
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 10

Problem 1 (16pts)

Suppose X is a set and µ∗ : 2X−→ [0,∞] is a function such that

µ∗(∅) = 0, µ∗(A)≤µ∗(B) if A⊂B, and µ∗
( ∞

⋃

n=1

An

)

≤
∞
∑

n=1

µ∗(An) ∀A1, A2, . . .⊂X. (1)

Define
Mµ∗ =

{

E⊂X : µ∗(A)=µ∗(A∩E)+µ∗(A∩Ec) ∀A⊂X
}

.

Show that

(a) µ∗(A∪B)≤µ∗(A)+µ∗(B) for all A,B⊂X;

(b) X∈Mµ∗, Ec∈Mµ∗ if E∈Mµ∗, and E∈Mµ∗ if µ∗(E)=0;

(c) if E,F ∈Mµ∗ and A⊂X, then

µ∗(A) = µ∗
(

A∩E∩F
)

+µ∗
(

A∩E∩F c
)

+µ∗
(

A∩Ec∩F
)

+µ∗
(

A∩Ec∩F c
)

≥ µ∗
(

A∩(E∪F )
)

+µ∗
(

A∩(E∪F )c
)

;

(d) Mµ∗ is a field (not σ-field yet) on X and

µ∗
( k

⋃

n=1

En

)

=
k

∑

n=1

µ∗(En) ∀ E1, . . . , Ek∈Mµ∗ s.t. En∩En′ =∅ ∀n 6=n′; (2)

(e) if E1, E2, . . .∈Mµ∗ and En∩En′ =∅ for all n 6=n′, then

µ∗
(

A∩
∞
⋃

n=1

En

)

=
∞
∑

n=1

µ∗(A∩En) ∀ A⊂X, µ∗
( ∞

⋃

n=1

En

)

=
∞
∑

n=1

µ∗(En); (3)

(f) (X,Mµ∗ , µ≡µ∗|Mµ∗
) is a complete measure space.

(a; 2pts) By the third condition in (1) with An=∅ for n>k and the first condition in (1),

µ∗
( k

⋃

n=1

An

)

≤
k

∑

n=1

µ∗(An) ∀A1, A2, . . ., Ak ⊂X, k∈Z
≥0. (4)

The claim is the k=2 case of this statement with A1=A and A2=B.

(b; 2pts) By (a) with (A,B) replaced by (A∩E,A∩Ec),

µ∗(A) ≤ µ∗(A∩E)+µ∗(A∩Ec) ∀ A,E⊂X.



Thus,
Mµ∗ =

{

E⊂X : µ∗(A∩E)+µ∗(A∩Ec)≤µ∗(A) ∀A⊂X
}

. (5)

Let A⊂X be arbitrary. Since A∩X=A and A∩Xc=∅, X∈Mµ∗ . If E∈Mµ∗ , then

µ∗(A∩Ec)+µ∗
(

A∩(Ec)c
)

= µ∗(A∩Ec)+µ∗(A∩E) ≤ µ∗(A)

and so Ec∈Mµ∗ . If µ∗(E)=0, then the second condition in (1) gives

µ∗(A∩E)+µ∗(A∩Ec) ≤ µ∗(E)+µ∗(A) = µ∗(A).

Thus, E∈Mµ∗ .

(c; 2pts) If E,F ∈Mµ∗ and A⊂X,

µ∗(A) = µ∗(A∩E)+µ∗(A∩Ec)

=
(

µ∗
(

(A∩E)∩F
)

+µ∗
(

(A∩E)∩F c
))

+
(

µ∗
(

(A∩Ec)∩F
)

+µ∗
(

(A∩Ec)∩F c
))

;

this establishes the equality in the claim. Since

E∪F = (E∩F )∪(E∩F c)∪(Ec∩F ),

the k=3 case of (4) gives

µ∗
(

A∩E∩F
)

+µ∗
(

A∩E∩F c
)

+µ∗
(

A∩Ec∩F
)

≥ µ∗
(

A∩(E∪F )
)

.

Along with Ec∩F c=(E∪F )c, this establishes the inequality in the claim.

(d; 3pts) Let A⊂X be arbitrary. By (c),

µ∗
(

A∩(E∪F )
)

+µ∗
(

A∩(E∪F )c
)

≤ µ∗(A) ∀E,F ∈Mµ∗ , A⊂X.

By (5), this implies that Mµ∗ is closed under pairwise (and thus finite) unions. Along with the
first two statements in (b), this implies that Mµ∗ is a field. If E ∈Mµ∗ and F ⊂X is disjoint
from E, then

µ∗(F∪E) = µ∗
(

(F∪E)∩E
)

+µ∗
(

(F∪E)∩Ec
)

= µ∗(E)+µ∗(F ).

This establishes the k=2 case of (2), which by induction implies the general case.

(e; 3pts) Let E1, E2, . . .∈Mµ∗ with En∩En′ =∅ for all n 6=n′ and A⊂X. If E∈Mµ∗ and F ⊂X
is disjoint from E, then

µ∗
(

A∩(E∪F )
)

= µ∗
(

A∩(E∪F )∩E
)

+µ∗
(

A∩(E∪F )∩Ec
)

= µ∗(A∩E)+µ∗
(

A∩F ).

By the closedness of Mµ∗ under finite unions established in (d) and induction, this implies that

µ∗
(

A∩
k
⋃

n=1

En

)

=

k
∑

n=1

µ∗(A∩En) ∀ k∈Z
≥0. (6)
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Combining this with the second condition in (1), we obtain

∞
∑

n=1

µ∗(A∩En) = lim
k−→∞

k
∑

n=1

µ∗(A∩En) = lim
k−→∞

µ∗
(

A∩
k
⋃

n=1

En

)

≤ µ∗
(

A∩
∞
⋃

n=1

En

)

.

Along with the third condition in (1), this implies the first statement in (3). The second statement

in (3) is obtained from the first by taking A=
∞
⋃

n=1

En.

(f; 4pts) Let E1, E2, . . .∈Mµ∗ , A⊂X, and

Fn = En −
n−1
⋃

k=1

Ek ∀ n∈Z
≥0 .

Thus, Fn∩Fn′ = ∅ for all n 6=n′ and
∞
⋃

n=1

En =
∞
⋃

n=1

Fn. By (d), Fn∈Mµ∗ . Combining this with (6)

with En replaced by Fn, the second condition in (1), and the closed of Mµ∗ under finite unions,
we obtain

k
∑

n=1

µ∗(A∩Fn) + µ∗
(

A∩

( ∞
⋃

n=1

En

)c)

= µ∗
(

A∩
k
⋃

n=1

Fn

)

+ µ∗
(

A∩

( ∞
⋃

n=1

Fn

)c)

≤ µ∗
(

A∩
k
⋃

n=1

Fn

)

+ µ∗
(

A∩

( k
⋃

n=1

Fn

)c)

= µ∗(A).

Taking the limit of the left-hand side as k−→∞ and using the first statement in (3), we find that

µ∗
(

A∩
∞
⋃

n=1

En

)

+ µ∗
(

A∩

( ∞
⋃

n=1

En

)c)

= µ∗
(

A∩
∞
⋃

n=1

Fn

)

+ µ∗
(

A∩

( ∞
⋃

n=1

En

)c)

≤ µ∗(A).

Thus, Mµ∗ is closed under countable unions and so is a σ-field (in light of the first two statements
in (b)). By the second statement in (3), µ≡µ∗|M∗

µ
is countably additive. Thus, (X,Mµ∗ , µ≡µ∗|Mµ∗

)
is a measure space. It is complete by the last statement in (b).

Problem 2 (12pts)

Let X be a set, A⊂ 2X , and ℓ : A−→ [0,∞] be a function such that ∅∈A and ℓ(∅)= 0. For each
A⊂X, define

Zℓ(A) =
{

∞
∑

n=1

ℓ(In) : I1, I2, . . .∈A, A⊂
∞
⋃

n=1

In

}

⊂ [0,∞], µ∗ℓ (A) = inf Zℓ(A) ∈ [0,∞].

(a) Show that µ∗≡µ∗ℓ satisfies (1).

(b) Suppose in addition that A is a field (not necessarily σ-field) on X and

ℓ

( ∞
⋃

n=1

In

)

=
∞
∑

n=1

ℓ(In) ∀ I1, I2, . . .∈A s.t. In∩In′ =∅ ∀n 6=n′ and
∞
⋃

n=1

In∈A . (7)

Show that µ∗ℓ |A=ℓ and A⊂Mµ∗

ℓ
.
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(c) What should A and ℓ be taken to construct the Lebesgue measure mn on R
n? Justify your an-

swer.

(a; 3pts) Since ∅ ∈ A and ℓ(∅) = 0, 0 ∈ Zℓ(∅) and so µ∗ℓ (∅) = 0. If A⊂B, Zℓ(A)⊃ Zℓ(B) and so
µ∗ℓ (A)≤µ

∗
ℓ (B). For every ǫ>0 and Ak⊂X, there exist

Ik;1, Ik;2, . . .∈A s.t. Ak⊂
∞
⋃

n=1

Ik;n,

∞
∑

n=1

ℓ(Ik;n) ≤ µ∗ℓ (Ak)+
ǫ

2k
.

Thus,

∞
⋃

k=1

Ak ⊂
⋃

k=1

∞
⋃

n=1

Ik;n, µ∗ℓ

( ∞
⋃

k=1

Ak

)

≤
∞
∑

n=1

∞
∑

k=1

ℓ(Ik;n) ≤
∞
∑

n=1

(

µ∗(An)+ǫ/2
n
)

=
∞
∑

n=1

µ∗(An) + ǫ .

This verifies the three properties in (1).

(b; 6pts) By the assumption that ∅∈A and ℓ(∅)=0, ℓ(I)∈Zℓ(I) for all I∈A and so

m∗
ℓ (I) ≤ ℓ(I) ∀ I∈A. (8)

Since A is a field, A∪B,B−A∈A whenever A,B∈A. By (7) with I1=A, I2=B, and In=∅ for
n≥3 and by the assumption that ∅∈A and ℓ(∅)=0,

ℓ(A∪B) = ℓ(A) + ℓ(B) ∀ A,B∈A s.t. A∩B=∅. (9)

Applying this with B replaced by B−A, we obtain

ℓ(A) ≤ ℓ(B) ∀ A,B∈A s.t. A⊂B. (10)

If I, I1, I2, . . .∈A and I⊂I1∪I2∪. . ., then

I ′n≡I∩In−
n−1
⋃

k=1

In ∈ A, I =
∞
⋃

n=1

I ′n, I ′n∩I
′
n′ = ∅ ∀n 6=n′, ℓ(I) =

∞
⋃

n=1

ℓ(I ′n) ≤
∞
⋃

n=1

ℓ(In);

the equality above holds by (7) and the inequality by (10). By the last statement above, ℓ(I)≤m∗
ℓ (I).

Combining this with (8), we conclude that µ∗ℓ |A=ℓ.

Suppose I∈ A and A⊂X. For every ǫ>0, there exist

I1, I2, . . .∈A s.t. A⊂
∞
⋃

n=1

In,
∞
∑

n=1

ℓ(In) ≤ µ∗ℓ (A)+ǫ.

Since A is a field,

In∩I, In∩I
c∈A, ℓ(I) = ℓ(In∩I) + ℓ(In∩I

c) ∀n∈Z
+;

the equality above holds by (9). Since

A∩I ⊂
∞
⋃

n=1

(In∩I), A∩Ic ⊂
∞
⋃

n=1

(In∩I
c),
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we conclude that

µ∗ℓ (A∩I)+µ∗ℓ (A∩Ic) ≤
∞
∑

n=1

ℓ(In∩I)+
∞
∑

n=1

ℓ(In∩I
c) =

∞
∑

n=1

(

ℓ(In∩I)+ℓ(In∩I
c)
)

=
∞
∑

n=1

ℓ(In) ≤ µ∗ℓ (A)+ǫ.

Since this inequality holds for ǫ>0, it follows that it also holds for ǫ=0 and so I∈Mµ∗

ℓ
.

(c; 3pts) We should take A to be the collection of finite unions of disjoint boxes I1×. . .×In, where
each Ik ⊂ R is an interval of any kind (open/closed/half-open, possibly infinite or half-infinite).
This collection is a field if n= 1, as can be seen directly. The argument at the beginning of the
proof of Theorem 8.3 can then be used to carry out the inductive step (as n increases) in showing
that A is a field. For such a rectangle, we take

ℓ(I1×. . .×In) = ℓ1(I1). . .ℓ1(In),

where ℓ1(·) is the usual length of an interval in R (and 0·∞≡0).

It is immediate that ∅∈A and ℓ(∅)=0. The tricky part is to verify (7). It is enough to establish
it when

I ≡
∞
⋃

n=1

In ∈ A

is a single rectangle, instead of a finite union of disjoint rectangles, and is bounded and closed
(because an arbitrary rectangle differs from a closed one by missing finitely many disjoint rectangle
of n-dimensional length 0). Since the rectangles In are disjoint and are contained in I,

k
∑

n=1

ℓ(In) ≤ ℓ(I) ∀ k∈Z
+ =⇒

∞
∑

n=1

ℓ(In) ≤ ℓ(I) .

It remains to establish the opposite inequality. Let ǫ > 0. For each n ∈ Z
+, let I ′n be an open

rectangle such that

In ⊂ I ′n and ℓ(I ′n) ≤ ℓ(In) +
ǫ

2n
.

Since {In}n∈Z+ is a collection of open sets covering the compact set I, there exists k∈Z
+ such that

I ⊂
k
⋃

n=1

I ′n and ℓ(I) ≤
k

∑

n=1

ℓ(I ′n) ≤
∞
∑

n=1

ℓ(In) + ǫ;

the finiteness of the cover is used to obtain the first inequality above. This establishes the opposite
inequality.
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Problem 3 (12pts)

Let (X,F1, µ1) and (Y,F2, µ2) be σ-finite measure spaces and σ(F1×F2) be the σ-field generated by

F1×F2 ≡
{

A×B : A∈F1, A∈F2

}

.

Suppose that µ is a measure on σ(F1×F2) such that

µ(A×B) = µ1(A)µ2(B) ∀ A×B∈F1×F2. (11)

Show that µ is the product measure µ1×µ2 on σ(F1×F2).

The argument is very similar to the proof of Theorem 8.6 in Rudin, a streamlined version of which
was presented in class on 11/14. Let

F =
{

E∈σ(F1×F2) : µ(E)=µ1×µ2(E)
}

.

Then,

(1) F1×F2⊂F ;

(2) F is closed under finite disjoint unions;

(3) if E1, E2, . . .∈F and E1⊂E2⊂ . . ., then
∞
⋃

n=1

En ∈ F ;

(4) if X ′×Y ′ ∈ F1×F2, E1, E2, . . . ∈ F , X ′×Y ′ ⊃ E1 ⊃ E2 ⊃ . . ., and µ1(X
′), µ2(Y

′) <∞, then
∞
⋂

n=1

En ∈ F .

The first property holds by (11); the other three hold by standard properties of measures.

Since (X,F1, µ1) and (Y,F2, µ2) are σ-finite, there exist X1, X2, . . . ∈ F1 and Y1, Y2, . . . ∈ F2 be
such that

X1⊂X2⊂ . . . , X =
∞
⋃

n=1

Xn, µ1(Xn) <∞ ∀n,

Y1⊂Y2⊂ . . . , Y =
∞
⋃

n=1

Yn, µ2(Yn) <∞ ∀n.

For each n∈Z
+, let

Cn =
{

E∈σ(F1×F2) : E∩(Xn×Yn)∈F
}

.

By (1) and (2) above, Cn contains the collection R consisting of finite unions of disjoint measurable
rectangles (i.e. of elements of F1×F2). By (3) and (4), Cn is a monotone class. Since σ(F1×F2)
is the minimal monotone class on X×Y containing R, it follows that Cn = σ(F1×F2) for every
n∈Z

+, i.e.
En≡E∩(Xn×Yn) ∈ F ∀ E∈σ(F1×F2), n∈Z

+.
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Since E1⊂E2⊂ . . ., (3) above then implies that

E =
∞
⋃

n=1

En ∈ F ∀ E∈σ(F1×F2),

i.e. µ(E)=µ1×µ2(E) for all E∈σ(F1×F2).

Problem 4 (8pts)

Let I= [0, 1], (I,MI,mI) be the usual Lebesgue measure space, and (I, 2I, µ) be the measure space
so that µ is the counting measure. Let

E =
{

(x, x) : x∈I
}

⊂ I×I

be the diagonal. Show that

E ∈ σ
(

MI×2I
)

, ϕE(x)≡µ(Ex) = 1 ∀x∈I, ψE(y)≡mI(E
y) = 0 ∀ y∈I.

Why doesn’t this contradict equation (6.3) in the book?

Since

E =
∞
⋂

k=1

k
⋃

n=1

[

n−1

k
,
k

n

]

×

[

n−1

k
,
k

n

]

is a countable intersection of finite unions of measurable rectangles (i.e. elements of MI×2I),
E∈σ(MI×2I). Since Ex={x} and Ey={y},

ϕE(x)≡µ({x}) = 1, ψE(y)≡mI({y}) = 0,

∫

X

ϕE dmI = 1,

∫

Y

ψE dµ = 0.

This does not contradict equation (6.3) in the book because the measure space (I, 2I, µ) is not
σ-finite.

Problem 5 (12pts)

Let I=[0, 1] and (I,MI,mI) be the usual Lebesgue measure space. For each n∈Z
+, let fn : I−→R

be a continuous function such that

fn(x) = 0 ∀x 6∈
[

2−n, 2−n+1
]

,

∫ 1

0
fn(x) dx = 1.

Show that

(a) the sum f(x, y) =
∞
∑

n=1

(

fn(x)− fn+1(x)
)

fn(y) converges for all (x, y) ∈ I
2 and the function

f : I2−→R is continuous except at (0, 0);
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(b)

∫ 1

0

(
∫ 1

0
f(x, y) dy

)

dx = 1 and

∫ 1

0
f(x, y) dx = 0 for all y∈ I. Why doesn’t this contradict any

of the Fubini theorems?

(a; 4pts) If y∈ [2−k, 2−k+1], f(x, y)= (fk(x)−fk+1(x))fk(y), i.e. at most one term in the sum for
f(x, y) is nonzero and so the sum converges. Every (x, y) 6=(0, 0) has neighborhood Ux,y⊂ [0, 1]2 so
that at most 3 terms in the sum are nonzero on Ux,y. Since f is a sum of three continuous functions
on Ux,y, it is continuous on Ux,y. Since these neighborhoods cover the complement of (0,0) in [0, 1]2,
f is continuous on this complement.

(b; 8pts) If y∈ [2−k, 2−k+1], f(x, y)=(fk(x)−fk+1(x))fk(y) and so

∫ 1

0
f(x, y) dx =

(
∫ 1

0
fk(x) dx−

∫ 1

0
fk+1(x) dx

)

fk(y) = (1− 1)fk(y) = 0,

∫ 1

0

(
∫ 1

0
f(x, y) dx

)

dy =

∫ 1

0
0 dy = 0.

If x∈ [2−1, 1], f(x, y)=f1(x)f1(y) and so

∫ 1

0
f(x, y) dy = f1(x)

∫ 1

0
f1(y) dy = f1(x).

If x∈ [2−k, 2−k+1] with k>1, f(x, y)=fk(x)(fk(y)−fk−1(y)) and so

∫ 1

0
f(x, y) dx = fk(x)

(
∫ 1

0
fk(x) dy −

∫ 1

0
fk−1(x) dy

)

= fk(x)(1−1) = 0.

Combining the last two statements, we obtain

∫ 1

0

(
∫ 1

0
f(x, y) dy

)

dx =

∫ 1

2−1

f1(x) dx =

∫ 1

0
f1(x) dx = 1.

This does not contradict any of the Funini theorems because f changes sign and

∫∫

[0,1]2
|f |dm×m =

∫ 1

0

(
∫ 1

0

∣

∣f(x, y)
∣

∣ dx

)

dy

≥
∞
∑

k=1

∫ 2−k+1

2−k

(
∫ 2−k+1

2−k

∣

∣f(x, y)
∣

∣ dx+

∫ 2−k

2−k−1

∣

∣f(x, y)
∣

∣ dx

)

dy

=
∞
∑

k=1

∫ 2−k+1

2−k

∣

∣fk(y)
∣

∣

(
∫ 2−k+1

2−k

∣

∣fk(x)
∣

∣ dx+

∫ 2−k

2−k−1

∣

∣fk+1(x)
∣

∣ dx

)

dy

=
∞
∑

k=1

∫ 2−k+1

2−k

∣

∣fk(y)
∣

∣

(
∫ 1

0

∣

∣fk(x)
∣

∣ dx+

∫ 1

0

∣

∣fk+1(x)
∣

∣ dx

)

dy

≥
∞
∑

k=1

∫ 2−k+1

2−k

∣

∣fk(y)
∣

∣(1+1)dy = 2

∞
∑

k=1

∫ 1

0

∣

∣fk(y)|dy ≥ 2

∞
∑

k=1

1 = ∞,

i.e. f is not m×m-integrable.
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