
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 2

Problem 1 (5pts)

Suppose A⊂B ⊂C ⊂R are such that A,C ∈M and m(A) =m(C)<∞. Show that B ∈M and

m(A)=m(B)=m(C).

Since A,C∈M, A⊂C, and m(A)<∞,

m(C−A) = m(C)−m(A) = 0.

Thus, C−A is a null set. Since B−A⊂C−A, B−A is also a null set and thus B−A∈M. Since A

and B−A are disjoint measurable sets,

B = A∪(B−A) ∈ M and m(B) = m(A) +m(B−A).

Problem 2 (10pts)

Let E1, E2, . . . be disjoint measurable sets and A⊂R be any subset. Show that

m∗

(

A∩
∞
⋃

n=1

En

)

=
∞
∑

n=1

m∗
(

A∩En

)

.

By the countable subaddivity

m∗

(

A∩
∞
⋃

n=1

En

)

= m∗

( ∞
⋃

n=1

(A∩En)

)

≤
∞
∑

n=1

m∗
(

A∩En

)

.

Thus, only the opposite inequality needs to be shown. For each k∈Z
≥0⊔{∞}, let

Ek =
k
⋃

n=1

En ∈ M, Ak = A∩Ek ⊂ R.

In particular,

Ak−1∩En = Ak∩En ∀n<k, Ak∩E
k−1 = Ak−1, Ak∩(E

k−1)c = Ak∩Ek ∀ k∈Z
+;

the last equality holds because Ek is disjoint from Ek−1 and thus Ek⊂(Ek−1)c.

We show by induction that

m∗(Ak) =

k
∑

n=1

m∗
(

Ak∩En

)

=

k
∑

n=1

m∗
(

A∞∩En

)

∀ k∈Z
≥0; (1)



only the first equality needs a proof. This statement is true for k=0. Suppose k∈Z
+ and (1) is

true for k−1, i.e.

m∗
(

Ak−1

)

=
k−1
∑

n=1

m∗
(

Ak−1∩En

)

=
k−1
∑

n=1

m∗
(

Ak∩En

)

. (2)

Since Ek−1∈M,

m∗(Ak) = m∗
(

Ak∩E
k−1

)

+m∗
(

Ak∩(E
k−1)c

)

= m∗
(

Ak−1

)

+m∗
(

Ak∩Ek

)

.

Combining this with (2), we obtain the first equality in (1). Since A1⊂A2⊂ . . .⊂A∞,

m∗
(

A∞

)

≥ lim
k−→∞

m∗(Ak) = lim
k−→∞

k
∑

n=1

m∗
(

A∞∩En

)

=
∞
∑

n=1

m∗
(

A∩En

)

;

the first equality above is (1). This establishes the desired inequality.

Problem 3 (5pts)

Let E1, E2, . . . , E20⊂ [0, 1] be measurable subsets. Show that

m

( 20
⋂

n=1

En

)

≥
20
∑

n=1

m(En)− 19.

Since En’s, their intersection E∩, and I=[0, 1] are measurable and their measures are finite,

m(E∩) = m(I)−m
(

I−E∩
)

= 1−m

( 20
⋃

n=1

(I−En)

)

≥ 1−
20
∑

n=1

m(I−En) = 1−
20
∑

n=1

(

m(I)−m(En)
)

= 1−

(

20−
20
∑

n=1

m(En)

)

≥
20
∑

n=1

m(En)− 19.

Problem 4 (10pts)

Show that there exist A,B⊂R such that

A ∩B = ∅ and m∗(A∪B) < m∗(A)+m∗(B).

By p302, there exists a non-measurable subset E⊂R. Thus, there exists F ⊂R such that

m∗(F ) < m∗
(

F∩E
)

+m∗
(

F∩Ec
)

.

We can thus take A=F∩E and B=F∩Ec.
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Here is a more explicit example. Let E1, E2, . . .⊂ [−1, 2] be the translates of the non-measurable
set E⊂ [0, 1] constructed on p302. Since the outer measure m∗ is translation-invariant, there exists
δ∈ [0, 1] such that m∗(En)=δ for all n∈Z

+. Since all null sets are measurable, δ>0. Since

∞
⋃

n=1

En ⊂ [−1, 2] and m∗

( ∞
⋃

n=1

En

)

≤ 3,

there exists k∈Z
+ such that

m∗

( k
⋃

n=1

En

)

< kδ=
k

∑

n=1

m∗(En).

Take the smallest such k; then k≥2. Let

A =
k−1
⋃

n=1

En, B = Ek.

Since all En’s are pairwise disjoint, A∩B=∅. By the choice of k,

m∗(A) = m∗

( k−1
⋃

n=1

En

)

= (k−1)δ, m(B) = m(Ek) = δ,

m∗(A∪B) = m∗

( k
⋃

n=1

En

)

< kδ = m∗(A) +m∗(B).

So, A and B are as needed.

Problem 5 (8pts)

Let ℓ1, ℓ2, . . .∈(0, 1) be a sequence such that

∞
∑

n=1

2n−1ℓn < 1. Starting with C0≡ [0, 1], let Cn⊂ [0, 1]

for n∈Z
+ be the subset obtained from Cn−1 by removing the open middle interval of length ℓn from

each of the 2n−1 disjoint closed intervals making up Cn−1. Show that

C ≡
∞
⋂

n=1

Cn ⊂ [0, 1]

is a closed Borel subset. Find its measure.

The set C is closed because it is an intersection of closed sets. It is a Borel set because every closed
set is Borel. Since Cn⊂ [0, 1] for n∈Z

+ is obtained from Cn−1 by removing 2n−1 disjoint intervals
of length ℓn,

m(Cn) = m
(

[0, 1]
)

−
n
∑

k=1

2k−1ℓk .

Since C0⊃C1⊃ . . . and m(C0)<∞,

m(C) =

( ∞
⋂

n=0

Cn

)

= lim
n−→∞

m(Cn) = 1−
∞
∑

k=1

2k−1ℓk .
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Problem 6 (12pts + bonus 5pts)

For X⊂R, let

MX =
{

E∩X : E∈M
}

, µX = m∗
∣

∣

MX

.

(a) Show that (X,MX , µX) is a complete measure space if X⊂R is measurable.

(b) Which properties of a complete measure space (X,MX , µX) may not satisfy if X is not as-

sumed to be measurable? Give an example.

(a) Since R∈M, X=R∩X∈MX . If A∈MX , then A=E∩X for some E∈M and

X−A = (R−E)∩X ∈ MX

because R−E∈M. If A1, A2, . . .∈MX , then An=En∩X for some En∈M and

∞
⋃

n=1

An =

∞
⋃

n=1

(

En∩X
)

=

( ∞
⋃

n=1

En

)

∩X ∈ MX

because the union of En’s belongs to M. Thus, MX is a σ-field on X. If A⊂B for some B∈MX

with µX(B) =m∗(B) = 0, then B is a null set and thus so is A. Since M contains all null sets,
A∈M and so A=A∩X∈MX . Thus, the σ-field MX is complete with respect to µX .

Since X ∈M and M is closed under intersections, MX ⊂M. If A1, A2, . . .∈MX are such that
An∩An′ =∅ for all n 6=n′,

µX

( ∞
⋃

n=1

An

)

= m

( ∞
⋃

n=1

An

)

=
∞
∑

n=1

m(An) =
∞
∑

n=1

µX(An) .

Thus, µX is a measure.

(b) The only part of the argument in (a) that depends on X being measurable is that µX is count-
ably additive. Thus, (X,MX , µX) satisfies all properties of a complete measure space with the
possible exception of the countable additivity for µX .

Bonus: In fact, µX is countably additive even if X is not measurable. Suppose A1, A2, . . .∈MX

are such that An∩An′ =∅ for all n 6=n′ and En∈M are such that An=En∩X. Let

Fn = En − E1∪. . .∪En−1 ∈ M.

Thus,

Fn∩F
′
n = ∅ ∀ n 6=n′,

∞
⋃

n=1

An =

( ∞
⋃

n=1

En

)

∩X =

( ∞
⋃

n=1

Fn

)

∩X,

Fn∩X =
(

En − (E1∩En)∪. . .∪(En−1∩En)
)

∩X = An − (A1∩An)∪. . .∪(An−1∩An) = An.

From Problem 2 with A=X and En replaced by Fn, we then obtain

µX

( ∞
⋃

n=1

An

)

= m∗

(

X∩
∞
⋃

n=1

Fn

)

=
∞
∑

n=1

m∗(X∩Fn) =
∞
∑

n=1

µX(An).

Thus, µX is countably additive.
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