MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 4

Problem 1 (10pts)

(a) Write each $x \in[0,1]$ as $x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}$ with each $a_{n}(x) \in\{0,1\}$ taking the infinite expansion for all $x \neq 0$. Show that the function $a_{n}:[0,1] \longrightarrow \mathbb{R}$ is measurable.
(b) Show that the function

$$
f:[0,1] \longrightarrow \mathbb{R}, \quad f(x)=\sum_{n=1}^{\infty} \frac{2 a_{n}(x)}{3^{n}},
$$

is measurable, injective, and takes values in the Cantor set C.
(a) For each $n \in \mathbb{Z}^{+}$, let

$$
A_{n}=\bigcup_{k=1}^{2^{n-1}}\left(\frac{2 k-1}{2^{n}}, \frac{2 k}{2^{n}}\right]
$$

The function $a_{n}:[0,1] \longrightarrow \mathbb{R}$ takes value 1 on A_{n} and 0 on $[0,1]-A_{n}$. Thus, $a_{n}=\mathbb{1}_{A_{n}}$. Since A_{n} is a finite union of intervals, $A_{n} \in \mathcal{M}$. Thus, the indicator function $\mathbb{1}_{A_{n}}$ is measurable.
(b) Since each function a_{n} is measurable, so is each function

$$
f_{k}(x) \equiv \sum_{n=1}^{k} \frac{2}{3^{n}} a_{n}(x), \quad k \in \mathbb{Z}^{+},
$$

because it is a finite linear combination of measurable functions. Since $f=\lim _{k \rightarrow \infty} f_{k}, f$ is measurable as well.

If $x, x^{\prime} \in[0,1]$ and $x<x^{\prime}$, let

$$
m=\min \left\{n \in \mathbb{Z}^{+}: a_{n}(x) \neq a_{n^{\prime}}(x)\right\}<\infty .
$$

Since $x<x^{\prime}, a_{m}(x)=0$ and $a_{m}\left(x^{\prime}\right)=1$. Thus,

$$
f(x) \leq \sum_{n=1}^{m-1} \frac{2 a_{n}(x)}{3^{n}}+\sum_{n=m+1}^{\infty} \frac{2}{3^{n}}=\sum_{n=1}^{m-1} \frac{2 a_{n}^{\prime}(x)}{3^{n}}+\frac{1}{3^{m}}<f\left(x^{\prime}\right) .
$$

Thus, the function f is strictly increasing (and in particular injective). It takes values between $f(0)=0$ and $f(1)=1$.

Every point $y \in(0,1]$ can be written uniquely as a non-terminating infinite sum

$$
y=\sum_{n=1}^{\infty} \frac{b_{n}(y)}{3^{n}}, \quad b_{n}(y) \in\{0,1,2\} .
$$

If such y lies in the image of f, then $b_{n}(y) \neq 1$ for all $n \in \mathbb{Z}^{+}$. Since the Cantor set C consists of the points $y \in(0,1]$ satisfying this condition along with the point 0 , it follows that the image of f lies in C.

Problem 2 (17pts)

(a) Let $f: X \longrightarrow Y$ be any map, $\mathcal{S} \subset 2^{Y}$, and $\mathcal{F}_{Y} \subset 2^{Y}$ be the σ-field generated by \mathcal{S} (i.e. the smallest σ-field on Y containing \mathcal{S}). Show that

$$
\mathcal{F}_{X} \equiv\left\{f^{-1}(B): B \in \mathcal{F}_{Y}\right\}
$$

is the σ-field generated by $\left\{f^{-1}(B): B \in \mathcal{S}\right\}$.
(b) Let (X, \mathcal{F}, μ) be a measure space and $f: X \longrightarrow \mathbb{R}$ be a measurable function. Show that $f^{-1}(B) \in$ \mathcal{F} for every Borel subset $B \subset \mathbb{R}$ (i.e. $B \in \mathcal{B}$).
(c) Give an example of a measurable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ and a measurable subset $E \subset \mathbb{R}$ (i.e. $E \in \mathcal{M}$) so that $f^{-1}(E)$ is not measurable.
(d) Give an example of measurable functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ so that $f \circ g: \mathbb{R} \longrightarrow \mathbb{R}$ is not measurable.
(a) Since $\mathcal{S} \subset \mathcal{F}_{Y}$,

$$
f^{-1}(\mathcal{S}) \equiv\left\{f^{-1}(B): B \in \mathcal{S}\right\} \subset \mathcal{F}_{X}
$$

Since $Y \in \mathcal{F}_{Y}$ (because \mathcal{F}_{Y} is a σ-field on Y), $X=f^{-1}(Y) \in \mathcal{F}_{X}$. If $A \in \mathcal{F}_{X}$, then $A=f^{-1}(B)$ for some $B \in \mathcal{F}_{Y}$ and

$$
X-A=X-f^{-1}(B)=f^{-1}(Y-B) \in \mathcal{F}_{X}
$$

because $Y-B \in \mathcal{F}_{Y}$. If $A_{1}, A_{2}, \ldots \in \mathcal{F}_{X}$, then $A_{1}=f^{-1}\left(B_{1}\right), A_{2}=f^{-1}\left(B_{2}\right), \ldots$ for some $B_{1}, B_{2}, \ldots \in \mathcal{F}_{Y}$ and

$$
\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} f^{-1}\left(B_{n}\right)=f^{-1}\left(\bigcup_{n=1}^{\infty} B_{n}\right) \in \mathcal{F}_{X}
$$

because $\bigcup B_{n} \in \mathcal{F}_{Y}$. Thus, \mathcal{F}_{X} is a σ-field on X containing $f^{-1}(\mathcal{S})$.
Suppose \mathcal{F}_{X}^{\prime} is any σ-field on X containing $f^{-1}(\mathcal{S})$. Let

$$
\mathcal{F}_{Y}^{\prime}=\left\{B \in \mathcal{F}_{Y}: f^{-1}(B) \in \mathcal{F}_{X}^{\prime}\right\} .
$$

Since $f^{-1}(\mathcal{S}) \subset \mathcal{F}_{X}^{\prime}, \mathcal{S} \subset \mathcal{F}_{Y}^{\prime}$. Since $X=f^{-1}(Y) \in \mathcal{F}_{X}^{\prime}$ (because \mathcal{F}_{X}^{\prime} is a σ-field on X), $Y \in \mathcal{F}_{X}^{\prime}$. If $B \in \mathcal{F}_{Y}^{\prime}$, then $f^{-1}(B) \in \mathcal{F}_{X}^{\prime}, Y-B \in \mathcal{F}_{Y}$, and

$$
f^{-1}(Y-B)=X-f^{-1}(B) \in \mathcal{F}_{X}^{\prime}
$$

thus, $Y-B \in \mathcal{F}_{Y}^{\prime}$. If $B_{1}, B_{2}, \ldots \in \mathcal{F}_{Y}^{\prime}$, then $f^{-1}\left(B_{1}\right), f^{-1}\left(B_{2}\right), \ldots \in \mathcal{F}_{X}^{\prime}, \bigcup B_{n} \in \mathcal{F}_{Y}$, and

$$
f^{-1}\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(B_{n}\right) \in \mathcal{F}_{X}^{\prime}
$$

thus, $\bigcup B_{n} \in \mathcal{F}_{Y}^{\prime}$. We conclude that $\mathcal{F}_{Y}^{\prime} \subset \mathcal{F}_{Y}$ is a σ-field on Y containing \mathcal{S} and thus $\mathcal{F}_{Y}^{\prime}=\mathcal{F}_{Y}$. Therefore, $\mathcal{F}_{X} \subset \mathcal{F}_{X}^{\prime}$ and so \mathcal{F}_{X} is the smallest σ-field on X containing \mathcal{S}.
(b) Since \mathcal{B} is the σ-field on \mathbb{R} generated by the collection \mathcal{S} of the intervals $I \subset \mathbb{R}$, part (a) implies that

$$
f^{-1}(\mathcal{B}) \equiv\left\{f^{-1}(B): B \in \mathcal{B}\right\} \subset 2^{X}
$$

is the σ-field on X generated by the set

$$
f^{-1}(\mathcal{S}) \equiv\left\{f^{-1}(I): I \in \mathcal{S}\right\} .
$$

Since f is a measurable function, $f^{-1}(\mathcal{S}) \subset \mathcal{F}$. Since \mathcal{F} is a σ-field on X, it follows that $f^{-1}(\mathcal{B}) \subset \mathcal{F}$.
(c) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined on $[0,1]$ as in Problem $1(\mathrm{~b})$ and given by $f(x)=x$ for $x \notin[0,1]$. This function is measurable on $\mathbb{R}-[0,1]$ because it agrees with the continuous function $f(x)=x$ there and is measurable on $[0,1]$ by Problem $1(\mathrm{~b})$. It is also injective because it is injective on $\mathbb{R}-[0,1]$, takes values in $\mathbb{R}-[0,1]$ there, and is injective on $[0,1]$, and takes values in $[0,1]$ there.

Let $B \subset[0,1]$ be a non-measurable subset, e.g. as constructed on p302, and $E=f(B)$. Since E is contained in the Cantor set C, it is a null set and thus $E \in \mathcal{M}$. Since f is injective, $f^{-1}(E)=B$ is a non-measurable set.
(d) Let f and E be as in (c) and $g=\mathbb{1}_{E}: \mathbb{R} \longrightarrow \mathbb{R}$. Since E is a measurable set, its indicator function g is measurable. However, the function

$$
h \equiv g \circ f: \mathbb{R} \longrightarrow \mathbb{R}
$$

is not measurable because

$$
h^{-1}(1)=f^{-1}\left(g^{-1}(1)\right)=f^{-1}(E)
$$

is not a measurable set.

Problem 3 (15pts)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Show that the set

$$
E_{f}^{\prime} \equiv\{x \in \mathbb{R}: f \text { is differentiable at } x\}
$$

is measurable.
For $r \in \mathbb{R}^{+}$, we let $\mathbb{Q}_{r}^{*} \subset \mathbb{Q}$ denote the subset of rational numbers $q \neq 0$ such that $|q|<r$. Recall that

$$
f^{\prime}(x)=\lim _{y \longrightarrow 0} \frac{f(x+y)-f(x)}{y}
$$

if this limit exists (and is finite); the limit here is taken over $y \in \mathbb{R}^{*} \equiv \mathbb{R}-\{0\}$. We first note that it is sufficient to take this limit over $y \in \mathbb{Q}^{*} \equiv \mathbb{Q}-\{0\}$, i.e.

$$
\begin{equation*}
E_{f}^{\prime}=\left\{x \in \mathbb{R}: \lim _{\substack{q \in \mathbb{Q}^{*} \\ q \longrightarrow 0}} \frac{f(x+q)-f(x)}{q} \text { exists (and is finite) }\right\} . \tag{1}
\end{equation*}
$$

Suppose the last limit exists for some x and equals $c \in \mathbb{R}$. For every $\varepsilon>0$, there then exists $\delta>0$ such that

$$
\left|\frac{f(x+q)-f(x)}{q}-c\right|<\frac{\varepsilon}{2} \quad \forall q \in \mathbb{Q}_{\delta}^{*} .
$$

Since the function

$$
\mathbb{R}^{*} \longrightarrow \mathbb{R}, \quad y \longrightarrow \frac{f(x+y)-f(x)}{y}-c,
$$

is continuous, for every $y \in \mathbb{R}^{*}$ there exists $\delta_{y} \in(0,|y|)$ such that

$$
\left|\left(\frac{f(x+q)-f(x)}{q}-c\right)-\left(\frac{f(x+y)-f(x)}{y}-c\right)\right|<\frac{\varepsilon}{2} \quad \forall q \in \mathbb{Q}^{*} \text { s.t. }|y-q|<\delta_{y} .
$$

Combining the two bounds above, we find that

$$
\left|\frac{f(x+y)-f(x)}{y}-c\right|<\varepsilon \quad \forall y \in \mathbb{R}^{*} \text { s.t. }|y|<\delta .
$$

This establishes (1).
For each $n \in \mathbb{Z}^{+}$, define

$$
g_{n}: \mathbb{R} \longrightarrow \mathbb{R}, \quad g_{n}(x)=(f(x+1 / n)-f(x)) /(1 / n)=n(f(x+1 / n)-f(x)) .
$$

Each of these functions is measurable, being a finite linear combination of measurable functions. The function

$$
g \equiv \inf _{n \in \mathbb{Z}^{+}} g_{n}: \mathbb{R} \longrightarrow[-\infty, \infty), \quad g(x)=\inf \left\{g_{n}(x): n \in \mathbb{Z}^{+}\right\}
$$

is thus also measurable. In particular, the set $E \equiv g^{-1}(\mathbb{R})$ is measurable.
If the derivative $f^{\prime}(x)$ of f at x exists (and is finite), then $x \in E$ and $f^{\prime}(x)=g(x)$. However, even if $x \in E, f^{\prime}(x)$ need not exist. For each $q \in \mathbb{Q}^{*}$, define

$$
h_{q}: \mathbb{R} \longrightarrow[0, \infty], \quad h_{q}(x)=\left|\frac{f(x+q)-f(x)}{q}-g(x)\right| .
$$

Since h_{q} is the absolute value of a finite linear combination of measurable functions, it is measurable. Let

$$
F=\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q \in \mathbb{Q}_{1 / m}^{*}}\left\{x \in \mathbb{R}: g_{q}(x)<\frac{1}{n}\right\}
$$

Since F is a countable intersection of countable unions of countable intersections of measurable subsets of \mathbb{R}, it is measurable. By (1), $E_{f}^{\prime}=E \cap F$. Thus, E_{f}^{\prime} is measurable.

Problem 4 (8pts)

A car leaves point A at random between 1 pm and 2pm and travels at 50 mph towards point B, which is 20 miles away. Find the probability distribution of the distance at 1:50pm.

Let $\omega \in[0,1]$ denote the starting time measured as a fraction of an hour from 1 pm and $X(\omega) \in[0,20]$ denote the distance from B at 1:50, i.e. at the time $5 / 6$ in these units. Since it takes $2 / 5$ of a unit to get from A to B,

$$
X(\omega)= \begin{cases}0, & \text { if } \omega \in[0,13 / 30] \\ 50 \omega-\frac{65}{3} & \text { if } \omega \in(13 / 30,5 / 6) \\ 20, & \text { if } \omega \in[5 / 6,1]\end{cases}
$$

If $B \subset \mathbb{R}$, then

$$
\begin{aligned}
X^{-1}(B) & =\{\omega \in[0,13 / 30]: 0 \in B\} \cup\left\{\omega \in(13 / 30,5 / 6): 50 \omega-\frac{65}{3} \in B\right\} \cup\{\omega \in[5 / 6,1]: 20 \in B\} \\
& =\frac{1}{50}((0,20) \cap B+65 / 3) \cup\left\{\begin{array} { l l }
{ [0 , 1 3 / 3 0] , } & { \text { if } 0 \in B ; } \\
{ \emptyset , } & { \text { if } 0 \notin B ; }
\end{array} \cup \left\{\begin{array}{ll}
{[5 / 6,1],} & \text { if } 20 \in B ; \\
\emptyset, & \text { if } 20 \notin B .
\end{array}\right.\right.
\end{aligned}
$$

Thus, if B is Borel (or even measurable),

$$
P_{X}(B) \equiv m\left(X^{-1}(B)\right)=\frac{1}{50} m([0,20] \cap B)+\left\{\begin{array}{ll}
13 / 30, & \text { if } 0 \in B ; \\
\emptyset, & \text { if } 0 \notin B ;
\end{array}+ \begin{cases}1 / 6, & \text { if } 20 \in B ; \\
\emptyset, & \text { if } 20 \notin B .\end{cases}\right.
$$

In other words, $P_{X}=\frac{13}{30} \delta_{0}+\frac{1}{6} \delta_{20}+\frac{1}{50} m_{[0,20]}: \mathbb{R} \longrightarrow[0,1]$.

Problem 5 (10pts)

Let $F:[0,1] \longrightarrow[0,1]$ be the Lebesgue function defined at the top of p20. Find $\int_{[0,1]} F \mathrm{~d} m$. For each $n \in \mathbb{Z}^{\geq 0}$, let

$$
S_{n}=\left\{\sum_{k=1}^{n} \frac{a_{k}}{3^{k}}: a_{k} \in\{0,2\}\right\}
$$

be the set of the left endpoints of the 2^{n} intervals making up the set C_{n} on page 19. For each $n \in \mathbb{Z}^{+}$, define

$$
A_{n}=\bigcup_{a \in S_{n-1}}\left(a+\frac{1}{3^{n}}, \frac{3}{3^{n}}\right], \quad \varphi_{n}=\sum_{\ell=1}^{n} \frac{1}{2^{\ell}} \mathbb{1}_{A_{\ell}}:[0,1] \longrightarrow[0, \infty) .
$$

Since φ_{n} is a finite sum of step functions as in Definition 4.1, it is also a step function as in Definition 4.1 and

$$
\int_{[0,1]} \varphi_{n} \mathrm{~d} m=\sum_{\ell=1}^{n} \frac{1}{2^{\ell}} m\left(A_{\ell}\right)=\sum_{\ell=1}^{n} \frac{1}{2^{\ell}} 2^{\ell-1} \frac{2}{3^{\ell}}=\frac{1}{2}\left(1-3^{-n}\right) .
$$

Furthermore, $\varphi_{1} \leq \varphi_{2}$ and $\varphi_{n}(x) \longrightarrow F(x)$ as $n \longrightarrow \infty$ for all $x \in[0,1]$. By the Monotone Convergence Theorem, this implies that

$$
\int_{[0,1]} F \mathrm{~d} m=\lim _{n \longrightarrow \infty} \int_{[0,1]} \varphi_{n} \mathrm{~d} m=\lim _{n \longrightarrow \infty} \frac{1}{2}\left(1-3^{-n}\right)=\frac{1}{2} .
$$

However, this is later in the book. Below is a direct argument.
Since $\varphi_{n} \leq F$,

$$
\int_{[0,1]} F \mathrm{~d} m \geq \int_{[0,1]} \varphi_{n} \mathrm{~d} m=\frac{1}{2}\left(1-3^{-n}\right) \quad \forall n \in \mathbb{Z}^{+}
$$

Since

$$
F(x)-\varphi_{n}(x) \leq \sum_{\ell=n+1}^{\infty} \frac{1}{2^{\ell}}=\frac{1}{2^{n}} \quad \forall x \in[0, \infty], n \in \mathbb{Z}^{+},
$$

we find that

$$
\int_{[0,1]} F \mathrm{~d} m \leq \int_{[0,1]}\left(\varphi_{n}+2^{-n}\right) \mathrm{d} m=\frac{1}{2}\left(1-3^{-n}\right)+2^{-n}
$$

Combining this with the above estimate, we obtain

$$
\frac{1}{2}-\frac{1}{2} 3^{-n} \leq \int_{[0,1]} F \mathrm{~d} m \leq \frac{1}{2}-\frac{1}{2} 3^{-n}+2^{-n} \quad \forall n \in \mathbb{Z}^{+}
$$

This implies that $\int_{[0,1]} F \mathrm{~d} m=\frac{1}{2}$.

