MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 2

Problem 1 (5pts)

Suppose $A \subset B \subset C \subset \mathbb{R}$ are such that $A, C \in \mathcal{M}$ and $m(A)=m(C)<\infty$. Show that $B \in \mathcal{M}$ and $m(A)=m(B)=m(C)$.

Since $A, C \in \mathcal{M}, A \subset C$, and $m(A)<\infty$,

$$
m(C-A)=m(C)-m(A)=0
$$

Thus, $C-A$ is a null set. Since $B-A \subset C-A, B-A$ is also a null set and thus $B-A \in \mathcal{M}$. Since A and $B-A$ are disjoint measurable sets,

$$
B=A \cup(B-A) \in \mathcal{M} \quad \text { and } \quad m(B)=m(A)+m(B-A) .
$$

Problem 2 (10pts)

Let E_{1}, E_{2}, \ldots be disjoint measurable sets and $A \subset \mathbb{R}$ be any subset. Show that

$$
m^{*}\left(A \cap \bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} m^{*}\left(A \cap E_{n}\right)
$$

By the countable subaddivity

$$
m^{*}\left(A \cap \bigcup_{n=1}^{\infty} E_{n}\right)=m^{*}\left(\bigcup_{n=1}^{\infty}\left(A \cap E_{n}\right)\right) \leq \sum_{n=1}^{\infty} m^{*}\left(A \cap E_{n}\right)
$$

Thus, only the opposite inequality needs to be shown. For each $k \in \mathbb{Z}^{\geq 0} \sqcup\{\infty\}$, let

$$
E^{k}=\bigcup_{n=1}^{k} E_{n} \in \mathcal{M}, \quad A_{k}=A \cap E^{k} \subset \mathbb{R}
$$

In particular,

$$
A_{k-1} \cap E_{n}=A_{k} \cap E_{n} \forall n<k, \quad A_{k} \cap E^{k-1}=A_{k-1}, \quad A_{k} \cap\left(E^{k-1}\right)^{c}=A_{k} \cap E_{k} \quad \forall k \in \mathbb{Z}^{+} ;
$$

the last equality holds because E_{k} is disjoint from E^{k-1} and thus $E_{k} \subset\left(E^{k-1}\right)^{c}$.
We show by induction that

$$
\begin{equation*}
m^{*}\left(A_{k}\right)=\sum_{n=1}^{k} m^{*}\left(A_{k} \cap E_{n}\right)=\sum_{n=1}^{k} m^{*}\left(A_{\infty} \cap E_{n}\right) \quad \forall k \in \mathbb{Z}^{\geq 0} ; \tag{1}
\end{equation*}
$$

only the first equality needs a proof. This statement is true for $k=0$. Suppose $k \in \mathbb{Z}^{+}$and (1) is true for $k-1$, i.e.

$$
\begin{equation*}
m^{*}\left(A_{k-1}\right)=\sum_{n=1}^{k-1} m^{*}\left(A_{k-1} \cap E_{n}\right)=\sum_{n=1}^{k-1} m^{*}\left(A_{k} \cap E_{n}\right) . \tag{2}
\end{equation*}
$$

Since $E^{k-1} \in \mathcal{M}$,

$$
m^{*}\left(A_{k}\right)=m^{*}\left(A_{k} \cap E^{k-1}\right)+m^{*}\left(A_{k} \cap\left(E^{k-1}\right)^{c}\right)=m^{*}\left(A_{k-1}\right)+m^{*}\left(A_{k} \cap E_{k}\right)
$$

Combining this with (2), we obtain the first equality in (1). Since $A_{1} \subset A_{2} \subset \ldots \subset A_{\infty}$,

$$
m^{*}\left(A_{\infty}\right) \geq \lim _{k \longrightarrow \infty} m^{*}\left(A_{k}\right)=\lim _{k \longrightarrow \infty} \sum_{n=1}^{k} m^{*}\left(A_{\infty} \cap E_{n}\right)=\sum_{n=1}^{\infty} m^{*}\left(A \cap E_{n}\right)
$$

the first equality above is (1). This establishes the desired inequality.

Problem 3 (5pts)

Let $E_{1}, E_{2}, \ldots, E_{20} \subset[0,1]$ be measurable subsets. Show that

$$
m\left(\bigcap_{n=1}^{20} E_{n}\right) \geq \sum_{n=1}^{20} m\left(E_{n}\right)-19
$$

Since E_{n} 's, their intersection E^{\cap}, and $\mathbb{I}=[0,1]$ are measurable and their measures are finite,

$$
\begin{aligned}
m\left(E^{\cap}\right) & =m(\mathbb{I})-m\left(\mathbb{I}-E^{\cap}\right)=1-m\left(\bigcup_{n=1}^{20}\left(\mathbb{I}-E_{n}\right)\right) \geq 1-\sum_{n=1}^{20} m\left(\mathbb{I}-E_{n}\right)=1-\sum_{n=1}^{20}\left(m(\mathbb{I})-m\left(E_{n}\right)\right) \\
& =1-\left(20-\sum_{n=1}^{20} m\left(E_{n}\right)\right) \geq \sum_{n=1}^{20} m\left(E_{n}\right)-19 .
\end{aligned}
$$

Problem 4 (10pts)

Show that there exist $A, B \subset \mathbb{R}$ such that

$$
A \cap B=\emptyset \quad \text { and } \quad m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

By p302, there exists a non-measurable subset $E \subset \mathbb{R}$. Thus, there exists $F \subset \mathbb{R}$ such that

$$
m^{*}(F)<m^{*}(F \cap E)+m^{*}\left(F \cap E^{c}\right)
$$

We can thus take $A=F \cap E$ and $B=F \cap E^{c}$.

Here is a more explicit example. Let $E_{1}, E_{2}, \ldots \subset[-1,2]$ be the translates of the non-measurable set $E \subset[0,1]$ constructed on p302. Since the outer measure m^{*} is translation-invariant, there exists $\delta \in[0,1]$ such that $m^{*}\left(E_{n}\right)=\delta$ for all $n \in \mathbb{Z}^{+}$. Since all null sets are measurable, $\delta>0$. Since

$$
\bigcup_{n=1}^{\infty} E_{n} \subset[-1,2] \quad \text { and } \quad m^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq 3
$$

there exists $k \in \mathbb{Z}^{+}$such that

$$
m^{*}\left(\bigcup_{n=1}^{k} E_{n}\right)<k \delta=\sum_{n=1}^{k} m^{*}\left(E_{n}\right)
$$

Take the smallest such k; then $k \geq 2$. Let

$$
A=\bigcup_{n=1}^{k-1} E_{n}, \quad B=E_{k}
$$

Since all E_{n} 's are pairwise disjoint, $A \cap B=\emptyset$. By the choice of k,

$$
\begin{gathered}
m^{*}(A)=m^{*}\left(\bigcup_{n=1}^{k-1} E_{n}\right)=(k-1) \delta, \quad m(B)=m\left(E_{k}\right)=\delta \\
m^{*}(A \cup B)=m^{*}\left(\bigcup_{n=1}^{k} E_{n}\right)<k \delta=m^{*}(A)+m^{*}(B)
\end{gathered}
$$

So, A and B are as needed.

Problem 5 (8pts)

Let $\ell_{1}, \ell_{2}, \ldots \in(0,1)$ be a sequence such that $\sum_{n=1}^{\infty} 2^{n-1} \ell_{n}<1$. Starting with $C_{0} \equiv[0,1]$, let $C_{n} \subset[0,1]$
for $n \in \mathbb{Z}^{+}$be the subset obtained from C_{n-1} by removing the open middle interval of length ℓ_{n} from each of the 2^{n-1} disjoint closed intervals making up C_{n-1}. Show that

$$
C \equiv \bigcap_{n=1}^{\infty} C_{n} \subset[0,1]
$$

is a closed Borel subset. Find its measure.
The set C is closed because it is an intersection of closed sets. It is a Borel set because every closed set is Borel. Since $C_{n} \subset[0,1]$ for $n \in \mathbb{Z}^{+}$is obtained from C_{n-1} by removing 2^{n-1} disjoint intervals of length ℓ_{n},

$$
m\left(C_{n}\right)=m([0,1])-\sum_{k=1}^{n} 2^{k-1} \ell_{k}
$$

Since $C_{0} \supset C_{1} \supset \ldots$ and $m\left(C_{0}\right)<\infty$,

$$
m(C)=\left(\bigcap_{n=0}^{\infty} C_{n}\right)=\lim _{n \longrightarrow \infty} m\left(C_{n}\right)=1-\sum_{k=1}^{\infty} 2^{k-1} \ell_{k}
$$

Problem 6 (12pts + bonus 5pts)

For $X \subset \mathbb{R}$, let

$$
\mathcal{M}_{X}=\{E \cap X: E \in \mathcal{M}\}, \quad \mu_{X}=\left.m^{*}\right|_{\mathcal{M}_{X}}
$$

(a) Show that $\left(X, \mathcal{M}_{X}, \mu_{X}\right)$ is a complete measure space if $X \subset \mathbb{R}$ is measurable.
(b) Which properties of a complete measure space $\left(X, \mathcal{M}_{X}, \mu_{X}\right)$ may not satisfy if X is not assumed to be measurable? Give an example.
(a) Since $\mathbb{R} \in \mathcal{M}, X=\mathbb{R} \cap X \in \mathcal{M}_{X}$. If $A \in \mathcal{M}_{X}$, then $A=E \cap X$ for some $E \in \mathcal{M}$ and

$$
X-A=(\mathbb{R}-E) \cap X \in \mathcal{M}_{X}
$$

because $\mathbb{R}-E \in \mathcal{M}$. If $A_{1}, A_{2}, \ldots \in \mathcal{M}_{X}$, then $A_{n}=E_{n} \cap X$ for some $E_{n} \in \mathcal{M}$ and

$$
\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty}\left(E_{n} \cap X\right)=\left(\bigcup_{n=1}^{\infty} E_{n}\right) \cap X \in \mathcal{M}_{X}
$$

because the union of E_{n} 's belongs to \mathcal{M}. Thus, \mathcal{M}_{X} is a σ-field on X. If $A \subset B$ for some $B \in \mathcal{M}_{X}$ with $\mu_{X}(B)=m^{*}(B)=0$, then B is a null set and thus so is A. Since \mathcal{M} contains all null sets, $A \in \mathcal{M}$ and so $A=A \cap X \in \mathcal{M}_{X}$. Thus, the σ-field \mathcal{M}_{X} is complete with respect to μ_{X}.

Since $X \in \mathcal{M}$ and \mathcal{M} is closed under intersections, $\mathcal{M}_{X} \subset \mathcal{M}$. If $A_{1}, A_{2}, \ldots \in \mathcal{M}_{X}$ are such that $A_{n} \cap A_{n^{\prime}}=\emptyset$ for all $n \neq n^{\prime}$,

$$
\mu_{X}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=m\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} m\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu_{X}\left(A_{n}\right)
$$

Thus, μ_{X} is a measure.
(b) The only part of the argument in (a) that depends on X being measurable is that μ_{X} is countably additive. Thus, $\left(X, \mathcal{M}_{X}, \mu_{X}\right)$ satisfies all properties of a complete measure space with the possible exception of the countable additivity for μ_{X}.

Bonus: In fact, μ_{X} is countably additive even if X is not measurable. Suppose $A_{1}, A_{2}, \ldots \in \mathcal{M}_{X}$ are such that $A_{n} \cap A_{n^{\prime}}=\emptyset$ for all $n \neq n^{\prime}$ and $E_{n} \in \mathcal{M}$ are such that $A_{n}=E_{n} \cap X$. Let

$$
F_{n}=E_{n}-E_{1} \cup \ldots \cup E_{n-1} \in \mathcal{M}
$$

Thus,

$$
\begin{gathered}
F_{n} \cap F_{n}^{\prime}=\emptyset \forall n \neq n^{\prime}, \quad \bigcup_{n=1}^{\infty} A_{n}=\left(\bigcup_{n=1}^{\infty} E_{n}\right) \cap X=\left(\bigcup_{n=1}^{\infty} F_{n}\right) \cap X \\
F_{n} \cap X=\left(E_{n}-\left(E_{1} \cap E_{n}\right) \cup \ldots \cup\left(E_{n-1} \cap E_{n}\right)\right) \cap X=A_{n}-\left(A_{1} \cap A_{n}\right) \cup \ldots \cup\left(A_{n-1} \cap A_{n}\right)=A_{n}
\end{gathered}
$$

From Problem 2 with $A=X$ and E_{n} replaced by F_{n}, we then obtain

$$
\mu_{X}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=m^{*}\left(X \cap \bigcup_{n=1}^{\infty} F_{n}\right)=\sum_{n=1}^{\infty} m^{*}\left(X \cap F_{n}\right)=\sum_{n=1}^{\infty} \mu_{X}\left(A_{n}\right)
$$

Thus, μ_{X} is countably additive.

