
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 3

Problem 1 (25pts)

Let (X,F , µ) be a measure space and F be the completion of F with respect to µ as defined in
Section 2.5. Show that

(a) F =
{

E∪A : E∈F , A⊂F for some F ∈F with µ(F )=0
}

;

(b) there exists a unique measure µ : F−→ [0,∞] so that µ|F =µ;

(c) the measure space (X,F , µ) is complete.

(a) We need to show that the collection on RHS is the smallest σ-field containing F and all subsets
A ⊂ F with F ∈ F and µ(F ) = 0. This collection contains every element E = E∪∅ with E ∈ F
because ∅⊂∅, ∅∈F , and µ(∅)=0. It contains every element A=∅∪A with A⊂F for some F ∈F
with µ(F )= 0 because ∅∈F . Furthermore, every collection of subsets of X containing F and all
subsets A⊂F with F ∈F and µ(F )=0 which is closed under even finite unions must contain the
collection on RHS.

It remains to show that this collection is a σ-field on X. It contains the entire space X because F
does and this collection contains all of F . If E∈F and A⊂F for some F ∈F and µ(F )=0, then

(E∪A)c ≡ X−(E∪A) =
(

X−(E∪F )
)

∪(F−E∪A) ≡ (E∪F )c∪(F−E∪A) .

Since F is closed under taking complements, (E∪F )c ∈F . Since F−E∪A⊂ F and F ∈F with
µ(F )=0, we conclude that (E∪A)c belongs to the collection on RHS.

Suppose

E1, F1, E2, F2, . . .∈F , µ(F1), µ(F2), . . .=0, A1⊂F1, A2⊂F2, . . . . (1)

Then
∞
⋃

n=1

(En∪An) =

( ∞
⋃

n=1

En

)

∪

( ∞
⋃

n=1

An

)

≡ E∪A. (2)

The countable union E of En’s belongs to F because F is closed under countable unions. The
countable union A of An’s is contained in the set

F ≡
∞
⋃

n=1

Fn . (3)

By the countably subadditivity of µ,

µ(F ) ≤
∞
∑

n=1

µ(Fn) = 0.



Thus, E∪A belongs to the collection on RHS and this collection is closed under countable unions.
We have thus checked that it satisfies the three required properties for being a σ-field on X.

(b) We define µ : F−→ [0,∞] by

µ(E∪A) = µ(E) if E∈F , A⊂F for some F ∈F with µ(F )=0. (4)

We need to check that µ is well-defined. Suppose E∪A=E′∪A′ with E,A as above, E′∈F , and
A′⊂F ′ for some F ′∈F with µ(F ′)=0. Thus,

E′−E ⊂ A ⊂ F, E−E′ ⊂ A′ ⊂ F ′.

Since E′−E,E−E,F, F ′∈F and µ(F ), µ(F ′)=0, these statements imply that

µ(E′−E), µ(E−E′) = 0,

µ(E) = µ(E∩E′)+µ(E−E′) = µ
(

E′−(E′−E)
)

+0 = µ(E′)−µ(E′−E) = µ(E′).

Thus, the value of µ on E∪A=E′∪A′ is well-defined (independent of how this set is split into the
two types of subsets). Since

µ(E) = µ(E∪∅) = µ(E) ∀ E∈F ,

we obtain that µ|F =µ.

Suppose E1, E2, . . . , E∈F and A1, A2, . . . , A⊂X are as in (1)-(3) and (En∪An)∩(En′∪An′)=∅ for
all n 6=n′. The last condition implies that En∩En′ = ∅ for all n 6=n′. By the countable additivity
of µ,

µ

( ∞
⋃

n=1

(En∪An)

)

= µ(E∪A) = µ(E) = µ

( ∞
⋃

n=1

En

)

=
∞
∑

n=1

µ(En) =
∞
∑

n=1

µ(En∪An).

Thus, (X,F , µ) is a measure on X.

Suppose µ′ : F−→ [0,∞] is any measure on X such that µ′|F =µ. Let E,A, F be as in (4). By the
countable subadditivity of µ′ and µ,

µ(E) = µ′(E) ≤ µ′(E∪A) ≤ µ′(E∪F ) = µ(E∪F ) ≤ µ(E)+µ(F ) = µ(E).

Thus, µ′(E∪A)=µ(E)=µ(E∪A) and µ′=µ.

(c) Suppose A′ ⊂ F ′ for some F ′ ∈F with µ(F ′) = 0. By (a), there exist E ∈F and A⊂ F with
F ∈F and µ(F )=0 such that F ′=E∪A. Thus,

A′ ⊂ E∪F, E∪F ∈ F , µ(E∪F ) ≤ µ(E)+µ(F ) = µ(E) = µ(E) ≤ µ(E∪A) = 0.

Thus, A′∈F and so the measure space (X,F , µ) is complete.
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Problem 2 (5pts)

Give an example of a non-measurable function f : R−→R such that f2 : R−→R is measurable.

Let A⊂R be any non-measurable subset. The function

f≡1A−1Ac : R−→R, f(x) =

{

1, if x∈A;

−1, if x∈Ac;

is non-measurable because f−1(1)=A is a non-measurable subset. On the other hand, the function
f2=1R is measurable because it is constant.

Problem 3 (10pts)

Let (X,F , µ) be a measure space. A function f : X −→R is called measurable if f−1(I) ∈ F for
every interval I ⊂R. Show that this condition is equivalent to each of the four conditions (ii)-(v)
in Theorem 3.3 in the book with a∈Q separately.
Note: Theorem 3.3 establishes the equivalence for (X,F , µ)=(R,M,m) with each the four condi-
tions (ii)-(v) with a∈R. The proof for an arbitrary measure space (X,F , µ) and a∈R is identical
(replace M by F everywhere). So, you only need to check that it is enough to take a∈Q.

We need to show that (i) in Theorem 3.3 is equivalent to each of the following
(ii′) f−1((a,∞))∈F for every a∈Q; (iii′) f−1([a,∞))∈F for every a∈Q;
(iv′) f−1((−∞, a))∈F for every a∈Q; (v′) f−1((−∞, a])∈F for every a∈Q.

Condition (i) implies each of the above conditions because the former means that f−1(I)∈F for
every interval I⊂R. Conditions (ii′) and (v′) are equivalent because

f−1
(

(a,∞)
)

∈ F ⇐⇒ f−1
(

(−∞, a]
)

=f−1
(

R−(a,∞)
)

=X−f−1
(

(a,∞)
)

∈ F .

By the same reasoning, conditions (iii′) and (iv′) are equivalent.

Suppose a∈ R. Let an∈Q∩(a,∞) be any sequence converging to a. Then,

f−1
(

(a,∞)
)

= f−1

( ∞
⋃

n=1

(an,∞)

)

=

∞
⋃

n=1

f−1
(

(an,∞)
)

,

f−1
(

(a,∞)
)

= f−1

( ∞
⋃

n=1

[an,∞)

)

=

∞
⋃

n=1

f−1
(

[an,∞)
)

.

By the first line above, condition (ii′) implies condition (ii) in Theorem 3.3. By the second line,
condition (iii′) implies condition (ii). Since condition (ii) in Theorem 3.3 has been shown to imply
that f is measurable, we conclude that each of the conditions (ii′)-(v′) separately implies that f is
measurable.
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Problem 4 (10pts)

Let A⊂R. Show that the function

f : R −→ R, f(x) =

{

x, if x∈A;

−x, if x 6∈A;

is measurable if and only if A∈M.

Since the two subsets R±⊂R (meaning R+ or R−) are measurable, so are the indicator functions

1R± : R −→ R, 1R±(x) =

{

x, if x∈R±;

0, if x 6∈R±.

Let

g±=1R± ·f : R−→R, g±(x) =











x, if x∈A∩R±;

−x, if x∈Ac∩R±;

0, otherwise.

If the function f is measurable, then so are both functions g± (since they are then products of
measurable functions). If both functions g± are measurable, then so is f = g++g−. Thus, it is
sufficient to show that the two functions g± are measurable if and only if A is measurable.

If the two functions g± are measurable, then the set

A =
(

A∩R+
)

∪
(

A∩R−
)

∪
(

A∩{0}
)

= g−1
+ (R+) ∪ g−1

− (R−) ∪
(

A∩{0}
)

is measurable because it is a union of three measurable sets (the first two sets above are measurable
because they are preimages of intervals by measurable functions, and the last set is measurable
because it is either ∅ or {0}).

If I⊂R, then

g−1
± (I) =

(

A∩R±∩I
)

∪
(

Ac∩R±∩(−I)
)

∪

{

∅, if 0 6∈I;

R∓∪{0}, if 0∈I.

The last set on RHS above is always measurable. If I is an interval, then so is −I. If A is
measurable, then so is Ac. If I is an interval and A is measurable, the first two sets on RHS above
are thus measurable and so is g−1

± (I). We conclude that the functions g± are measurable if the set
A is measurable.
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Problem 5 (10pts)

Let (X,F , µ) be a measure space.

(a) Suppose (Y, d) is a metric space, g : Y −→ R is a continuous function, and h : X −→ Y

is a function such that h−1(O) ∈ F for every open subset O ⊂ Y . Show that the function
g◦h : X−→R is measurable.

(b) Suppose h1, . . . , hk : X −→R are measurable functions and h=(h1, . . . , hk) : X −→Rk. Show
that h−1(O)∈F for every open subset O⊂Rk.

(c) Show that a function f : X−→R is measurable if and only if the function f3 is measurable.

(a) It is sufficient to show that the subset
{

g◦h
}−1(

(a,∞)
)

= h−1
(

g−1
(

(a,∞)
))

⊂ X

belongs to F for every a∈R. Since g is continuous and (a,−∞)⊂R is an open subset,

O ≡ g−1
(

(a,∞)
)

⊂ Y

is also an open subset. Thus,
{

g◦h
}−1(

(a,∞)
)

= h−1(O) ∈ F

by the assumption on h.

(b) Every open subset O of Rk is a countable union of the open k-cubes

C = (a1, b1)×(a2, b2)×. . .×(ak, bk) with a1, b1, a2, b2, . . . , ak, bk∈R;

we can even take a1, b1, a2, b2, . . . , ak, bk∈Q (in which case, there are only countably many of such
cubes). For such a cube,

h−1(C) =
{

x∈X : hi(x)∈(ai, bi) ∀ i=1, . . . , k
}

=
k
⋂

i=1

h−1

i

(

(ai, bi)
)

∈ F

because each h−1

i ((ai, bi))∈F . If O is a countable union of the open k-cubes Cn, then

h−1(O) = h−1

( ∞
⋃

n=1

Cn

)

=
∞
⋃

n=1

h−1(Cn) ∈ F

because each h−1(Cn)∈F .

(c) If f is measurable, then so is f3= f ·f ·f because a product of R-valued measurable functions
is measurable. Let

g : Y =R −→ R, g(y) = y1/3 .

Suppose the function h= f3 is measurable. By (b), this implies that h−1(O)∈M for every open
subset O⊂R. Since g is a continuous function, (a) then implies that the function

f=g◦h : R −→ R

is measurable.
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