MAT 324: Real Analysis, Fall 2017
 Solutions to Problem Set 11

Problem 1 (8pts)

Let μ, ν_{1}, ν_{2} be measures on a measurable space (X, \mathcal{F}). Show that
(a) if $\nu_{1}, \nu_{2} \ll \mu$, then $\nu_{1}+\nu_{2} \ll \mu$.
(b) if $\nu_{1}, \nu_{2} \perp \mu$, then $\nu_{1}+\nu_{2} \perp \mu$.
(c) if $\nu_{1} \ll \mu$ and $\nu_{2} \perp \mu$, then $\nu_{1} \perp \nu_{2}$.
(a; 2pts) Suppose $E \in \mathcal{F}$ and $\mu(E)=0$. Then,

$$
\left\{\nu_{1}+\nu_{2}\right\}(E)=\nu_{1}(E)+\nu_{2}(E)=0+0=0
$$

Thus, $\nu_{1}+\nu_{2} \ll \mu$.
(b; 4pts) Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathcal{F}$ be such that

$$
A_{1} \cap B_{1}, A_{2} \cap B_{2}=\emptyset, \quad \mu\left(A_{1}^{c}\right), \mu\left(A_{2}^{c}\right), \nu_{1}\left(B_{1}^{c}\right), \nu_{2}\left(B_{2}^{c}\right)=0
$$

Take $A=A_{1} \cap A_{2}$ and $B=B_{1} \cup B_{2}$, Then, $A \cap B=\emptyset$ and

$$
\begin{aligned}
\mu\left(A^{c}\right) & =\mu\left(A_{1}^{c} \cup A_{2}^{c}\right) \leq \mu\left(A_{1}^{c}\right)+\mu\left(A_{2}^{c}\right)=0 \\
\left\{\nu_{1}+\nu_{2}\right\}\left(B^{c}\right) & =\left\{\nu_{1}+\nu_{2}\right\}\left(B_{1}^{c} \cap B_{2}^{c}\right) \leq \nu_{1}\left(B_{1}^{c}\right)+\nu_{2}\left(B_{2}^{c}\right)=0
\end{aligned}
$$

Thus, $\nu_{1}+\nu_{2} \perp \mu$.
(c; 2pts) Let $A, B \in \mathcal{F}$ be such that $A \cap B=\emptyset$ and $\mu\left(A^{c}\right), \nu_{2}\left(B^{c}\right)=0$. Since $\nu_{1} \ll \mu, \nu_{1}\left(A^{c}\right)=0$. Since $A \cap B=\emptyset$ and $\nu_{2}\left(B^{c}\right)=0$, this implies that $\nu_{1} \perp \nu_{2}$.

Problem 2 (10pts)

Let μ, ν be measures on a measurable space (X, \mathcal{F}).
(a) Suppose for every $\epsilon>0$ there exists $\delta>0$ such that $\nu(E)<\epsilon$ for every $E \in \mathcal{F}$ with $\mu(E)<\delta$. Show that $\nu \ll \mu$.
(b) Show that the converse is true if $\nu(X)<\infty$.
(c) Give an example showing that the converse can fail if $\mu(X)<\infty$ and $\nu(X)=\infty$.
(a; 2pts) Suppose $E \in \mathcal{F}$ and $\mu(E)=0$. Since $\mu(E)<\delta$ for every $\delta>0$, the assumption implies that $\nu(E)<\epsilon$ for every $\epsilon>0$. Thus, $\nu(E)=0$ and $\nu \ll \mu$.
(b; 4pts) Suppose not. For some $\epsilon>0$ and every $n \in \mathbb{Z}^{+}$, there then exists $E_{n} \in \mathcal{F}$ such that $\nu\left(E_{n}\right) \geq \epsilon$ and $\mu\left(E_{n}\right)<2^{-n}$. Let

$$
A=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}
$$

Thus, $A \in \mathcal{F}$ and

$$
\begin{gather*}
\mu(A) \leq \mu\left(\bigcup_{n=k}^{\infty} E_{n}\right) \leq \sum_{n=k}^{\infty} \mu\left(E_{n}\right)=2^{-k+1} \quad \forall k \in \mathbb{Z}^{+} \tag{1}\\
\nu\left(\bigcup_{n=k}^{\infty} E_{n}\right) \geq \epsilon \forall k \in \mathbb{Z}^{+}, \quad \nu(A)=\lim _{k \longrightarrow \infty} \nu\left(\bigcup_{n=k}^{\infty} E_{n}\right) \geq \epsilon \tag{2}
\end{gather*}
$$

the equality in the last statement above uses that

$$
\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \nu(X)<\infty
$$

By (1), $\mu(A)=0$. By the second statement in (2), $\nu(A)>0$. This contradicts $\nu \ll \mu$.
(c; 4pts) Let $\nu=m_{\mathbb{R}^{+}}$be the standard Lebesgue measure on $\left(\mathbb{R}, \mathcal{M}_{\mathbb{R}^{+}}\right)$and

$$
\mu: \mathcal{M}_{\mathbb{R}^{+}} \longrightarrow[0, \infty], \quad \mu(E)=\sum_{n=1}^{\infty} 2^{-n} m(E \cap[n-1, n])
$$

If $\mu(E)=0$, then $m(E \cap[n-1, n])$ for every $n \in \mathbb{Z}^{+}$and $\nu(E)=0$. Thus, $\nu \ll \mu$. On the other hand,

$$
\mu([n-1, n])=2^{-n} \quad \text { and } \quad \nu([n-1, n])=1
$$

Thus, ν and μ do not satisfy the $\epsilon-\delta$ condition in (a).

Problem 3 (8pts)

Let m be the standard Lebesgue measure on $(\mathbb{R}, \mathcal{M})$ and μ be the counting measure on $(\mathbb{R}, \mathcal{M})$. Show that $m \ll \mu$, but there exists no Lebesgue measurable function $g: \mathbb{R} \longrightarrow \mathbb{R} \geq 0$ such that $m=\mu_{g}$. Why doesn't this contradict the Radon-Nikodym theorem?

If $E \in \mathcal{M}$ and $\mu(E)=0$, then $E=\emptyset$ and so $m(E)=0$. Thus, $m \ll \mu$. If $g: \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}$ is a Lebesgue measurable function and $m=\mu_{g}$, then

$$
0=m(\{x\})=\int_{\{x\}} g \mathrm{~d} \mu=g(x) \mu(\{x\})=g(x) \quad \forall x \in \mathbb{R} .
$$

This implies that $g=0$. Since m is not the zero measure on $(\mathbb{R}, \mathcal{M})$, we conclude that $m \neq \mu_{g}$ for any Lebesgue measurable function $g: \mathbb{R} \longrightarrow \mathbb{R}^{\geq 0}$. This does not contradict the Radon-Nikodym theorem because the measure space $(\mathbb{R}, \mathcal{M}, \mu)$ is not σ-finite (countable union of subsets X_{n} of \mathbb{R} with $\mu\left(X_{n}\right)<\infty$ is countable).

Problem 4 (14pts)

Let $\mathcal{F}=2^{\mathbb{Z}^{+}}$be the σ-field of all subsets of \mathbb{Z}^{+}and

$$
\mu, \nu: \mathcal{F} \longrightarrow \mathbb{R}, \quad \mu(E)=\sum_{n \in E} 2^{-n}, \quad \nu(E)=\sum_{n \in E} 3^{-n} .
$$

(a) Show that $\nu \ll \mu$ and $\mu \ll \nu$.
(b) Find the Radon-Nikodym derivatives $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$ and $\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$.
(c) For $k, a \in \mathbb{Z}^{+}$, let

$$
E_{k ; a}=\left\{n \in \mathbb{Z}^{+}: n \equiv a \bmod k\right\} .
$$

Show that for each $k \in \mathbb{Z}^{+}$, the collection

$$
\mathcal{P}_{k} \equiv\left\{E_{k ; a}: a=1,2, \ldots, k\right\}
$$

is a finite partition of \mathbb{Z}^{+}into measurable subsets.
(d) For each $k \in \mathbb{Z}^{+}$, find the associated function $h_{\mathcal{P}_{k}}: \mathbb{Z}^{+} \longrightarrow \mathbb{R}$ as on page 191. Find the limit of this sequence of functions.
(a; 2pts) If $E \in \mathcal{F}$ and $\mu(E)=0$, then $E=\emptyset$ and so $\nu(E)=0$. Thus, $\nu \ll \mu$. The same applies with μ and ν interchanged.
(b; $\mathbf{4 p t s}$) For any $g: \mathbb{Z}^{+} \longrightarrow[0, \infty]$ and $E \subset \mathbb{Z}^{+}$,

$$
\int_{E} g \mathrm{~d} \mu=\sum_{n \in E} g(n) 2^{-n}, \quad \int_{E} g \mathrm{~d} \nu=\sum_{n \in E} g(n) 3^{-n} .
$$

Thus,

$$
\frac{\mathrm{d} \nu}{\mathrm{~d} \mu}: \mathbb{Z}^{+} \longrightarrow[0, \infty], \quad n \longrightarrow(2 / 3)^{n}, \quad \frac{\mathrm{~d} \mu}{\mathrm{~d} \nu}: \mathbb{Z}^{+} \longrightarrow[0, \infty], \quad n \longrightarrow(3 / 2)^{n}
$$

(c; 3pts) The collection \mathcal{P}_{k} is finite because it contains only finitely many subsets of \mathbb{Z}^{+}(k, more precisely). Each element $E_{k ; a}$ of \mathcal{P}_{k} is also an element of \mathcal{F} and so \mathcal{P}_{k} is a collection of measurable subsets. For every $n \in \mathbb{Z}^{+}$, there exists a unique $a=1,2, \ldots, k$ such that $n-a$ is divisible k. For every $n \in \mathbb{Z}^{+}$, there thus exists a unique $a=1,2, \ldots, k$ such that $n \in E_{k ; a}$. This means that

$$
E_{k ; a} \cap E_{k ; a^{\prime}} \quad \forall a, a^{\prime}=1,2, \ldots, k, a \neq a^{\prime}, \quad \mathbb{Z}^{+}=\bigcup_{a=1}^{a=k} E_{k ; a}
$$

Thus, \mathcal{P}_{k} is a partition of \mathbb{Z}^{+}.
(d; 5pts) For $k \in \mathbb{Z}^{+}$and $a=1,2, \ldots, k$,

$$
\mu\left(E_{k ; a}\right)=\sum_{n=0}^{\infty} 2^{-(a+k n)}=\frac{2^{-a}}{1-2^{-k}}, \quad \nu\left(E_{k ; a}\right)=\sum_{n=0}^{\infty} 3^{-(a+k n)}=\frac{3^{-a}}{1-3^{-k}} .
$$

By the definition on page 191,

$$
h_{\mathcal{P}_{k}}: \mathbb{Z}^{+} \longrightarrow \mathbb{R}, \quad h_{\mathcal{P}_{k}}(n)=\frac{\nu\left(E_{k ; a}\right)}{\mu\left(E_{k ; a}\right)}=\left(\frac{2}{3}\right)^{a} \frac{1-2^{-k}}{1-3^{-k}} \quad \forall n \in E_{k ; a}
$$

In particular,

$$
h_{\mathcal{P}_{k}}(n)=\left(\frac{2}{3}\right)^{n} \frac{1-2^{-k}}{1-3^{-k}} \quad \forall k \geq n .
$$

Thus, $h_{\mathcal{P}_{k}}(n) \longrightarrow(2 / 3)^{n}$ as $k \longrightarrow$, i.e. $h_{\mathcal{P}_{k}}$ converges to the Radon-Nikodym derivatives $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$ of ν with respect to ν.

