MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 10

Problem 1 (16pts)

Suppose X is a set and p*: 2% —[0,00] is a function such that

pr(0) =0, p*(A)<p*(B)if ACB, and u*<UAn>§ZM*(An) VA, Ag,...CX. (1)
n=1 n=1

Define
My ={ECX: " (A)=p*(ANE)+u*(ANE°) VACX }.

Show that

(a) p* (AUB)<p*(A)+up*(B) for all A,BCX;

(b) XeMyx, ECe M if E€EMx, and E€ M~ if n*(E)=0;
(c) if E,FeM,~ and ACX, then

15 (A) = p (ANENF)+p* (ANENE®) +p* (ANENF) +p* (ANE°NF°)
> ¥ (AN(EUF))+u* (AN(EUF)°);

(d) M~ is a field (not o-field yet) on X and
k k
u*( UEn) = Zu*(En) VE. .. Ex€Myst. E;NEy=0VYn#n;
n=1 n=1

(e) if E1,Es,...€ M+ and E;NE, =0 for all n#n’, then

w* <Aﬁ UEn> = ZM*(AﬂEn) VACX, u*< UE”> = ZM*(En);

n=1 n=1 n=1 n=1

(£) (X, M=, u=p"|m,,.) is a complete measure space.
(a; 2pts) By the third condition in (1) with A, =0 for n>k and the first condition in (1),

k k
M*( UAn> <> wi(An) VAL Ay Ay X, keZ”,
n=1 n=1

The claim is the k=2 case of this statement with A;=A4 and A= B.

(b; 2pts) By (a) with (A, B) replaced by (ANE, ANE*),

WH(A) < u(ANE)+u*(ANES) ¥ A ECX.



Thus,
My ={ECX: " (ANE)+p* (ANE®) <p*(A) VAC X }. (5)

Let AC X be arbitrary. Since ANX =A and ANX°=0, X e M. If E€ M,~, then
W (ANES) 42" (AN(ES)) = 1 (ANES)+4* (ANE) < 1 (A)
and so E°e M« If p*(E)=0, then the second condition in (1) gives
W (ANE) " (ANES) < 1 (B)+pi*(A) = i*(A).
Thus, F€ Mx.
(c; 2pts) If B, FE M« and ACX,

p(A) = p(ANE) +pu* (AN E?)
= (W ((ANE)NF)+p* ((ANE)NFC)) 4+ (1" ((ANE)NF) +p* ((ANEC)NFC));

this establishes the equality in the claim. Since
EUF = (ENF)U(ENF)U(E°NF),
the k=3 case of (4) gives
1 (ANENFE)+p* (ANENF)+p* (ANE°NF) > p* (AN(EUF)).
Along with E¢NF¢=(EUF)¢, this establishes the inequality in the claim.
(d; 3pts) Let AC X be arbitrary. By (c),
1 (AN(EUF))+p*(AN(EUF)®) < p*(A)  VE,FeM,-, ACX.

By (5), this implies that M is closed under pairwise (and thus finite) unions. Along with the
first two statements in (b), this implies that M« is a field. If £ € M« and F C X is disjoint
from E, then

p*(FUE) = p* ((FUE)NE)+p*((FUE)NE®) = p*(E)+u* (F).
This establishes the k=2 case of (2), which by induction implies the general case.

(e; 3pts) Let Ey, Eo,...€ M+ with E,NE,y=0 for all n#n' and ACX. If E€e M+ and FCX
is disjoint from E, then

1 (AN(EUF)) = p* (AN(EUF)NE) +p* (AN(EUF)NE®) = p*(ANE)+u* (ANF).

By the closedness of M« under finite unions established in (d) and induction, this implies that

k k
I (Am U En) => p(ANE,)  VkeZ (6)
n=1 n=1



Combining this with the second condition in (1), we obtain

00 k k 00
;,u*(AﬂEn) = kli_r)noo;u*(AﬁEn) = kli_r)noo w* (Aﬂ UE”> < p* (Aﬂ UE">

n=1 n=1
Along with the third condition in (1), this implies the first statement in (3). The second statement
o0
in (3) is obtained from the first by taking A= U E,.

n=1

(f; 4pts) Let Ey, Es,...e M+, ACX, and

n—1
F,=FE, — UE,c vV nezzY.
k=1

(o0} o

Thus, F,NF, =0 for all n#n' and U E, = UF” By (d), F,, € M+. Combining this with (6)
n=1 n=1

with E, replaced by F,,, the second condition in (1), and the closed of M x+ under finite unions,

we obtain

$wtanss (10 U )) = (3005) e (1n( U5

n=1 n=1
<u* <AanFn) + p <Am (Qan>c> = u*(A).

Taking the limit of the left-hand side as k — 0o and using the first statement in (3), we find that
/,L*<AmUEn> +u*<Am< UEn)) :,/F(AOUF,L) +u*<Am< UEn)> < u*(A).
n=1 n=1 n=1 n=1

Thus, M« is closed under countable unions and so is a o-field (in light of the first two statements
in (b)). By the second statement in (3), p=p*|arq; is countably additive. Thus, (X, My, p=p*m,. )
is a measure space. It is complete by the last statement in (b).

Problem 2 (12pts)

Let X be a set, AC2X, and £: A—[0,00] be a function such that ) € A and £())) =0. For each
ACX, define

Zu(A) = {Zz(fn); L. I,...€A, AC UIn} C[0,00], pi(A) = inf Zy(A) € [0, 00].
n=1

n=1
(a) Show that u*=p; satisfies (1).
(b) Suppose in addition that A is a field (not necessarily o-field) on X and

e<U1n> => UI,) VI,L,...€A st. LNTLy=0Vn#n and | JI,eA.  (7)
n=1 n=1

n=1

Show that py|a=¢ and ACM,:.



(¢) What should A and £ be taken to construct the Lebesgue measure my on R™? Justify your an-
swer.

(a; 3pts) Since 0 € A and £(0) =0, 0€ Z,(0) and so p;(0) =0. If AC B, Zy(A) D Zy(B) and so
py(A) <pj(B). For every e>0 and A C X, there exist

o o
I, I, €A st A C UIk;m E:K(Ik;n)ﬁlfef )+27

Thus,

o0 o0

Ut e U Ut i UAe) 33 000 £ 3 (7 402) = S,

k=1n=1
This verifies the three properties in (1).
(b; 6pts) By the assumption that € A and £(0)=0, ¢(I) € Zy(I) for all [ €A and so
my(I) < (1) VIeA. ()

Since A is a field, AUB, B— A€ A whenever A, Be A. By (7) with 1 = A, I=B, and I,, =0 for
n>3 and by the assumption that ) € A and ¢()) =0,

V(AUB) =((A)+¢(B) VYV A,BeAst. AnNB=0. 9)
Applying this with B replaced by B— A, we obtain
L(A) < U(B) VA BeAst. ACB. (10)

IftI1,I1,Is,...€¢Aand ICUILU.. ., then
n—1 00 0 o0
n=inl,—|JI.e A I=\JI, InL,=0Vn#n, «I)=|]Ju1,) < |Jd);

the equality above holds by (7) and the inequality by (10). By the last statement above, £(1) <mj ().
Combining this with (8), we conclude that ;| 4="2.

Suppose I € A and AC X. For every €>0, there exist
I, I,...€ A st. ACUIn, ZE ) < pp(A)+e.

Since A is a field,
LN L,NICEA, () =(I,NI)+L(I,NI)  VneZt;

the equality above holds by (9). Since

ANI C G(Inm), ANI¢ U I,NI°),

n=1 n=1



we conclude that

o [e.e]

i (ANT) 41 (ANT®) Z WD)+ U(I1NI6) = Z (I,NI)+L(I,NI%))

n=1 n=1 n=1
o0
Z A)+e.

Since this inequality holds for >0, it follows that it also holds for e=0 and so I € M.

(c; 3pts) We should take A to be the collection of finite unions of disjoint boxes I1x...x I, where
each I C R is an interval of any kind (open/closed/half-open, possibly infinite or half-infinite).
This collection is a field if n =1, as can be seen directly. The argument at the beginning of the
proof of Theorem 8.3 can then be used to carry out the inductive step (as n increases) in showing
that A is a field. For such a rectangle, we take

E([lx c. X[n) = 61([1> . gl(In%

where ¢1(+) is the usual length of an interval in R (and 0-c0=0).

It is immediate that () € A and £(0) =0. The tricky part is to verify (7). It is enough to establish
it when

[e.e]
I=|JLcA
n=1
is a single rectangle, instead of a finite union of disjoint rectangles, and is bounded and closed

(because an arbitrary rectangle differs from a closed one by missing finitely many disjoint rectangle
of n-dimensional length 0). Since the rectangles I,, are disjoint and are contained in I,

k o)
S Uy <ul) VeezZt = UI) < ().
n=1 n=1

It remains to establish the opposite inequality. Let € > 0. For each n € Z™, let I, be an open
rectangle such that

I,cI, and  4(I)) <{(I,)+ 27 :

Since {I, },ez+ is a collection of open sets covering the compact set I, there exists k€ Z™ such that

k k 00
rc{Jr, and 1)< UI) <Y W) + €
n=1 n=1 n=1

the finiteness of the cover is used to obtain the first inequality above. This establishes the opposite
inequality.



Problem 3 (12pts)
Let (X, Fi,p1) and (Y, Fa, p2) be o-finite measure spaces and o(FixFz) be the o-field generated by
FixFy={AxB: Ac Fi, Ac Fp}.
Suppose that p is a measure on o(Fi X Fa) such that
pu(AxB) = ui(A)p(B) V AxBeF xFs. (11)
Show that p is the product measure py X pa on o(Fy X Fa).

The argument is very similar to the proof of Theorem 8.6 in Rudin, a streamlined version of which
was presented in class on 11/14. Let

F={Eco(FixF): p(E)=p xpuz(E)}.
Then,
(1) Val ><}-2C./T;

(2) F is closed under finite disjoint unions;

[e e}
(3) if By, Ey,...€F and EyCE,C..., then | JE, € F;

n=1

(4) if X'xY' e FyxFy, E1,E2,...€¢ F, X'XY' D E1 D FE;D ..., and p1(X'), ue(Y') < 0o, then
oo
ﬂ E, e F.
n=1

The first property holds by (11); the other three hold by standard properties of measures.

Since (X, F1, 1) and (Y, Fa, pu2) are o-finite, there exist X1, Xo,... € F; and Y1,Ys,... € Fs be
such that

o

XiCXoC.. ., X:UXn, p1(X,) < oo Vn,
n=1
o0

YicYsC. .., Y =¥, p2(Yy) < 0o Vn.
n=1

For each n€Z™, let
Ch ={Eco(FixF): EN(Xp,xY,)€F}.

By (1) and (2) above, C,, contains the collection R consisting of finite unions of disjoint measurable
rectangles (i.e. of elements of F; x F2). By (3) and (4), C,, is a monotone class. Since o(F; x F2)
is the minimal monotone class on X xY containing R, it follows that C,, = o(F; x F2) for every
neZt, ie.

E,=EN(X,xY,) € F VYV Eco(FixF), n€Z".



Since E1 CEyC.. ., (3) above then implies that

E = UEn €F VYEco(FixF),

n=1

Le. w(E)=p1 xp2(E) for all E€o(F1 xF2).

Problem 4 (8pts)

Let T=10,1], (I, My, my) be the usual Lebesque measure space, and (I,2%, 1) be the measure space
so that p is the counting measure. Let

E={(z,z): zel} CIxI
be the diagonal. Show that
E e U(M]IXQH), vp@)=p(Ey) =1 Yzel, YE(y)=mp(EY) =0 Vyel
Why doesn’t this contradict equation (6.3) in the book?

Since

is a countable intersection of finite unions of measurable rectangles (i.e. elements of My x 2T),
Eco(Mpx2'). Since E,={x} and EY={y},

ep@)=p{e}) =1, ul)=mi({y}) =0, /X o dmy = 1, /Y b dpp = 0.

This does not contradict equation (6.3) in the book because the measure space (I,2, 1) is not
o-finite.

Problem 5 (12pts)

Let 1=[0,1] and (I, My, my) be the usual Lebesque measure space. For each n€Z*, let f,: I— R
be a continuous function such that

1
falz) =0 Vag[2m 27+, / fulz)dz = 1.
0

Show that
(a) the sum f(x,y) :Z(fn(x) — fat1(@)) fn(y) converges for all (z,y) € I* and the function
n=1

f:12—=R is continuous except at (0,0);



1/ 1
(b) / (/ flz,y) dy> dz =1 and / f(z,y)dx =0 for all yel. Why doesn’t this contradict any
0

0 0
of the Fubini theorems?

(a; 4pts) If y € [27F, 271 f(2,9) = (fe(z) — for1(2)) fr(y), ie. at most one term in the sum for
f(z,y) is nonzero and so the sum converges. Every (z,y)#(0,0) has neighborhood U, , C [0, 1]* so
that at most 3 terms in the sum are nonzero on U, 4. Since f is a sum of three continuous functions
on Uy, it is continuous on U, ,. Since these neighborhoods cover the complement of (0,0) in [0, 1]2,
f is continuous on this complement.

(b; 8pts) If y e [27F, 27+, f(l’ay):(fk(w)—fkﬂ(w))fk(y) and so

/(/fx Yy da:)dy—/Ody—O

It o2, 1], f(2,y) = (@) fily) and so
1 1
/ F(z,y)dy = fi(2) / fiy) dy = fi(x).
0 0

If ze[27%, 2781 with k>1, f(z,y)= fi(2)(fr(y)— fr1(y)) and so

/f$?/dx—fk </fk ) dy - /fkl dy) fi(@)(1-1) = 0.

Combining the last two statements, we obtain

/01</01f(x,y) dy>dx = /211f1(:c) do = /01f1(x) de = 1.

This does not contradict any of the Funini theorems because f changes sign and

//[01]2|f|dm><m /(/\fx ) ,dx>dy

9—k+1 o—k+1 9—k
=S [ (L el [ sl
o) 9—k+1 9—k+1 9—k
=3 [ sl [, Il [ @)
o0 2— k+1
= Fil ( fe(@)|dz + [ |fera(2)]d )d
S [ wwl( flrele s [1ae]a)
00 9—k+1 0 1 0
>Z/ \fk(y)\(lﬂ)dy:?Z/ | fr()ldy > 2> 1= o0,
k=17/27"F = Jo —

i.e. f is not m xm-integrable.



