## MAT 324: Real Analysis, Fall 2017 <br> First-Day Quiz (40 mins)

Name:

1 (1pt) $10^{\ln 6}-6^{\ln 10}$ equals
(A) 0
(B) 1
(C) $\quad-1$
(D) $4^{-\ln 4}$
(E) $\frac{1}{256}$

Answer only
2 (1pt) The graph of the function $y=(x-2)^{3}+3$ is obtained by shifting the graph of $y=x^{3}$
(A) 3 units up and 2 units left
(B) 3 units up and 2 units right
(C) 3 units down and 2 units left
(D) 3 units down and 2 units right
(E) 3 units right and 2 units down

Answer only
3 (3pts) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$ equals
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
(E) $\infty$

Justify your answer

4 (5pts) Which of the following statements is true?
(A) $\int_{2}^{12} x^{-3 / 2} \mathrm{~d} x<\sum_{n=3}^{n=12} n^{-3 / 2}<\sum_{n=2}^{n=11} n^{-3 / 2}$
(B) $\sum_{n=3}^{n=12} n^{-3 / 2}<\int_{2}^{12} x^{-3 / 2} \mathrm{~d} x<\sum_{n=2}^{n=11} n^{-3 / 2}$
(C) $\sum_{n=3}^{n=11} n^{-3 / 2}<\int_{2}^{12} x^{-3 / 2} \mathrm{~d} x<\sum_{n=3}^{n=12} n^{-3 / 2}$
(D) $\sum_{n=2}^{n=12} n^{-3 / 2}<\sum_{n=1}^{n=11} n^{-3 / 2}<\int_{2}^{12} x^{-3 / 2} \mathrm{~d} x$
(E) $\sum_{n=2}^{n=12} n^{-3 / 2}<\int_{2}^{12} x^{-3 / 2} \mathrm{~d} x<\sum_{n=1}^{n=11} n^{-3 / 2}$

Justify your answer

5-10 (1pt each) Let $f: X \longrightarrow Y$ be a map (defined on all of $X$ ), $X_{1}, X_{2} \subset X$, and $Y_{1}, Y_{2} \subset Y$. Which of the following statements are true? Answer only
5 (A) $f\left(X_{1} \cup X_{2}\right) \subset f\left(X_{1}\right) \cup f\left(X_{2}\right)$
(B) $f\left(X_{1} \cup X_{2}\right) \supset f\left(X_{1}\right) \cup f\left(X_{2}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)
6 (A) $f\left(X_{1} \cap X_{2}\right) \subset f\left(X_{1}\right) \cap f\left(X_{2}\right)$
(B) $f\left(X_{1} \cap X_{2}\right) \supset f\left(X_{1}\right) \cap f\left(X_{2}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)
7 (A) $f\left(X \backslash X_{1}\right) \subset Y \backslash f\left(X_{1}\right)$
(B) $f\left(X \backslash X_{1}\right) \supset Y \backslash f\left(X_{1}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)
$8(\mathrm{~A}) f^{-1}\left(Y_{1} \cup Y_{2}\right) \subset f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right)$
(B) $f^{-1}\left(Y_{1} \cup Y_{2}\right) \supset f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)
9 (A) $f^{-1}\left(Y_{1} \cap Y_{2}\right) \subset f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$
(B) $f^{-1}\left(Y_{1} \cap Y_{2}\right) \supset f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)
10 (A) $f^{-1}\left(Y \backslash Y_{1}\right) \subset X \backslash f^{-1}\left(Y_{1}\right)$
(B) $f^{-1}\left(Y \backslash Y_{1}\right) \supset X \backslash f^{-1}\left(Y_{1}\right)$
(C) both (A) and (B)
(D) neither (A) nor (B)

11-13 (3pts each) Show work below.
11 Let $a_{1}, a_{2}, \ldots$ be a sequence of 0 's and 1's. Show that the series $\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}$ converges to some number $a \in[0,1]$.
12 If $a_{1}^{\prime}, a_{2}^{\prime}, \ldots$ is a different sequence of 0 's and 1's (i.e. $a_{k} \neq a_{k}^{\prime}$ for at least one $k \in \mathbb{Z}^{+}$), show that

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}} \neq \sum_{k=1}^{\infty} \frac{a_{k}^{\prime}}{3^{k}}
$$

13 Explain why the set $\mathbb{Q}$ of rational numbers is countable, but the set $\mathbb{R}$ of real numbers is uncountable.

14 (3pts) Let $\Omega$ be a set consisting of 10 elements. How many distinct subsets does $\Omega$ contain? Justify your answer

15 (7pts) Show that the function

$$
1_{\mathbb{Q}}:[0,1] \longrightarrow \mathbb{R}, \quad 1_{\mathbb{Q}}(x)= \begin{cases}1, & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 0, & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

is not Riemann-integrable.

