

50
m
(

[0, 20]∩B) +

{

13/30, if 0∈B;

∅, if 0 6∈B;
+

{

1/6, if 20∈B;

∅, if 20 6∈B.

In other words, PX=
13

30
δ0 +

1

6
δ20 +

1

50
m[0,20] : R−→ [0, 1].

Problem 5 (10pts)

Let F : [0, 1]−→ [0, 1] be the Lebesgue function defined at the top of p20. Find

∫

[0,1]
Fdm.

For each n∈Z≥0, let

Sn =

{ n
∑

k=1

ak
3k

: ak∈{0, 2}

}

be the set of the left endpoints of the 2n intervals making up the set Cn on page 19. For each n∈Z+,
define

An =
⋃

a∈Sn−1

(

a+
1

3n
,
3

3n

]

, ϕn =

n
∑

ℓ=1

1

2ℓ
1Aℓ

: [0, 1] −→ [0,∞) .

Since ϕn is a finite sum of step functions as in Definition 4.1, it is also a step function as in
Definition 4.1 and

∫

[0,1]
ϕndm =

n
∑

ℓ=1

1

2ℓ
m(Aℓ) =

n
∑

ℓ=1

1

2ℓ
2ℓ−1 2

3ℓ
=

1

2

(

1− 3−n
)

.

Furthermore, ϕ1≤ϕ2 and ϕn(x)−→F (x) as n−→∞ for all x∈ [0, 1]. By the Monotone Convergence
Theorem, this implies that

∫

[0,1]
Fdm = lim

n−→∞

∫

[0,1]
ϕndm = lim

n−→∞

1

2

(

1− 3−n
)

=
1

2
.

However, this is later in the book. Below is a direct argument.

Since ϕn≤F ,
∫

[0,1]
Fdm ≥

∫

[0,1]
ϕndm =

1

2

(

1− 3−n
)

∀ n∈Z+.

Since

F (x)− ϕn(x) ≤
∞
∑

ℓ=n+1

1

2ℓ
=

1

2n
∀ x∈ [0,∞], n∈Z+,

we find that
∫

[0,1]
Fdm ≤

∫

[0,1]

(

ϕn+2−n
)

dm =
1

2

(

1− 3−n
)

+ 2−n .

Combining this with the above estimate, we obtain

1

2
−

1

2
3−n ≤

∫

[0,1]
Fdm ≤

1

2
−

1

2
3−n + 2−n ∀ n∈Z+ .

This implies that

∫

[0,1]
Fdm =

1

2
.
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