MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 11

Problem 1 (8pts)

Let μ, ν_1, ν_2 be measures on a measurable space (X, \mathcal{F}) . Show that

- (a) if $\nu_1, \nu_2 \ll \mu$, then $\nu_1 + \nu_2 \ll \mu$.
- (b) if $\nu_1, \nu_2 \perp \mu$, then $\nu_1 + \nu_2 \perp \mu$.
- (c) if $\nu_1 \ll \mu$ and $\nu_2 \perp \mu$, then $\nu_1 \perp \nu_2$.

(a; **2pts**) Suppose $E \in \mathcal{F}$ and $\mu(E) = 0$. Then,

$$\{\nu_1 + \nu_2\}(E) = \nu_1(E) + \nu_2(E) = 0 + 0 = 0.$$

Thus, $\nu_1 + \nu_2 \ll \mu$.

(b; 4pts) Let $A_1, A_2, B_1, B_2 \in \mathcal{F}$ be such that

$$A_1 \cap B_1, A_2 \cap B_2 = \emptyset, \qquad \mu(A_1^c), \mu(A_2^c), \nu_1(B_1^c), \nu_2(B_2^c) = 0.$$

Take $A = A_1 \cap A_2$ and $B = B_1 \cup B_2$, Then, $A \cap B = \emptyset$ and

$$\mu(A^c) = \mu(A_1^c \cup A_2^c) \le \mu(A_1^c) + \mu(A_2^c) = 0,$$

$$\{\nu_1 + \nu_2\}(B^c) = \{\nu_1 + \nu_2\}(B_1^c \cap B_2^c) \le \nu_1(B_1^c) + \nu_2(B_2^c) = 0.$$

Thus, $\nu_1 + \nu_2 \perp \mu$.

(c; **2pts**) Let $A, B \in \mathcal{F}$ be such that $A \cap B = \emptyset$ and $\mu(A^c), \nu_2(B^c) = 0$. Since $\nu_1 \ll \mu, \nu_1(A^c) = 0$. Since $A \cap B = \emptyset$ and $\nu_2(B^c) = 0$, this implies that $\nu_1 \perp \nu_2$.

Problem 2 (10pts)

Let μ, ν be measures on a measurable space (X, \mathcal{F}) .

- (a) Suppose for every $\epsilon > 0$ there exists $\delta > 0$ such that $\nu(E) < \epsilon$ for every $E \in \mathcal{F}$ with $\mu(E) < \delta$. Show that $\nu \ll \mu$.
- (b) Show that the converse is true if $\nu(X) < \infty$.
- (c) Give an example showing that the converse can fail if $\mu(X) < \infty$ and $\nu(X) = \infty$.

(a; **2pts**) Suppose $E \in \mathcal{F}$ and $\mu(E) = 0$. Since $\mu(E) < \delta$ for every $\delta > 0$, the assumption implies that $\nu(E) < \epsilon$ for every $\epsilon > 0$. Thus, $\nu(E) = 0$ and $\nu \ll \mu$.

(b; **4pts**) Suppose not. For some $\epsilon > 0$ and every $n \in \mathbb{Z}^+$, there then exists $E_n \in \mathcal{F}$ such that $\nu(E_n) \ge \epsilon$ and $\mu(E_n) < 2^{-n}$. Let

$$A = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

Thus, $A \in \mathcal{F}$ and

$$\mu(A) \le \mu\left(\bigcup_{n=k}^{\infty} E_n\right) \le \sum_{n=k}^{\infty} \mu(E_n) = 2^{-k+1} \quad \forall k \in \mathbb{Z}^+,$$
(1)

$$\nu\left(\bigcup_{n=k}^{\infty} E_n\right) \ge \epsilon \quad \forall k \in \mathbb{Z}^+, \qquad \nu(A) = \lim_{k \to \infty} \nu\left(\bigcup_{n=k}^{\infty} E_n\right) \ge \epsilon; \tag{2}$$

the equality in the last statement above uses that

$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) \le \nu(X) < \infty.$$

By (1), $\mu(A) = 0$. By the second statement in (2), $\nu(A) > 0$. This contradicts $\nu \ll \mu$.

(c; 4pts) Let $\nu = m_{\mathbb{R}^+}$ be the standard Lebesgue measure on $(\mathbb{R}, \mathcal{M}_{\mathbb{R}^+})$ and

$$\mu \colon \mathcal{M}_{\mathbb{R}^+} \longrightarrow [0,\infty], \qquad \mu(E) = \sum_{n=1}^{\infty} 2^{-n} m \big(E \cap [n-1,n] \big).$$

If $\mu(E)=0$, then $m(E\cap[n-1,n])$ for every $n\in\mathbb{Z}^+$ and $\nu(E)=0$. Thus, $\nu\ll\mu$. On the other hand,

$$\mu([n-1,n]) = 2^{-n}$$
 and $\nu([n-1,n]) = 1.$

Thus, ν and μ do not satisfy the ϵ - δ condition in (a).

Problem 3 (8pts)

Let m be the standard Lebesgue measure on $(\mathbb{R}, \mathcal{M})$ and μ be the counting measure on $(\mathbb{R}, \mathcal{M})$. Show that $m \ll \mu$, but there exists no Lebesgue measurable function $g: \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}$ such that $m = \mu_g$. Why doesn't this contradict the Radon-Nikodym theorem?

If $E \in \mathcal{M}$ and $\mu(E) = 0$, then $E = \emptyset$ and so m(E) = 0. Thus, $m \ll \mu$. If $g : \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}$ is a Lebesgue measurable function and $m = \mu_g$, then

$$0 = m\bigl(\{x\}\bigr) = \int_{\{x\}} g \mathrm{d}\mu = g(x)\mu\bigl(\{x\}\bigr) = g(x) \qquad \forall \ x \in \mathbb{R}.$$

This implies that g=0. Since m is not the zero measure on $(\mathbb{R}, \mathcal{M})$, we conclude that $m \neq \mu_g$ for any Lebesgue measurable function $g: \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}$. This does not contradict the Radon-Nikodym theorem because the measure space $(\mathbb{R}, \mathcal{M}, \mu)$ is not σ -finite (countable union of subsets X_n of \mathbb{R} with $\mu(X_n) < \infty$ is countable).

Problem 4 (14pts)

Let $\mathcal{F} = 2^{\mathbb{Z}^+}$ be the σ -field of all subsets of \mathbb{Z}^+ and

$$\mu,\nu\colon \mathcal{F} \longrightarrow \mathbb{R}, \qquad \mu(E) = \underset{n \in E}{\sum} 2^{-n}, \quad \nu(E) = \underset{n \in E}{\sum} 3^{-n}$$

- (a) Show that $\nu \ll \mu$ and $\mu \ll \nu$.
- (b) Find the Radon-Nikodym derivatives $\frac{d\nu}{d\mu}$ and $\frac{d\mu}{d\nu}$.
- (c) For $k, a \in \mathbb{Z}^+$, let

$$E_{k;a} = \{ n \in \mathbb{Z}^+ \colon n \equiv a \mod k \}.$$

Show that for each $k \in \mathbb{Z}^+$, the collection

$$\mathcal{P}_k \equiv \left\{ E_{k;a} \colon a = 1, 2, \dots, k \right\}$$

is a finite partition of \mathbb{Z}^+ into measurable subsets.

(d) For each $k \in \mathbb{Z}^+$, find the associated function $h_{\mathcal{P}_k} : \mathbb{Z}^+ \longrightarrow \mathbb{R}$ as on page 191. Find the limit of this sequence of functions.

(a; **2pts**) If $E \in \mathcal{F}$ and $\mu(E) = 0$, then $E = \emptyset$ and so $\nu(E) = 0$. Thus, $\nu \ll \mu$. The same applies with μ and ν interchanged.

(b; **4pts**) For any $g: \mathbb{Z}^+ \longrightarrow [0, \infty]$ and $E \subset \mathbb{Z}^+$,

$$\int_E g \mathrm{d}\mu = \sum_{n \in E} g(n) 2^{-n}, \qquad \int_E g \mathrm{d}\nu = \sum_{n \in E} g(n) 3^{-n}.$$

Thus,

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu} \colon \mathbb{Z}^+ \longrightarrow [0,\infty], \quad n \longrightarrow (2/3)^n, \qquad \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \colon \mathbb{Z}^+ \longrightarrow [0,\infty], \quad n \longrightarrow (3/2)^n$$

(c; **3pts**) The collection \mathcal{P}_k is finite because it contains only finitely many subsets of \mathbb{Z}^+ (k, more precisely). Each element $E_{k;a}$ of \mathcal{P}_k is also an element of \mathcal{F} and so \mathcal{P}_k is a collection of measurable subsets. For every $n \in \mathbb{Z}^+$, there exists a unique $a = 1, 2, \ldots, k$ such that n-a is divisible k. For every $n \in \mathbb{Z}^+$, there thus exists a unique $a = 1, 2, \ldots, k$ such that $n \in E_{k;a}$. This means that

$$E_{k;a} \cap E_{k;a'} \quad \forall a, a' = 1, 2, \dots, k, \ a \neq a', \qquad \mathbb{Z}^+ = \bigcup_{a=1}^{a=k} E_{k;a}.$$

Thus, \mathcal{P}_k is a partition of \mathbb{Z}^+ .

(d; **5pts**) For $k \in \mathbb{Z}^+$ and $a = 1, 2, \ldots, k$,

$$\mu(E_{k;a}) = \sum_{n=0}^{\infty} 2^{-(a+kn)} = \frac{2^{-a}}{1-2^{-k}}, \qquad \nu(E_{k;a}) = \sum_{n=0}^{\infty} 3^{-(a+kn)} = \frac{3^{-a}}{1-3^{-k}}.$$

By the definition on page 191,

$$h_{\mathcal{P}_k} \colon \mathbb{Z}^+ \longrightarrow \mathbb{R}, \qquad h_{\mathcal{P}_k}(n) = \frac{\nu(E_{k;a})}{\mu(E_{k;a})} = \left(\frac{2}{3}\right)^a \frac{1 - 2^{-k}}{1 - 3^{-k}} \quad \forall n \in E_{k;a}.$$

In particular,

$$h_{\mathcal{P}_k}(n) = \left(\frac{2}{3}\right)^n \frac{1\!-\!2^{-k}}{1\!-\!3^{-k}} \quad \forall k \ge n.$$

Thus, $h_{\mathcal{P}_k}(n) \longrightarrow (2/3)^n$ as $k \longrightarrow$, i.e. $h_{\mathcal{P}_k}$ converges to the Radon-Nikodym derivatives $\frac{d\nu}{d\mu}$ of ν with respect to ν .