MAT 324: Real Analysis, Fall 2017
 Solutions to Midterm

Problem 1 (10pts)

(a) Give a definition of σ-field on a set X.
(b) Describe all σ-fields on the set $X \equiv\{a, b\}$ of two elements; explain why there are no others.
(a; $\mathbf{5} \mathbf{p t s}$) A σ-field on X is a collection \mathcal{F} of subsets of X such that
(i) $X \in \mathcal{F}$ (ii) if $E \in \mathcal{F}$, then $E^{c} \equiv X-E \in \mathcal{F} \quad$ (iii) if $E_{1}, E_{2}, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{F}$
(b; 5pts) The σ-fields on the set $X \equiv\{a, b\}$ are

$$
\mathcal{F}=\{\emptyset, X\} \quad \text { and } \quad \mathcal{F}=2^{X}=\{\emptyset, X,\{a\},\{b\}\} .
$$

By (i) and (ii) above, every σ-field \mathcal{F} on X contains X and $X^{c}=\emptyset$. If \mathcal{F} also contains $\{a\}$, then it contains $\{a\}^{c}=\{b\}$ as well. So, there are no other σ-fields on X.

Problem 2 (10pts)

Let (X, \mathcal{F}, μ) be a measure space.
(a) Given a definition of what it means for a function $f: X \longrightarrow \mathbb{R}$ to be measurable.
(b) Suppose $f, g: X \longrightarrow \mathbb{R}$ are measurable functions and $A, B \in \mathcal{F}$ are disjoint subsets such that $A \cup B=X$. Show that the function

$$
h: X \longrightarrow \mathbb{R}, \quad h(x)= \begin{cases}f(x), & \text { if } x \in A ; \\ g(x), & \text { if } x \in B ;\end{cases}
$$

is measurable.
(a; 3pts) A function $f: X \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(I) \in \mathcal{F}$ for every interval $I \subset \mathbb{R}$.
(b; 7pts) Let $I \subset \mathbb{R}$ be an interval. Then,

$$
h^{-1}(I)=\left(f^{-1}(I) \cap A\right) \cup\left(g^{-1}(I) \cap B\right) \subset X
$$

Since f and g are measurable functions, $f^{-1}(I), g^{-1}(I) \in \mathcal{F}$. Since \mathcal{F} is a σ-field, it is closed under countable intersections and unions. Since $A, B \in \mathcal{F}$, it follows that

$$
f^{-1}(I) \cap A, g^{-1}(I) \cap B \in \mathcal{F} \quad \Longrightarrow \quad h^{-1}(I) \in \mathcal{F}
$$

Problem 3 (20pts)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function, $A \subset \mathbb{R}$ be a null subset, and

$$
f(A) \equiv\{f(x): x \in A\}
$$

(a) Show that $f(A)$ is a null set if A is bounded (i.e. $A \subset[-R, R]$ for some $R \in \mathbb{R}^{+}$).
(b) Show that $f(A)$ is a null set (whether or not A is bounded).
(a; 15pts) Suppose $A \subset[-R, R]$. Let

$$
M=\max _{[-R, R]}\left\{\left|f^{\prime}(x)\right|: x \in[a, b]\right\}+1
$$

By the Fundamental Theorem of Calculus or the Mean Value Theorem,

$$
\begin{equation*}
\left|f(x)-f^{\prime}(x)\right| \leq M\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in[-R, R] \tag{1}
\end{equation*}
$$

Let $\varepsilon>0$. Since A is a null set, there exists a countable collection $\left\{I_{n}\right\}_{n \in \mathbb{Z}^{+}}$of intervals such that

$$
A \subset \bigcup_{n=1}^{\infty} I_{n}, \quad \sum_{n=1}^{\infty} \ell\left(I_{n}\right)<\frac{\varepsilon}{M}
$$

Along with (1), this implies that

$$
\begin{aligned}
& f(A) \subset f\left(\bigcup_{n=1}^{\infty} I_{n}\right)=\bigcup_{n=1}^{\infty} f\left(I_{n}\right)=\bigcup_{n=1}^{\infty}\left[\min _{I_{n}} f, \max _{I_{n}} f\right] \\
& \sum_{n=1}^{\infty} \ell\left(\left[\min _{I_{n}} f, \max _{I_{n}} f\right]\right) \leq \sum_{n=1}^{\infty} M \ell\left(I_{n}\right)<M \cdot \frac{\varepsilon}{M}=\varepsilon
\end{aligned}
$$

Thus, A is a null set.
(b; 5pts) Let $A_{n}=A \cap[-n, n]$. By (a), $f\left(A_{n}\right)$ is a null set. Thus,

$$
f(A)=f\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} f\left(A_{n}\right)
$$

is also a null set.

Note: It is not sufficient to assume that f is continuous. The Lebesgue function F defined on page 20 is continuous, non-decreasing, and takes the Cantor set C (which is a null set) onto the entire interval $[0,1]$; see Problem 5 on PS1.

Problem 4 (20pts)

Denote by $\mathcal{M} \subset 2^{\mathbb{R}}$ the collection of Lebesgue measurable subsets and by $\mathcal{B} \subset \mathcal{M}$ the collection of Borel subsets. Let $A \subset \mathbb{R}$. Show that
(a) $A \in \mathcal{M}$ if and only if $\inf \left\{m^{*}(B-A): B \in \mathcal{B}, A \subset B\right\}=0$;
(b) $A \in \mathcal{M}$ if and only if $\inf \left\{m^{*}(A-B): B \in \mathcal{B}, B \subset A\right\}=0$.

If $A \in \mathcal{M}$, there exist $C, \mathcal{O} \subset \mathbb{R}$ such that

$$
C, \mathcal{O} \in \mathcal{B}, \quad C \subset A \subset \mathcal{O}, \quad m^{*}(A-C), m^{*}(\mathcal{O}-A)=0
$$

This is basically Theorems 2.17 and $2.29 ; C$ is a countable union of closed sets, while \mathcal{O} is a countable intersection of open sets. Thus,

$$
\begin{aligned}
& \inf \left\{m^{*}(B-A): B \in \mathcal{B}, A \subset B\right\}=m^{*}(\mathcal{O}-A)=0 \\
& \inf \left\{m^{*}(A-B): B \in \mathcal{B}, B \subset A\right\}=m^{*}(A-C)=0
\end{aligned}
$$

This establishes one direction in each part.
Suppose $\inf \left\{m^{*}(B-A): B \in \mathcal{B}, A \subset B\right\}=0$. For each $n \in \mathbb{Z}^{+}$, let $B_{n} \in \mathcal{B}$ be such that $A \subset B_{n}$ and $m^{*}\left(B_{n}-A\right)<1 / n$. Thus,

$$
B \equiv \bigcap_{n=1}^{\infty} B_{n} \in \mathcal{B}, \quad A \subset B, \quad m^{*}(B-A) \leq m^{*}\left(B_{n}-A\right) \leq \frac{1}{n} \quad \forall n \in \mathbb{Z}^{+} .
$$

Thus, $B-A$ is a null set and so $B-A \in \mathcal{M}$. Since \mathcal{M} is closed under differences,

$$
A=B-(B-A) \in \mathcal{M} .
$$

This establishes the other direction in (a).
Suppose $\inf \left\{m^{*}(A-B): B \in \mathcal{B}, B \subset A\right\}=0$. For each $n \in \mathbb{Z}^{+}$, let $B_{n} \in \mathcal{B}$ be such that $B_{n} \subset A$ and $m^{*}\left(A-B_{n}\right)<1 / n$. Thus,

$$
B \equiv \bigcup_{n=1}^{\infty} B_{n} \in \mathcal{B}, \quad B \subset A, \quad m^{*}(A-B) \leq m^{*}\left(A-B_{n}\right) \leq \frac{1}{n} \quad \forall n \in \mathbb{Z}^{+}
$$

Thus, $A-B$ is a null set and so $A-B \in \mathcal{M}$. Since \mathcal{M} is closed under countable unions,

$$
A=B \cup(A-B) \in \mathcal{M} .
$$

This establishes the other direction in (b).

Problem 5 (20pts)

For each $n \in \mathbb{Z}^{+}$, define

$$
f_{n}, g_{n}:[0, \infty) \longrightarrow \mathbb{R}, \quad f_{n}(x)=\frac{n^{2} x \mathrm{e}^{-n x}}{1+x^{2}}, \quad g_{n}(x)=\frac{x \mathrm{e}^{-x}}{1+x^{2} / n^{2}}
$$

(a) Find $\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} x$ and $\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} x$.
(b) Show that

$$
\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} f_{n} \mathrm{~d} x\right)=\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} g_{n} \mathrm{~d} x\right)
$$

and find this limit.
(c) Let $F:[0, \infty) \longrightarrow[0, \infty]$ be a Lebesgue measurable function such that $f_{n} \leq F$ for all $n \in \mathbb{Z}^{+}$. Show that

$$
\int_{[0,1]} F \mathrm{~d} m=\infty .
$$

(a; 5pts) Since $f_{n}(0)=0$ for all $n, f_{n}(0) \longrightarrow 0$. Since $\mathrm{e}^{n x}$ with $x>0$ dominates every polynomial in n as $n \longrightarrow \infty, f_{n}(x) \longrightarrow 0$ for all $x>0$ as well. It is immediate that

$$
g_{n}(x) \longrightarrow \frac{x \mathrm{e}^{-x}}{1+0}=x \mathrm{e}^{-x} \quad \text { as } n \longrightarrow \infty .
$$

Thus,

$$
\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} x=\int_{0}^{\infty} 0 \mathrm{~d} x=0, \quad \int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} x=\int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x=\left.\left(-x \mathrm{e}^{-x}-\mathrm{e}^{-x}\right)\right|_{0} ^{\infty}=1
$$

(b; $\mathbf{8 p t s}$) By the change of variables $x \longrightarrow n x$,

$$
\int_{0}^{\infty} f_{n} \mathrm{~d} x=\int_{0}^{\infty} \frac{(n x) \mathrm{e}^{-(n x)}}{1+(n x)^{2} / n^{2}} \mathrm{~d}(n x)=\int_{n \cdot 0}^{n \cdot \infty} \frac{x \mathrm{e}^{-x}}{1+x^{2} / n^{2}} \mathrm{~d} x=\int_{0}^{\infty} g_{n} \mathrm{~d} x
$$

This implies that the two limits in the statement are the same. Since $g_{n}(x) \geq 0$ and $g_{n}(x) \nearrow x \mathrm{e}^{-x}$ for all $x \in[0, \infty)$,

$$
\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} g_{n} \mathrm{~d} x\right)=\lim _{n \longrightarrow \infty}\left(\int_{[0, \infty)} g_{n} \mathrm{~d} m\right)=\int_{[0, \infty)}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} m=\int_{[0, \infty)} x \mathrm{e}^{-x} \mathrm{~d} m=\int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x=1
$$

the second equality above holds by the Monotone Convergence Theorem.
(c; 7pts) Since $f_{n} \geq 0$, the assumption implies that $\left|f_{n}\right| \leq F$ for all $n \in \mathbb{Z}^{+}$. If in addition $\int_{[0,1]} F \mathrm{~d} m<\infty$, then

$$
\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} f_{n} \mathrm{~d} x\right)=\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} x=0 .
$$

by the Dominated Convergence Theorem and part (a). However, this contradicts part (b).

Problem 6 (20pts)

(a) State a definition of what it means for a bounded function $f:[0,1] \longrightarrow[0, \infty)$ to be Riemann integrable.
(b) State a definition of what it means for a bounded function $f:[0,1] \longrightarrow[0, \infty)$ to be Lebesgue integrable.
(c) Give an example of a bounded Lebesgue integrable function $f:[0,1] \longrightarrow[0, \infty)$ which is not Riemann integrable. Justify your answer.
(d) Show that every bounded Riemann integrable function f : $[0,1] \longrightarrow[0, \infty)$ is also Lebesgue integrable.
(a; 5pts) For a partition $\left(0=a_{0}<a_{1}<\ldots<a_{k}=1\right)$ of [0,1$]$, let

$$
s_{P}(f)=\sum_{n=1}^{k}\left(\inf _{\left[a_{n-1}, a_{n}\right]} f\right)\left(a_{n}-a_{n-1}\right), \quad S_{P}(f)=\sum_{n=1}^{k}\left(\sup _{\left[a_{n-1}, a_{n}\right]} f\right)\left(a_{n}-a_{n-1}\right) .
$$

The bounded function $f:[0,1] \longrightarrow[0, \infty)$ is Riemann integrable if

$$
\sup \left\{s_{P}(f): P \text { is partition of }[0,1]\right\}=\inf \left\{S_{P}(f): P \text { is partition of }[0,1]\right\}
$$

(b; 5pts) A bounded function $f:[0,1] \longrightarrow[0, \infty)$ is Lebesgue integrable if

$$
\begin{aligned}
\int_{[0,1]} f \mathrm{~d} m & \equiv \sup \left\{\sum_{n=1}^{k} a_{n} m\left(A_{n}\right): A_{n} \in \mathcal{M}, A_{n} \subset[0,1], A_{n} \cap A_{n^{\prime}}=\emptyset \forall n \neq n^{\prime}, a_{n} \in \mathbb{R}^{\geq 0}, a_{n} \leq \inf _{A_{n}} f\right\} \\
& <\infty
\end{aligned}
$$

(c; 5pts) By Theorem 4.33(i), a bounded Riemann integrable function $f:[0,1] \longrightarrow[0, \infty$) is a.e. continuous. Since the bounded function

$$
f=1_{[0,1] \cap \mathbb{Q}}: \mathbb{Q} \longrightarrow[0, \infty), \quad f(x)= \begin{cases}1, & \text { if } x \in[0,1] \cap \mathbb{Q} ; \\ 0, & \text { if } x \in[0,1]-\mathbb{Q} ;\end{cases}
$$

is nowhere continuous, it is not Riemann integrable. Since $f=0$ a.e. on $[0,1]$ and the constant function 0 is Lebesgue integrable, so is the function f.
(d; 5pts) By Theorem 4.33(i), a bounded Riemann integrable function $f:[0,1] \longrightarrow[0, \infty$) is a.e. continuous and is thus measurable. On the other hand,

$$
0 \leq \int_{[0,1]} f \mathrm{~d} m \leq\left(\sup _{[0,1]} f\right) m([0,1])=\sup _{[0,1]} f<\infty,
$$

since f is bounded. Thus, f is Lebesgue integrable on $[0,1]$.

