MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 10

Problem 1 (16pts)

Suppose X is a set and $\mu^*: 2^X \longrightarrow [0, \infty]$ is a function such that

$$\mu^{*}(\emptyset) = 0, \quad \mu^{*}(A) \leq \mu^{*}(B) \text{ if } A \subset B, \quad and \quad \mu^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}(A_{n}) \quad \forall A_{1}, A_{2}, \ldots \subset X.$$
 (1)

Define

$$\mathcal{M}_{\mu^*} = \left\{ E \subset X \colon \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \ \forall A \subset X \right\}.$$

 $Show \ that$

(a)
$$\mu^*(A \cup B) \leq \mu^*(A) + \mu^*(B)$$
 for all $A, B \subset X$;

(b)
$$X \in \mathcal{M}_{\mu^*}, E^c \in \mathcal{M}_{\mu^*}$$
 if $E \in \mathcal{M}_{\mu^*}$, and $E \in \mathcal{M}_{\mu^*}$ if $\mu^*(E) = 0$;

(c) if $E, F \in \mathcal{M}_{\mu^*}$ and $A \subset X$, then

$$\mu^*(A) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F^c) + \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F^c)$$

$$\geq \mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c);$$

(d) \mathcal{M}_{μ^*} is a field (not σ -field yet) on X and

$$\mu^* \left(\bigcup_{n=1}^k E_n \right) = \sum_{n=1}^k \mu^*(E_n) \quad \forall \ E_1, \dots, E_k \in \mathcal{M}_{\mu^*} \text{ s.t. } E_n \cap E_{n'} = \emptyset \ \forall n \neq n'; \tag{2}$$

(e) if $E_1, E_2, \ldots \in \mathcal{M}_{\mu^*}$ and $E_n \cap E_{n'} = \emptyset$ for all $n \neq n'$, then

$$\mu^* \left(A \cap \bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} \mu^* (A \cap E_n) \quad \forall \ A \subset X, \quad \mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} \mu^* (E_n); \tag{3}$$

(f) $(X, \mathcal{M}_{\mu^*}, \mu \equiv \mu^*|_{\mathcal{M}_{\mu^*}})$ is a complete measure space.

(a; **2pts**) By the third condition in (1) with $A_n = \emptyset$ for n > k and the first condition in (1),

$$\mu^* \left(\bigcup_{n=1}^k A_n \right) \le \sum_{n=1}^k \mu^*(A_n) \qquad \forall A_1, A_2, \dots, A_k \subset X, \ k \in \mathbb{Z}^{\ge 0}.$$

$$\tag{4}$$

The claim is the k=2 case of this statement with $A_1=A$ and $A_2=B$.

(b; **2pts**) By (a) with (A, B) replaced by $(A \cap E, A \cap E^c)$,

$$\mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \cap E^c) \qquad \forall \ A, E \subset X.$$

Thus,

$$\mathcal{M}_{\mu^*} = \left\{ E \subset X : \mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A) \ \forall A \subset X \right\}.$$
(5)

Let $A \subset X$ be arbitrary. Since $A \cap X = A$ and $A \cap X^c = \emptyset$, $X \in \mathcal{M}_{\mu^*}$. If $E \in \mathcal{M}_{\mu^*}$, then

$$\mu^*(A \cap E^c) + \mu^*(A \cap (E^c)^c) = \mu^*(A \cap E^c) + \mu^*(A \cap E) \le \mu^*(A)$$

and so $E^c \in \mathcal{M}_{\mu^*}$. If $\mu^*(E) = 0$, then the second condition in (1) gives

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(E) + \mu^*(A) = \mu^*(A).$$

Thus, $E \in \mathcal{M}_{\mu^*}$.

(c; **2pts**) If $E, F \in \mathcal{M}_{\mu^*}$ and $A \subset X$,

$$\mu^{*}(A) = \mu^{*}(A \cap E) + \mu^{*}(A \cap E^{c})$$

= $(\mu^{*}((A \cap E) \cap F) + \mu^{*}((A \cap E) \cap F^{c})) + (\mu^{*}((A \cap E^{c}) \cap F) + \mu^{*}((A \cap E^{c}) \cap F^{c}));$

this establishes the equality in the claim. Since

$$E \cup F = (E \cap F) \cup (E \cap F^c) \cup (E^c \cap F),$$

the k=3 case of (4) gives

$$\mu^* (A \cap E \cap F) + \mu^* (A \cap E \cap F^c) + \mu^* (A \cap E^c \cap F) \ge \mu^* (A \cap (E \cup F)).$$

Along with $E^c \cap F^c = (E \cup F)^c$, this establishes the inequality in the claim.

(d; **3pts**) Let $A \subset X$ be arbitrary. By (c),

$$\mu^* (A \cap (E \cup F)) + \mu^* (A \cap (E \cup F)^c) \le \mu^* (A) \qquad \forall E, F \in \mathcal{M}_{\mu^*}, \ A \subset X.$$

By (5), this implies that \mathcal{M}_{μ^*} is closed under pairwise (and thus finite) unions. Along with the first two statements in (b), this implies that \mathcal{M}_{μ^*} is a field. If $E \in \mathcal{M}_{\mu^*}$ and $F \subset X$ is disjoint from E, then

$$\mu^*(F \cup E) = \mu^*\big((F \cup E) \cap E\big) + \mu^*\big((F \cup E) \cap E^c\big) = \mu^*(E) + \mu^*(F).$$

This establishes the k=2 case of (2), which by induction implies the general case.

(e; **3pts**) Let $E_1, E_2, \ldots \in \mathcal{M}_{\mu^*}$ with $E_n \cap E_{n'} = \emptyset$ for all $n \neq n'$ and $A \subset X$. If $E \in \mathcal{M}_{\mu^*}$ and $F \subset X$ is disjoint from E, then

$$\mu^* \big(A \cap (E \cup F) \big) = \mu^* \big(A \cap (E \cup F) \cap E \big) + \mu^* \big(A \cap (E \cup F) \cap E^c \big) = \mu^* (A \cap E) + \mu^* \big(A \cap F).$$

By the closedness of \mathcal{M}_{μ^*} under finite unions established in (d) and induction, this implies that

$$\mu^* \left(A \cap \bigcup_{n=1}^k E_n \right) = \sum_{n=1}^k \mu^* (A \cap E_n) \qquad \forall \ k \in \mathbb{Z}^{\ge 0}.$$
(6)

Combining this with the second condition in (1), we obtain

$$\sum_{n=1}^{\infty} \mu^*(A \cap E_n) = \lim_{k \to \infty} \sum_{n=1}^k \mu^*(A \cap E_n) = \lim_{k \to \infty} \mu^*\left(A \cap \bigcup_{n=1}^k E_n\right) \le \mu^*\left(A \cap \bigcup_{n=1}^{\infty} E_n\right).$$

Along with the third condition in (1), this implies the first statement in (3). The second statement in (3) is obtained from the first by taking $A = \bigcup_{n=1}^{\infty} E_n$.

(f; **4pts**) Let $E_1, E_2, \ldots \in \mathcal{M}_{\mu^*}, A \subset X$, and

$$F_n = E_n - \bigcup_{k=1}^{n-1} E_k \qquad \forall \ n \in \mathbb{Z}^{\ge 0} \,.$$

Thus, $F_n \cap F_{n'} = \emptyset$ for all $n \neq n'$ and $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} F_n$. By (d), $F_n \in \mathcal{M}_{\mu^*}$. Combining this with (6) with E_n replaced by F_n , the second condition in (1), and the closed of \mathcal{M}_{μ^*} under finite unions,

with E_n replaced by F_n , the second condition in (1), and the closed of \mathcal{M}_{μ^*} under finite unions, we obtain

$$\sum_{n=1}^{k} \mu^* (A \cap F_n) + \mu^* \left(A \cap \left(\bigcup_{n=1}^{\infty} E_n \right)^c \right) = \mu^* \left(A \cap \bigcup_{n=1}^{k} F_n \right) + \mu^* \left(A \cap \left(\bigcup_{n=1}^{\infty} F_n \right)^c \right)$$
$$\leq \mu^* \left(A \cap \bigcup_{n=1}^{k} F_n \right) + \mu^* \left(A \cap \left(\bigcup_{n=1}^{k} F_n \right)^c \right) = \mu^* (A).$$

Taking the limit of the left-hand side as $k \rightarrow \infty$ and using the first statement in (3), we find that

$$\mu^*\left(A \cap \bigcup_{n=1}^{\infty} E_n\right) + \mu^*\left(A \cap \left(\bigcup_{n=1}^{\infty} E_n\right)^c\right) = \mu^*\left(A \cap \bigcup_{n=1}^{\infty} F_n\right) + \mu^*\left(A \cap \left(\bigcup_{n=1}^{\infty} E_n\right)^c\right) \le \mu^*(A).$$

Thus, \mathcal{M}_{μ^*} is closed under countable unions and so is a σ -field (in light of the first two statements in (b)). By the second statement in (3), $\mu \equiv \mu^*|_{\mathcal{M}^*_{\mu}}$ is countably additive. Thus, $(X, \mathcal{M}_{\mu^*}, \mu \equiv \mu^*|_{\mathcal{M}_{\mu^*}})$ is a measure space. It is complete by the last statement in (b).

Problem 2 (12pts)

Let X be a set, $\mathcal{A} \subset 2^X$, and $\ell : \mathcal{A} \longrightarrow [0, \infty]$ be a function such that $\emptyset \in \mathcal{A}$ and $\ell(\emptyset) = 0$. For each $A \subset X$, define

$$Z_{\ell}(A) = \left\{ \sum_{n=1}^{\infty} \ell(I_n) \colon I_1, I_2, \ldots \in \mathcal{A}, \ A \subset \bigcup_{n=1}^{\infty} I_n \right\} \subset [0, \infty], \quad \mu_{\ell}^*(A) = \inf Z_{\ell}(A) \in [0, \infty].$$

- (a) Show that $\mu^* \equiv \mu_{\ell}^*$ satisfies (1).
- (b) Suppose in addition that \mathcal{A} is a field (not necessarily σ -field) on X and

$$\ell\left(\bigcup_{n=1}^{\infty}I_n\right) = \sum_{n=1}^{\infty}\ell(I_n) \quad \forall \ I_1, I_2, \ldots \in \mathcal{A} \quad \text{s.t.} \quad I_n \cap I_{n'} = \emptyset \ \forall \ n \neq n' \text{ and } \bigcup_{n=1}^{\infty}I_n \in \mathcal{A}.$$
(7)

Show that $\mu_{\ell}^*|_{\mathcal{A}} = \ell$ and $\mathcal{A} \subset \mathcal{M}_{\mu_{\ell}^*}$.

(c) What should \mathcal{A} and ℓ be taken to construct the Lebesgue measure m_n on \mathbb{R}^n ? Justify your answer.

(a; **3pts**) Since $\emptyset \in \mathcal{A}$ and $\ell(\emptyset) = 0$, $0 \in Z_{\ell}(\emptyset)$ and so $\mu_{\ell}^*(\emptyset) = 0$. If $A \subset B$, $Z_{\ell}(A) \supset Z_{\ell}(B)$ and so $\mu_{\ell}^*(A) \leq \mu_{\ell}^*(B)$. For every $\epsilon > 0$ and $A_k \subset X$, there exist

$$I_{k;1}, I_{k;2}, \ldots \in \mathcal{A}$$
 s.t. $A_k \subset \bigcup_{n=1}^{\infty} I_{k;n}, \quad \sum_{n=1}^{\infty} \ell(I_{k;n}) \le \mu_{\ell}^*(A_k) + \frac{\epsilon}{2^k}$

Thus,

$$\bigcup_{k=1}^{\infty} A_k \subset \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} I_{k;n}, \quad \mu_\ell^* \left(\bigcup_{k=1}^{\infty} A_k \right) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \ell(I_{k;n}) \leq \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \epsilon/2^n \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \epsilon.$$

This verifies the three properties in (1).

(b; 6pts) By the assumption that $\emptyset \in \mathcal{A}$ and $\ell(\emptyset) = 0$, $\ell(I) \in Z_{\ell}(I)$ for all $I \in \mathcal{A}$ and so

$$m_{\ell}^*(I) \le \ell(I) \quad \forall I \in \mathcal{A}.$$
 (8)

Since \mathcal{A} is a field, $A \cup B, B - A \in \mathcal{A}$ whenever $A, B \in \mathcal{A}$. By (7) with $I_1 = A, I_2 = B$, and $I_n = \emptyset$ for $n \ge 3$ and by the assumption that $\emptyset \in \mathcal{A}$ and $\ell(\emptyset) = 0$,

$$\ell(A \cup B) = \ell(A) + \ell(B) \qquad \forall A, B \in \mathcal{A} \text{ s.t. } A \cap B = \emptyset.$$
(9)

Applying this with B replaced by B-A, we obtain

$$\ell(A) \le \ell(B) \qquad \forall A, B \in \mathcal{A} \text{ s.t. } A \subset B.$$
(10)

If $I, I_1, I_2, \ldots \in \mathcal{A}$ and $I \subset I_1 \cup I_2 \cup \ldots$, then

$$I'_n \equiv I \cap I_n - \bigcup_{k=1}^{n-1} I_n \in \mathcal{A}, \quad I = \bigcup_{n=1}^{\infty} I'_n, \quad I'_n \cap I'_{n'} = \emptyset \ \forall n \neq n', \quad \ell(I) = \bigcup_{n=1}^{\infty} \ell(I'_n) \le \bigcup_{n=1}^{\infty} \ell(I_n);$$

the equality above holds by (7) and the inequality by (10). By the last statement above, $\ell(I) \leq m_{\ell}^*(I)$. Combining this with (8), we conclude that $\mu_{\ell}^*|_{\mathcal{A}} = \ell$.

Suppose $I \in \mathcal{A}$ and $A \subset X$. For every $\epsilon > 0$, there exist

$$I_1, I_2, \ldots \in \mathcal{A}$$
 s.t. $A \subset \bigcup_{n=1}^{\infty} I_n, \sum_{n=1}^{\infty} \ell(I_n) \le \mu_{\ell}^*(A) + \epsilon$

Since \mathcal{A} is a field,

$$I_n \cap I, I_n \cap I^c \in \mathcal{A}, \quad \ell(I) = \ell(I_n \cap I) + \ell(I_n \cap I^c) \qquad \forall n \in \mathbb{Z}^+;$$

the equality above holds by (9). Since

$$A \cap I \subset \bigcup_{n=1}^{\infty} (I_n \cap I), \qquad A \cap I^c \subset \bigcup_{n=1}^{\infty} (I_n \cap I^c),$$

we conclude that

$$\begin{split} \mu_{\ell}^*(A \cap I) + \mu_{\ell}^*(A \cap I^c) &\leq \sum_{n=1}^{\infty} \ell(I_n \cap I) + \sum_{n=1}^{\infty} \ell(I_n \cap I^c) = \sum_{n=1}^{\infty} \left(\ell(I_n \cap I) + \ell(I_n \cap I^c)\right) \\ &= \sum_{n=1}^{\infty} \ell(I_n) \leq \mu_{\ell}^*(A) + \epsilon. \end{split}$$

Since this inequality holds for $\epsilon > 0$, it follows that it also holds for $\epsilon = 0$ and so $I \in \mathcal{M}_{\mu_{\epsilon}^{*}}$.

(c; **3pts**) We should take \mathcal{A} to be the collection of finite unions of disjoint boxes $I_1 \times \ldots \times I_n$, where each $I_k \subset \mathbb{R}$ is an interval of any kind (open/closed/half-open, possibly infinite or half-infinite). This collection is a field if n = 1, as can be seen directly. The argument at the beginning of the proof of Theorem 8.3 can then be used to carry out the inductive step (as n increases) in showing that \mathcal{A} is a field. For such a rectangle, we take

$$\ell(I_1 \times \ldots \times I_n) = \ell_1(I_1) \ldots \ell_1(I_n),$$

where $\ell_1(\cdot)$ is the usual length of an interval in \mathbb{R} (and $0 \cdot \infty \equiv 0$).

It is immediate that $\emptyset \in \mathcal{A}$ and $\ell(\emptyset) = 0$. The tricky part is to verify (7). It is enough to establish it when

$$I \equiv \bigcup_{n=1}^{\infty} I_n \in \mathcal{A}$$

is a single rectangle, instead of a finite union of disjoint rectangles, and is bounded and closed (because an arbitrary rectangle differs from a closed one by missing finitely many disjoint rectangle of *n*-dimensional length 0). Since the rectangles I_n are disjoint and are contained in I,

$$\sum_{n=1}^{k} \ell(I_n) \le \ell(I) \quad \forall k \in \mathbb{Z}^+ \qquad \Longrightarrow \qquad \sum_{n=1}^{\infty} \ell(I_n) \le \ell(I) \,.$$

It remains to establish the opposite inequality. Let $\epsilon > 0$. For each $n \in \mathbb{Z}^+$, let I'_n be an open rectangle such that

$$I_n \subset I'_n$$
 and $\ell(I'_n) \le \ell(I_n) + \frac{\epsilon}{2^n}$.

Since $\{I_n\}_{n\in\mathbb{Z}^+}$ is a collection of open sets covering the compact set I, there exists $k\in\mathbb{Z}^+$ such that

$$I \subset \bigcup_{n=1}^{k} I'_n$$
 and $\ell(I) \leq \sum_{n=1}^{k} \ell(I'_n) \leq \sum_{n=1}^{\infty} \ell(I_n) + \epsilon;$

the finiteness of the cover is used to obtain the first inequality above. This establishes the opposite inequality.

Problem 3 (12pts)

Let $(X, \mathcal{F}_1, \mu_1)$ and $(Y, \mathcal{F}_2, \mu_2)$ be σ -finite measure spaces and $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$ be the σ -field generated by

$$\mathcal{F}_1 \times \mathcal{F}_2 \equiv \big\{ A \times B \colon A \in \mathcal{F}_1, \ A \in \mathcal{F}_2 \big\}.$$

Suppose that μ is a measure on $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$ such that

$$\mu(A \times B) = \mu_1(A)\mu_2(B) \qquad \forall A \times B \in \mathcal{F}_1 \times \mathcal{F}_2.$$
(11)

Show that μ is the product measure $\mu_1 \times \mu_2$ on $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$.

The argument is very similar to the proof of Theorem 8.6 in Rudin, a streamlined version of which was presented in class on 11/14. Let

$$\mathcal{F} = \left\{ E \in \sigma(\mathcal{F}_1 \times \mathcal{F}_2) \colon \mu(E) = \mu_1 \times \mu_2(E) \right\}.$$

Then,

(1) $\mathcal{F}_1 \times \mathcal{F}_2 \subset \mathcal{F};$

(2) \mathcal{F} is closed under finite disjoint unions;

(3) if
$$E_1, E_2, \ldots \in \mathcal{F}$$
 and $E_1 \subset E_2 \subset \ldots$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}_2$

(4) if $X' \times Y' \in \mathcal{F}_1 \times \mathcal{F}_2$, $E_1, E_2, \ldots \in \mathcal{F}$, $X' \times Y' \supset E_1 \supset E_2 \supset \ldots$, and $\mu_1(X'), \mu_2(Y') < \infty$, then $\bigcap_{n=1}^{\infty} E_n \in \mathcal{F}.$

The first property holds by (11); the other three hold by standard properties of measures.

Since $(X, \mathcal{F}_1, \mu_1)$ and $(Y, \mathcal{F}_2, \mu_2)$ are σ -finite, there exist $X_1, X_2, \ldots \in \mathcal{F}_1$ and $Y_1, Y_2, \ldots \in \mathcal{F}_2$ be such that

$$X_1 \subset X_2 \subset \dots, \qquad X = \bigcup_{n=1}^{\infty} X_n, \qquad \mu_1(X_n) < \infty \ \forall n,$$
$$Y_1 \subset Y_2 \subset \dots, \qquad Y = \bigcup_{n=1}^{\infty} Y_n, \qquad \mu_2(Y_n) < \infty \ \forall n.$$

For each $n \in \mathbb{Z}^+$, let

$$\mathcal{C}_n = \left\{ E \in \sigma(\mathcal{F}_1 \times \mathcal{F}_2) : E \cap (X_n \times Y_n) \in \mathcal{F} \right\}.$$

By (1) and (2) above, C_n contains the collection \mathcal{R} consisting of finite unions of disjoint measurable rectangles (i.e. of elements of $\mathcal{F}_1 \times \mathcal{F}_2$). By (3) and (4), C_n is a monotone class. Since $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$ is the minimal monotone class on $X \times Y$ containing \mathcal{R} , it follows that $C_n = \sigma(\mathcal{F}_1 \times \mathcal{F}_2)$ for every $n \in \mathbb{Z}^+$, i.e.

$$E_n \equiv E \cap (X_n \times Y_n) \in \mathcal{F} \qquad \forall \ E \in \sigma(\mathcal{F}_1 \times \mathcal{F}_2), \ n \in \mathbb{Z}^+.$$

Since $E_1 \subset E_2 \subset \ldots$, (3) above then implies that

$$E = \bigcup_{n=1}^{\infty} E_n \in \mathcal{F} \qquad \forall \ E \in \sigma(\mathcal{F}_1 \times \mathcal{F}_2),$$

i.e. $\mu(E) = \mu_1 \times \mu_2(E)$ for all $E \in \sigma(\mathcal{F}_1 \times \mathcal{F}_2)$.

Problem 4 (8pts)

Let $\mathbb{I} = [0, 1]$, $(\mathbb{I}, \mathcal{M}_{\mathbb{I}}, m_{\mathbb{I}})$ be the usual Lebesgue measure space, and $(\mathbb{I}, 2^{\mathbb{I}}, \mu)$ be the measure space so that μ is the counting measure. Let

$$E = \{(x, x) \colon x \in \mathbb{I}\} \subset \mathbb{I} \times \mathbb{I}$$

be the diagonal. Show that

$$E \in \sigma \left(\mathcal{M}_{\mathbb{I}} \times 2^{\mathbb{I}} \right), \qquad \varphi_E(x) \equiv \mu(E_x) = 1 \quad \forall x \in \mathbb{I}, \qquad \psi_E(y) \equiv m_{\mathbb{I}}(E^y) = 0 \quad \forall y \in \mathbb{I}.$$

Why doesn't this contradict equation (6.3) in the book?

Since

$$E = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{k} \left[\frac{n-1}{k}, \frac{k}{n} \right] \times \left[\frac{n-1}{k}, \frac{k}{n} \right]$$

is a countable intersection of finite unions of measurable rectangles (i.e. elements of $\mathcal{M}_{\mathbb{I}} \times 2^{\mathbb{I}}$), $E \in \sigma(\mathcal{M}_{\mathbb{I}} \times 2^{\mathbb{I}})$. Since $E_x = \{x\}$ and $E^y = \{y\}$,

$$\varphi_E(x) \equiv \mu(\{x\}) = 1, \quad \psi_E(y) \equiv m_{\mathbb{I}}(\{y\}) = 0, \qquad \int_X \varphi_E \, \mathrm{d}m_{\mathbb{I}} = 1, \quad \int_Y \psi_E \, \mathrm{d}\mu = 0.$$

This does not contradict equation (6.3) in the book because the measure space $(\mathbb{I}, 2^{\mathbb{I}}, \mu)$ is not σ -finite.

Problem 5 (12pts)

Let $\mathbb{I} = [0, 1]$ and $(\mathbb{I}, \mathcal{M}_{\mathbb{I}}, m_{\mathbb{I}})$ be the usual Lebesgue measure space. For each $n \in \mathbb{Z}^+$, let $f_n : \mathbb{I} \longrightarrow \mathbb{R}$ be a continuous function such that

$$f_n(x) = 0 \quad \forall x \notin [2^{-n}, 2^{-n+1}], \qquad \int_0^1 f_n(x) \, \mathrm{d}x = 1.$$

Show that

(a) the sum $f(x,y) = \sum_{n=1}^{\infty} (f_n(x) - f_{n+1}(x)) f_n(y)$ converges for all $(x,y) \in \mathbb{I}^2$ and the function $f: \mathbb{I}^2 \longrightarrow \mathbb{R}$ is continuous except at (0,0);

(b)
$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, dy \right) dx = 1 \text{ and } \int_{0}^{1} f(x, y) \, dx = 0 \text{ for all } y \in \mathbb{I}.$$
 Why doesn't this contradict any of the Fubini theorems?

(a; **4pts**) If $y \in [2^{-k}, 2^{-k+1}]$, $f(x, y) = (f_k(x) - f_{k+1}(x))f_k(y)$, i.e. at most one term in the sum for f(x, y) is nonzero and so the sum converges. Every $(x, y) \neq (0, 0)$ has neighborhood $U_{x,y} \subset [0, 1]^2$ so that at most 3 terms in the sum are nonzero on $U_{x,y}$. Since f is a sum of three continuous functions on $U_{x,y}$, it is continuous on $U_{x,y}$. Since these neighborhoods cover the complement of (0,0) in $[0,1]^2$, f is continuous on this complement.

(b; **8pts**) If
$$y \in [2^{-k}, 2^{-k+1}]$$
, $f(x, y) = (f_k(x) - f_{k+1}(x))f_k(y)$ and so

$$\int_0^1 f(x, y) \, \mathrm{d}x = \left(\int_0^1 f_k(x) \, \mathrm{d}x - \int_0^1 f_{k+1}(x) \, \mathrm{d}x\right) f_k(y) = (1-1)f_k(y) = 0,$$

$$\int_0^1 \left(\int_0^1 f(x, y) \, \mathrm{d}x\right) \mathrm{d}y = \int_0^1 0 \, \mathrm{d}y = 0.$$

If $x \in [2^{-1}, 1]$, $f(x, y) = f_1(x)f_1(y)$ and so

$$\int_0^1 f(x, y) \, \mathrm{d}y = f_1(x) \int_0^1 f_1(y) \, \mathrm{d}y = f_1(x)$$

If $x \in [2^{-k}, 2^{-k+1}]$ with k > 1, $f(x, y) = f_k(x)(f_k(y) - f_{k-1}(y))$ and so

$$\int_0^1 f(x,y) \, \mathrm{d}x = f_k(x) \left(\int_0^1 f_k(x) \, \mathrm{d}y - \int_0^1 f_{k-1}(x) \, \mathrm{d}y \right) = f_k(x)(1-1) = 0.$$

Combining the last two statements, we obtain

$$\int_0^1 \left(\int_0^1 f(x,y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{2^{-1}}^1 f_1(x) \, \mathrm{d}x = \int_0^1 f_1(x) \, \mathrm{d}x = 1.$$

This does not contradict any of the Funini theorems because f changes sign and

$$\begin{split} \iint_{[0,1]^2} |f| \mathrm{d}\, m \times m &= \int_0^1 \left(\int_0^1 |f(x,y)| \,\mathrm{d}x \right) \mathrm{d}y \\ &\geq \sum_{k=1}^\infty \int_{2^{-k}}^{2^{-k+1}} \left(\int_{2^{-k}}^{2^{-k+1}} |f(x,y)| \,\mathrm{d}x + \int_{2^{-k-1}}^{2^{-k}} |f(x,y)| \,\mathrm{d}x \right) \mathrm{d}y \\ &= \sum_{k=1}^\infty \int_{2^{-k}}^{2^{-k+1}} |f_k(y)| \left(\int_{2^{-k}}^{2^{-k+1}} |f_k(x)| \,\mathrm{d}x + \int_{2^{-k-1}}^{2^{-k}} |f_{k+1}(x)| \,\mathrm{d}x \right) \mathrm{d}y \\ &= \sum_{k=1}^\infty \int_{2^{-k}}^{2^{-k+1}} |f_k(y)| \left(\int_0^1 |f_k(x)| \,\mathrm{d}x + \int_0^1 |f_{k+1}(x)| \,\mathrm{d}x \right) \mathrm{d}y \\ &\geq \sum_{k=1}^\infty \int_{2^{-k}}^{2^{-k+1}} |f_k(y)| (1+1) \mathrm{d}y = 2 \sum_{k=1}^\infty \int_0^1 |f_k(y)| \mathrm{d}y \ge 2 \sum_{k=1}^\infty 1 = \infty, \end{split}$$

i.e. f is not $m \times m$ -integrable.