
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 11

Problem 1 (8pts)

Let µ, ν1, ν2 be measures on a measurable space (X,F). Show that

(a) if ν1, ν2<<µ, then ν1+ν2<<µ.

(b) if ν1, ν2⊥µ, then ν1+ν2⊥µ.

(c) if ν1<<µ and ν2⊥µ, then ν1⊥ν2.

(a; 2pts) Suppose E∈F and µ(E)=0. Then,

{

ν1+ν2
}

(E) = ν1(E)+ν2(E) = 0+0 = 0.

Thus, ν1+ν2<<µ.

(b; 4pts) Let A1, A2, B1, B2∈F be such that

A1∩B1, A2∩B2 = ∅, µ(Ac
1), µ(A

c
2), ν1(B

c
1), ν2(B

c
2) = 0.

Take A=A1∩A2 and B=B1∪B2, Then, A∩B=∅ and

µ(Ac) = µ(Ac
1∪A

c
2) ≤ µ(Ac

1)+µ(Ac
2) = 0,

{

ν1+ν2
}

(Bc) =
{

ν1+ν2
}

(Bc
1∩B

c
2) ≤ ν1(B

c
1)+ν2(B

c
2) = 0.

Thus, ν1+ν2⊥µ.

(c; 2pts) Let A,B ∈F be such that A∩B = ∅ and µ(Ac), ν2(B
c) = 0. Since ν1 << µ, ν1(A

c) = 0.
Since A∩B=∅ and ν2(B

c)=0, this implies that ν1⊥ν2.

Problem 2 (10pts)

Let µ, ν be measures on a measurable space (X,F).

(a) Suppose for every ǫ > 0 there exists δ > 0 such that ν(E)< ǫ for every E ∈F with µ(E)< δ.
Show that ν<<µ.

(b) Show that the converse is true if ν(X)<∞.

(c) Give an example showing that the converse can fail if µ(X)<∞ and ν(X)=∞.

(a; 2pts) Suppose E∈F and µ(E)=0. Since µ(E)<δ for every δ>0, the assumption implies that
ν(E)<ǫ for every ǫ>0. Thus, ν(E)=0 and ν<<µ.

(b; 4pts) Suppose not. For some ǫ > 0 and every n ∈ Z
+, there then exists En ∈ F such that

ν(En)≥ǫ and µ(En)<2−n. Let

A =
∞
⋂

k=1

∞
⋃

n=k

En .



Thus, A∈F and

µ(A) ≤ µ

( ∞
⋃

n=k

En

)

≤
∞
∑

n=k

µ(En) = 2−k+1 ∀ k∈Z
+, (1)

ν

( ∞
⋃

n=k

En

)

≥ ǫ ∀ k∈Z
+, ν(A) = lim

k−→∞
ν

( ∞
⋃

n=k

En

)

≥ ǫ; (2)

the equality in the last statement above uses that

ν

( ∞
⋃

n=1

En

)

≤ ν(X) < ∞.

By (1), µ(A)=0. By the second statement in (2), ν(A)>0. This contradicts ν<<µ.

(c; 4pts) Let ν=mR+ be the standard Lebesgue measure on (R,MR+) and

µ : MR+ −→ [0,∞], µ(E) =
∞
∑

n=1

2−nm
(

E∩[n−1, n]
)

.

If µ(E)=0, then m(E∩[n−1, n]) for every n∈Z
+ and ν(E)=0. Thus, ν<<µ. On the other hand,

µ([n−1, n]) = 2−n and ν([n−1, n]) = 1.

Thus, ν and µ do not satisfy the ǫ-δ condition in (a).

Problem 3 (8pts)

Let m be the standard Lebesgue measure on (R,M) and µ be the counting measure on (R,M).
Show that m<<µ, but there exists no Lebesgue measurable function g : R−→R

≥0 such that m=µg.

Why doesn’t this contradict the Radon-Nikodym theorem?

If E∈M and µ(E)=0, then E=∅ and so m(E)=0. Thus, m<<µ. If g : R−→R
≥0 is a Lebesgue

measurable function and m=µg, then

0 = m
(

{x}
)

=

∫

{x}
gdµ = g(x)µ

(

{x}
)

= g(x) ∀ x∈R.

This implies that g=0. Since m is not the zero measure on (R,M), we conclude that m 6=µg for
any Lebesgue measurable function g : R−→ R

≥0. This does not contradict the Radon-Nikodym
theorem because the measure space (R,M, µ) is not σ-finite (countable union of subsets Xn of R
with µ(Xn)<∞ is countable).

Problem 4 (14pts)

Let F=2Z
+

be the σ-field of all subsets of Z+ and

µ, ν : F −→ R, µ(E) =
∑

n∈E

2−n, ν(E) =
∑

n∈E

3−n .
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(a) Show that ν<<µ and µ<<ν.

(b) Find the Radon-Nikodym derivatives dν
dµ and dµ

dν .

(c) For k, a∈Z
+, let

Ek;a =
{

n∈Z
+ : n≡a mod k

}

.

Show that for each k∈Z
+, the collection

Pk ≡
{

Ek;a : a=1, 2, . . . , k
}

is a finite partition of Z+ into measurable subsets.

(d) For each k∈Z
+, find the associated function hPk

: Z+−→R as on page 191. Find the limit of

this sequence of functions.

(a; 2pts) If E∈F and µ(E)=0, then E=∅ and so ν(E)=0. Thus, ν<<µ. The same applies with
µ and ν interchanged.

(b; 4pts) For any g : Z+−→ [0,∞] and E⊂Z
+,

∫

E

gdµ =
∑

n∈E

g(n)2−n,

∫

E

gdν =
∑

n∈E

g(n)3−n .

Thus,
dν

dµ
: Z+ −→ [0,∞], n −→ (2/3)n,

dµ

dν
: Z+ −→ [0,∞], n −→ (3/2)n .

(c; 3pts) The collection Pk is finite because it contains only finitely many subsets of Z+ (k, more
precisely). Each element Ek;a of Pk is also an element of F and so Pk is a collection of measurable
subsets. For every n∈Z

+, there exists a unique a=1, 2, . . . , k such that n−a is divisible k. For
every n∈Z

+, there thus exists a unique a=1, 2, . . . , k such that n∈Ek;a. This means that

Ek;a ∩ Ek;a′ ∀ a, a′=1, 2, . . . , k, a 6=a′, Z
+ =

a=k
⋃

a=1

Ek;a .

Thus, Pk is a partition of Z+.

(d; 5pts) For k∈Z
+ and a=1, 2, . . . , k,

µ(Ek;a) =
∞
∑

n=0

2−(a+kn) =
2−a

1−2−k
, ν(Ek;a) =

∞
∑

n=0

3−(a+kn) =
3−a

1−3−k
.

By the definition on page 191,

hPk
: Z+ −→ R, hPk

(n) =
ν(Ek;a)

µ(Ek;a)
=

(

2

3

)a 1−2−k

1−3−k
∀n∈Ek;a.

In particular,

hPk
(n) =

(

2

3

)n 1−2−k

1−3−k
∀ k≥n.

Thus, hPk
(n)−→ (2/3)n as k −→, i.e. hPk

converges to the Radon-Nikodym derivatives dν
dµ of ν

with respect to ν.
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