MAT 324: Real Analysis, Fall 2017 Solutions to Problem Set 1

Problem 1 (5pts)
Is the function

$$
f(x)=\sum_{n=0}^{\infty} 2^{-n} \sin \left(2^{n} x\right)
$$

Riemann integrable on $[0,2 \pi]$? Justify your answer.
Yes, because the finite sum

$$
f_{N}(x) \equiv \sum_{n=0}^{n=N} 2^{-n} \sin \left(2^{n} x\right)
$$

of continuous functions is Riemann integrable on $[0,2 \pi]$ for each $N \in \mathbb{Z}^{+}$and

$$
\begin{equation*}
\left|f(x)-f_{N}(x)\right| \leq \sum_{n=N+1}^{\infty} 2^{-n}\left|\sin \left(2^{n} x\right)\right| \leq 2^{-N} \tag{1}
\end{equation*}
$$

Given $\varepsilon \in \mathbb{R}^{+}$, let $N \in \mathbb{Z}^{+}$be such that $2 \pi \cdot 2^{-N}<\frac{\varepsilon}{4}$ and let

$$
0=a_{0}<a_{1}<\ldots<a_{m}=2 \pi
$$

be a partition of $[0,2 \pi]$ so that

$$
\sum_{i=1}^{m}\left(\max _{\left[a_{i-1}, a_{i}\right]} f_{N}(x)-\min _{\left[a_{i-1}, a_{i}\right]} f_{N}(x)\right)\left(a_{i}-a_{i-1}\right)<\frac{\varepsilon}{2} .
$$

Combining this with (1), we obtain

$$
\begin{aligned}
\sum_{i=1}^{m}\left(\max _{\left[a_{i-1}, a_{i}\right]} f(x)-\min _{\left[a_{i-1}, a_{i}\right]} f(x)\right)\left(a_{i}-a_{i-1}\right) & \leq \sum_{i=1}^{m}\left(\max _{\left[a_{i-1}, a_{i}\right]} f_{N}(x)-\min _{\left[a_{i-1}, a_{i}\right]} f_{N}(x)+2 \cdot 2^{-N}\right)\left(a_{i}-a_{i-1}\right) \\
& \leq \frac{\varepsilon}{2}+2 \cdot 2^{-N} \cdot 2 \pi \leq \varepsilon .
\end{aligned}
$$

This implies that $f(x)$ is Riemann integrable.
Remark: The part of the solution ending with (1) is enough for full credit. A less direct way to proceed from (1) is the following. By (1), f is a sum of continuous functions that converges uniformly. By Theorem 25.5 in Ross's textbook, f is thus continuous. By Theorem 33.2 in Ross's textbook, f is therefore integrable on $[0,2 \pi]$.

Problem 2 (10pts)

Show that the set

$$
A=\left\{x \in[-1,1]:|\sin (n x)| \leq \frac{1}{n} \forall n \in \mathbb{Z}^{+}\right\}
$$

has measure 0.
For each $n \in \mathbb{Z}^{+}$, let

$$
\begin{aligned}
A_{n} & \equiv\left\{x \in[-1,1]:|\sin (n x)| \leq \frac{1}{n}\right\} \\
& =\{x \in[-1,1]: \pi k-\arcsin (1 / n) \leq n x \leq \pi k+\arcsin (1 / n) \text { for some } k \in \mathbb{Z}\} \\
& =\bigcup_{k=-n}^{k=n}\{x \in[-1,1]: \pi k / n-\arcsin (1 / n) / n \leq x \leq \pi k / n+\arcsin (1 / n) / n\} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
A=\bigcap_{n=1}^{\infty} A_{n} \quad \text { and } \quad m^{*}\left(A_{n}\right) \leq 2(2 n+1) \arcsin (1 / n) / n \tag{2}
\end{equation*}
$$

Since $\sin (x) / x \longrightarrow 1$ as $x \longrightarrow 0, \arcsin (x) / x \longrightarrow 1$ as $x \longrightarrow 0$. Thus, there exists $N \in \mathbb{Z}^{+}$so that $\arcsin (1 / n)<2 / n$ for all $n>N$ and

$$
\begin{equation*}
m^{*}\left(A_{n}\right) \leq 2(2+1 / n) \cdot 2 / n \leq 12 / n \quad \forall n>N . \tag{3}
\end{equation*}
$$

Let $\varepsilon \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$be such that $n>N$ and $12 / n<\varepsilon$. By the first statement in (2) and by (3),

$$
m^{*}(A) \leq m^{*}\left(A_{n}\right) \leq 12 / n<\varepsilon .
$$

This implies that A is a null set.

Problem 3 (10pts)

Let $A \subset[0,1]$ be a null subset. Show that

$$
B \equiv\left\{x^{2}: x \in A\right\}
$$

is also a null subset. Is the conclusion still true if $A \subset \mathbb{R}$? Justify your answer.
Let $\varepsilon \in \mathbb{R}^{+}$and I_{1}, I_{2}, \ldots be a sequence of intervals in $[0,1]$ such that

$$
\begin{equation*}
A \subset \bigcup_{k=1}^{\infty} I_{k} \quad \text { and } \quad \sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\frac{\varepsilon}{2} . \tag{4}
\end{equation*}
$$

If $a_{k}, b_{k} \in \mathbb{R}$ are the left and right endpoints of I_{k}, then

$$
\begin{equation*}
B \subset \bigcup_{k=1}^{\infty}\left\{x^{2}: x \in I_{k}\right\}=\bigcup_{k=1}^{\infty}\left[a_{k}^{2}, b_{k}^{2}\right], \quad \sum_{k=1}^{\infty} \ell\left(\left[a_{k}^{2}, b_{k}^{2}\right]\right) \leq \sum_{k=1}^{\infty} 2 \ell\left(I_{k}\right)<\varepsilon . \tag{5}
\end{equation*}
$$

The first equality above holds because x^{2} is non-decreasing function on $[0,1]$. The second equality holds because

$$
\begin{equation*}
\ell\left(\left[a_{k}^{2}, b_{k}^{2}\right]\right)=b_{k}^{2}-a_{k}^{2}=\left(b_{k}+a_{k}\right)\left(b_{k}-a_{k}\right) \leq 2 \ell\left(\left[a_{k}, b_{k}\right]\right) \tag{6}
\end{equation*}
$$

By (5), B is a null set.
The conclusion is true for every null subset $A \subset \mathbb{R}$. First suppose $A \subset[n-1, n]$ for some $n \in \mathbb{Z}^{+}$. With the notation as in the previous paragraph, (6) would remain valid if 2 on its right-hand side were replaced by $2 n$. Thus, (5) would remain valid if I_{1}, I_{2}, \ldots were chosen so that the second statement in (4) held with ε / n instead of ε and $2 \ell\left(I_{k}\right)$ in (5) were replaced by $2 n \ell\left(I_{k}\right)$. Thus, the conclusion holds for every null subset $A \subset[n-1, n]$ for some $n \in \mathbb{Z}^{+}$. It also holds for every null subset $A \subset[-n,-(n-1)]$ for some $n \in \mathbb{Z}^{+}$, because the subset

$$
-A \equiv\{-x: x \in A\} \subset[n-1, n]
$$

is then also null and has the same associated subset B.
For an arbitrary null subset $A \subset \mathbb{R}$ and $n \in \mathbb{Z}$, let

$$
A_{n}=A \cap[n-1, n], \quad B_{n}=\left\{x^{2}: x \in A_{n}\right\} .
$$

Since A is a null subset, so is A_{n}. By the previous paragraph, B_{n} is then also a null subset. Since

$$
B \equiv\left\{x^{2}: x \in A\right\}=\bigcup_{n=1}^{\infty}\left\{x^{2}: x \in A_{n}\right\}=\bigcup_{n=1}^{\infty} B_{n}
$$

is a countable union of null subsets, it is also a null subset.

Problem 4 (10pts)

In Definition 2.3 in the textbook, the set Z_{A} involves sums taken over sequences of intervals I_{n} of every possible type (closed, open, open on lower/upper end and closed on upper/lower end). Show that using only one of these four kinds of intervals in the definition of Z_{A} would not change the definition of $m^{*}(A)$. This means that you need to establish 4 statements (e.g. using open interval in place of interval in the definition of Z_{A} would not change the answer, etc.)

Let $A \subset \mathbb{R}$. Denote by Z_{A} the set of numbers as in Definition 2.3 using all types of intervals, by Z_{A}° the set of numbers as in Definition 2.3 using only open intervals, and by Z_{A}^{\prime} the set of numbers as in Definition 2.3 using only one of the four types of interval. Since $Z_{A} \supset Z_{A}^{\prime}$ and $Z_{A}^{\prime} \supset Z_{A}^{\circ}$ (b/c every open interval is contained in an interval of any given type of the same length),

$$
m^{*}(A) \equiv \inf Z_{A} \leq \inf Z_{A}^{\prime} \leq \inf Z_{A}^{\circ}
$$

It thus suffices to show that

$$
\begin{equation*}
\inf Z_{A}^{\circ} \leq m^{*}(A)+\varepsilon \quad \forall \varepsilon \in \mathbb{R}^{+} \tag{7}
\end{equation*}
$$

Let $\varepsilon \in \mathbb{R}^{+}$and I_{1}, I_{2}, \ldots be a sequence of intervals such that

$$
\begin{equation*}
A \subset \bigcup_{k=1}^{\infty} I_{k} \quad \text { and } \quad \sum_{k=1}^{\infty} \ell\left(I_{k}\right)<m^{*}(A)+\frac{\varepsilon}{2} \tag{8}
\end{equation*}
$$

If $a_{k}, b_{k} \in \mathbb{R}$ are the left and right endpoints of I_{k}, let

$$
J_{k}=\left(a_{k}-\varepsilon / 2^{k+2}, b_{k}+\varepsilon / 2^{k+2}\right)
$$

By (8),

$$
A \subset \bigcup_{k=1}^{\infty} J_{k}, \quad \sum_{k=1}^{\infty} \ell\left(J_{k}\right)<\sum_{k=1}^{\infty}\left(\ell\left(I_{k}\right)+\frac{\varepsilon}{2^{k+1}}\right)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)+\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k+1}}<m^{*}(A)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=m^{*}(A)+\varepsilon
$$

Thus, a number less than $m^{*}(A)+\varepsilon$ lies in Z_{A}°. This implies (7).

Problem 5 (15pts)

Let $F:[0,1] \longrightarrow[0,1]$ be the Lebesgue function defined at the top of p20 in the textbook. Show that $F(0)=0, F(1)=1$, and F is non-decreasing, continuous, and constant on each open interval removed in the construction of the Cantor set on 19 and takes a null set to a set of outer measure 1 (the book contains an outline for justifying these statements).

We use the same notation as in the book. For $x=0, a_{n}=0$ for all $n \in \mathbb{Z}^{+}$. For $x=1, a_{n}=2$ for all $n \in \mathbb{Z}^{+}$. Thus,

$$
F(0)=\sum_{n=1}^{\infty} \frac{0 / 2}{2^{n}}=0, \quad F(1)=\sum_{n=1}^{\infty} \frac{2 / 2}{2^{n}}=1
$$

Suppose $x<x^{\prime}$ and a_{1}, a_{2}, \ldots and $a_{1}^{\prime}, a_{2}^{\prime}, \ldots$ are the expansions of x and x^{\prime}. Let $k \in \mathbb{Z}^{+}$be the smallest index such $a_{k}<a_{k}^{\prime}$ (thus $a_{n}=a_{n}^{\prime}$ for all $\left.n<k\right)$. If $a_{k}=1$, then

$$
F(x)=\sum_{n=1}^{k-1} \frac{a_{n} / 2}{2^{n}}+\frac{1}{2^{k}}=\sum_{n=1}^{k} \frac{a_{n}^{\prime} / 2}{2^{n}} \leq F\left(x^{\prime}\right)
$$

If $a_{k}=0$, then

$$
F(x) \leq \sum_{n=1}^{k-1} \frac{a_{n} / 2}{2^{n}}+\sum_{n=k+1}^{\infty} \frac{1}{2^{n}}=\sum_{n=1}^{k-1} \frac{a_{n}^{\prime} / 2}{2^{n}}+\frac{1}{2^{k}} \leq F\left(x^{\prime}\right)
$$

Thus, $F(x) \leq F\left(x^{\prime}\right)$ in either case and so F is non-decreasing.

Any interval removed at the k-th step of the construction of the Cantor set on p 19 is of the form (a, b) with

$$
a=. a_{1} \ldots a_{k-1} 1, \quad b=. a_{1} \ldots a_{k-1} 2=. a_{1} \ldots a_{k-1} 1222 \ldots \quad \text { for some } \quad a_{1}, \ldots, a_{k-1} \in\{0,2\}
$$

The first index N for which $a_{N}=1$ is k for every $x \in(a, b)$. Thus,

$$
F(x)=\sum_{n=1}^{k-1} \frac{a_{n} / 2}{2^{n}}+\frac{1}{2^{k}} \quad \forall x \in(a, b),
$$

and so F is constant on each open interval removed in the construction of the Cantor set.
We now show that F is continuous at $x \in[0,1]$. Let $\varepsilon \in \mathbb{R}^{+}$. Suppose first that $x \in(0,1)$ and thus $F(x) \in(0,1)$. Choose

$$
\begin{gathered}
k \in \mathbb{Z}^{+}, \quad a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in\{0,1\} \quad \text { s.t. } \\
a_{k}, b_{k}=1, \quad A \equiv \sum_{n=1}^{k} \frac{a_{n}}{2^{n}} \in(F(x)-\varepsilon, F(x)), \quad B \equiv \sum_{n=1}^{k} \frac{b_{n}}{2^{n}} \in(F(x), F(x)+\varepsilon) .
\end{gathered}
$$

Let

$$
a=\sum_{n=1}^{k-1} \frac{2 a_{n}}{2^{n}}+\frac{1}{2^{k}}, \quad b=\sum_{n=1}^{k-1} \frac{2 b_{n}}{2^{n}}+\frac{1}{2^{k}} .
$$

Thus, $F(a)=A, F(b)=B$, and so

$$
F(x)-\varepsilon<F(a)<F(x)<F(b)<F(x)+\varepsilon .
$$

Since F is non-decreasing, this implies that

$$
x \in(a, b) \quad \text { and } \quad(a, b) \subset F^{-1}((F(x)-\varepsilon, F(x)+\varepsilon)) .
$$

If $x=0$, we take $a=x$ above, so that

$$
x \in[0, b) \quad \text { and } \quad[0, b) \subset F^{-1}([0, \varepsilon)) .
$$

If $x=1$, we take $b=x$ above, so that

$$
x \in(a, 1] \quad \text { and } \quad(a, 1] \subset F^{-1}((1-\varepsilon, 1)) .
$$

Thus, $F^{-1}(U) \subset[0,1]$ is an open subset of $[0,1]$ for every open subset $U \subset[0,1]$, i.e. F is continuous.
Since F is continuous and constant on each open interval removed in the construction of the Cantor set $C, F(C)=[0,1]$. This provides an example of a null subset of $[0,1]$ taken by F to a set of outer measure 1 .

