
MAT 324: Real Analysis, Fall 2017
Solutions to Problem Set 1

Problem 1 (5pts)

Is the function

f(x) =
∞
∑

n=0

2−n sin(2nx)

Riemann integrable on [0, 2π]? Justify your answer.

Yes, because the finite sum

fN (x) ≡
n=N
∑

n=0

2−n sin(2nx)

of continuous functions is Riemann integrable on [0, 2π] for each N ∈Z
+ and

∣

∣f(x)− fN (x)
∣

∣ ≤
∞
∑

n=N+1

2−n
∣

∣ sin(2nx)
∣

∣ ≤ 2−N . (1)

Given ε∈R
+, let N ∈Z

+ be such that 2π · 2−N < ε
4 and let

0=a0 < a1 < . . . < am=2π

be a partition of [0, 2π] so that

m
∑

i=1

(

max
[ai−1,ai]

fN (x)− min
[ai−1,ai]

fN (x)
)(

ai−ai−1

)

<
ε

2
.

Combining this with (1), we obtain

m
∑

i=1

(

max
[ai−1,ai]

f(x)− min
[ai−1,ai]

f(x)
)(

ai−ai−1

)

≤
m
∑

i=1

(

max
[ai−1,ai]

fN (x)− min
[ai−1,ai]

fN (x) + 2·2−N
)(

ai−ai−1

)

≤
ε

2
+ 2·2−N ·2π ≤ ε .

This implies that f(x) is Riemann integrable.

Remark: The part of the solution ending with (1) is enough for full credit. A less direct way
to proceed from (1) is the following. By (1), f is a sum of continuous functions that converges
uniformly. By Theorem 25.5 in Ross’s textbook, f is thus continuous. By Theorem 33.2 in Ross’s
textbook, f is therefore integrable on [0, 2π].



Problem 2 (10pts)

Show that the set

A =
{

x∈ [−1, 1] :
∣

∣ sin(nx)
∣

∣ ≤
1

n
∀n∈Z

+
}

has measure 0.

For each n∈Z
+, let

An ≡
{

x∈ [−1, 1] :
∣

∣ sin(nx)
∣

∣ ≤
1

n

}

=
{

x∈ [−1, 1] : πk−arcsin(1/n) ≤ nx ≤ πk+arcsin(1/n) for some k∈Z
}

=
k=n
⋃

k=−n

{

x∈ [−1, 1] : πk/n−arcsin(1/n)/n ≤ x ≤ πk/n+arcsin(1/n)/n
}

.

Thus,

A =
∞
⋂

n=1

An and m∗(An) ≤ 2(2n+1) arcsin(1/n)/n . (2)

Since sin(x)/x−→ 1 as x−→ 0, arcsin(x)/x−→ 1 as x−→ 0. Thus, there exists N ∈Z
+ so that

arcsin(1/n)<2/n for all n>N and

m∗(An) ≤ 2(2+1/n) · 2/n ≤ 12/n ∀ n>N. (3)

Let ε∈R
+ and n∈Z

+ be such that n>N and 12/n<ε. By the first statement in (2) and by (3),

m∗(A) ≤ m∗(An) ≤ 12/n < ε.

This implies that A is a null set.

Problem 3 (10pts)

Let A⊂ [0, 1] be a null subset. Show that

B ≡
{

x2 : x∈A
}

is also a null subset. Is the conclusion still true if A⊂R? Justify your answer.

Let ε∈R
+ and I1, I2, . . . be a sequence of intervals in [0, 1] such that

A ⊂

∞
⋃

k=1

Ik and

∞
∑

k=1

ℓ(Ik) <
ε

2
. (4)

If ak, bk∈R are the left and right endpoints of Ik, then

B ⊂
∞
⋃

k=1

{

x2 : x∈Ik
}

=
∞
⋃

k=1

[

a2k, b
2
k

]

,
∞
∑

k=1

ℓ
(

[a2k, b
2
k]
)

≤
∞
∑

k=1

2ℓ(Ik) < ε. (5)
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The first equality above holds because x2 is non-decreasing function on [0, 1]. The second equality
holds because

ℓ
(

[a2k, b
2
k]
)

= b2k − a2k = (bk+ak)(bk−ak) ≤ 2ℓ
(

[ak, bk]
)

. (6)

By (5), B is a null set.

The conclusion is true for every null subset A⊂R. First suppose A⊂ [n−1, n] for some n∈Z
+.

With the notation as in the previous paragraph, (6) would remain valid if 2 on its right-hand side
were replaced by 2n. Thus, (5) would remain valid if I1, I2, . . . were chosen so that the second
statement in (4) held with ε/n instead of ε and 2ℓ(Ik) in (5) were replaced by 2nℓ(Ik). Thus, the
conclusion holds for every null subset A⊂ [n−1, n] for some n∈Z

+. It also holds for every null
subset A⊂ [−n,−(n−1)] for some n∈Z

+, because the subset

−A ≡
{

− x : x∈A
}

⊂
[

n−1, n
]

is then also null and has the same associated subset B.

For an arbitrary null subset A⊂R and n∈Z, let

An = A ∩ [n−1, n], Bn =
{

x2 : x∈An

}

.

Since A is a null subset, so is An. By the previous paragraph, Bn is then also a null subset. Since

B ≡
{

x2 : x∈A
}

=
∞
⋃

n=1

{

x2 : x∈An

}

=
∞
⋃

n=1

Bn

is a countable union of null subsets, it is also a null subset.

Problem 4 (10pts)

In Definition 2.3 in the textbook, the set ZA involves sums taken over sequences of intervals In of
every possible type (closed, open, open on lower/upper end and closed on upper/lower end). Show
that using only one of these four kinds of intervals in the definition of ZA would not change the
definition of m∗(A). This means that you need to establish 4 statements (e.g. using open interval
in place of interval in the definition of ZA would not change the answer, etc.)

Let A⊂R. Denote by ZA the set of numbers as in Definition 2.3 using all types of intervals, by
Z◦

A the set of numbers as in Definition 2.3 using only open intervals, and by Z ′

A the set of numbers
as in Definition 2.3 using only one of the four types of interval. Since ZA⊃Z ′

A and Z ′

A⊃Z◦

A (b/c
every open interval is contained in an interval of any given type of the same length),

m∗(A) ≡ inf ZA ≤ inf Z ′

A ≤ inf Z◦

A .

It thus suffices to show that

inf Z◦

A ≤ m∗(A) + ε ∀ ε∈R
+. (7)
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Let ε∈R
+ and I1, I2, . . . be a sequence of intervals such that

A ⊂
∞
⋃

k=1

Ik and
∞
∑

k=1

ℓ(Ik) < m∗(A) +
ε

2
. (8)

If ak, bk∈R are the left and right endpoints of Ik, let

Jk =
(

ak−ε/2k+2, bk+ε/2k+2
)

.

By (8),

A ⊂
∞
⋃

k=1

Jk,
∞
∑

k=1

ℓ(Jk) <
∞
∑

k=1

(

ℓ(Ik)+
ε

2k+1

)

=
∞
∑

k=1

ℓ(Ik) +
∞
∑

k=1

ε

2k+1
< m∗(A)+

ε

2
+

ε

2
= m∗(A) + ε.

Thus, a number less than m∗(A)+ε lies in Z◦

A. This implies (7).

Problem 5 (15pts)

Let F : [0, 1]−→ [0, 1] be the Lebesgue function defined at the top of p20 in the textbook. Show
that F (0)=0, F (1)=1, and F is non-decreasing, continuous, and constant on each open interval
removed in the construction of the Cantor set on p19 and takes a null set to a set of outer mea-
sure 1 (the book contains an outline for justifying these statements).

We use the same notation as in the book. For x=0, an=0 for all n∈Z
+. For x=1, an=2 for all

n∈Z
+. Thus,

F (0) =
∞
∑

n=1

0/2

2n
= 0, F (1) =

∞
∑

n=1

2/2

2n
= 1.

Suppose x< x′ and a1, a2, . . . and a′1, a
′

2, . . . are the expansions of x and x′. Let k ∈ Z
+ be the

smallest index such ak<a′k (thus an=a′n for all n<k). If ak=1, then

F (x) =
k−1
∑

n=1

an/2

2n
+

1

2k
=

k
∑

n=1

a′n/2

2n
≤ F (x′).

If ak=0, then

F (x) ≤

k−1
∑

n=1

an/2

2n
+

∞
∑

n=k+1

1

2n
=

k−1
∑

n=1

a′n/2

2n
+

1

2k
≤ F (x′).

Thus, F (x)≤F (x′) in either case and so F is non-decreasing.

Any interval removed at the k-th step of the construction of the Cantor set on p19 is of the form
(a, b) with

a = .a1 . . . ak−11, b = .a1 . . . ak−12 = .a1 . . . ak−11222 . . . for some a1, . . . , ak−1 ∈ {0, 2}.
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The first index N for which aN =1 is k for every x∈(a, b). Thus,

F (x) =
k−1
∑

n=1

an/2

2n
+

1

2k
∀ x∈(a, b),

and so F is constant on each open interval removed in the construction of the Cantor set.

We now show that F is continuous at x∈ [0, 1]. Let ε∈R
+. Suppose first that x∈(0, 1) and thus

F (x)∈(0, 1). Choose

k ∈ Z
+, a1, . . . , ak, b1, . . . , bk ∈ {0, 1} s.t.

ak, bk = 1, A ≡
k

∑

n=1

an
2n

∈
(

F (x)−ε, F (x)
)

, B ≡
k

∑

n=1

bn
2n

∈
(

F (x), F (x)+ε
)

.

Let

a =
k−1
∑

n=1

2an
2n

+
1

2k
, b =

k−1
∑

n=1

2bn
2n

+
1

2k
.

Thus, F (a)=A, F (b)=B, and so

F (x)−ε < F (a) < F (x) < F (b) < F (x)+ε.

Since F is non-decreasing, this implies that

x ∈ (a, b) and (a, b) ⊂ F−1
(

(F (x)−ε, F (x)+ε)
)

.

If x=0, we take a=x above, so that

x ∈ [0, b) and [0, b) ⊂ F−1
(

[0, ε)
)

.

If x=1, we take b=x above, so that

x ∈ (a, 1] and (a, 1] ⊂ F−1
(

(1−ε, 1)
)

.

Thus, F−1(U)⊂ [0, 1] is an open subset of [0, 1] for every open subset U⊂ [0, 1], i.e. F is continuous.

Since F is continuous and constant on each open interval removed in the construction of the
Cantor set C, F (C)= [0, 1]. This provides an example of a null subset of [0, 1] taken by F to a
set of outer measure 1.
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