
MAT 324: Real Analysis, Fall 2017
Solutions to Midterm

Problem 1 (10pts)

(a) Give a definition of σ-field on a set X.

(b) Describe all σ-fields on the set X≡{a, b} of two elements; explain why there are no others.

(a; 5pts) A σ-field on X is a collection F of subsets of X such that

(i) X∈F (ii) if E∈F , then Ec≡X−E ∈ F (iii) if E1, E2, . . .∈F , then

∞
⋃

n=1

En ∈ F

(b; 5pts) The σ-fields on the set X≡{a, b} are

F =
{

∅, X
}

and F = 2X =
{

∅, X, {a}, {b}
}

.

By (i) and (ii) above, every σ-field F on X contains X and Xc=∅. If F also contains {a}, then it
contains {a}c={b} as well. So, there are no other σ-fields on X.

Problem 2 (10pts)

Let (X,F , µ) be a measure space.

(a) Given a definition of what it means for a function f : X−→R to be measurable.

(b) Suppose f, g : X −→R are measurable functions and A,B ∈F are disjoint subsets such that
A∪B=X. Show that the function

h : X −→ R, h(x) =

{

f(x), if x∈A;

g(x), if x∈B;

is measurable.

(a; 3pts) A function f : X−→R is measurable if f−1(I)∈F for every interval I⊂R.

(b; 7pts) Let I⊂R be an interval. Then,

h−1(I) =
(

f−1(I)∩A
)

∪
(

g−1(I)∩B
)

⊂ X.

Since f and g are measurable functions, f−1(I), g−1(I)∈F . Since F is a σ-field, it is closed under
countable intersections and unions. Since A,B∈F , it follows that

f−1(I)∩A, g−1(I)∩B ∈ F =⇒ h−1(I) ∈ F .



Problem 3 (20pts)

Let f : R−→R be a smooth function, A⊂R be a null subset, and

f(A) ≡
{

f(x) : x∈A
}

.

(a) Show that f(A) is a null set if A is bounded (i.e. A⊂ [−R,R] for some R∈R+).

(b) Show that f(A) is a null set (whether or not A is bounded).

(a; 15pts) Suppose A⊂ [−R,R]. Let

M = max
[−R,R]

{

|f ′(x)| : x∈ [a, b]
}

+ 1.

By the Fundamental Theorem of Calculus or the Mean Value Theorem,

∣

∣f(x)−f ′(x)
∣

∣ ≤ M |x−x′| ∀x, x′∈ [−R,R]. (1)

Let ε>0. Since A is a null set, there exists a countable collection {In}n∈Z+ of intervals such that

A ⊂
∞
⋃

n=1

In,
∞
∑

n=1

ℓ(In) <
ε

M
.

Along with (1), this implies that

f(A) ⊂ f

( ∞
⋃

n=1

In

)

=
∞
⋃

n=1

f(In) =
∞
⋃

n=1

[

min
In

f,max
In

f
]

,

∞
∑

n=1

ℓ
([

min
In

f,max
In

f
])

≤
∞
∑

n=1

Mℓ(In) < M ·
ε

M
= ε.

Thus, A is a null set.

(b; 5pts) Let An=A∩[−n, n]. By (a), f(An) is a null set. Thus,

f(A) = f

( ∞
⋃

n=1

An

)

=
∞
⋃

n=1

f(An)

is also a null set.

Note: It is not sufficient to assume that f is continuous. The Lebesgue function F defined on
page 20 is continuous, non-decreasing, and takes the Cantor set C (which is a null set) onto the
entire interval [0, 1]; see Problem 5 on PS1.
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Problem 4 (20pts)

Denote by M⊂ 2R the collection of Lebesgue measurable subsets and by B ⊂M the collection of
Borel subsets. Let A⊂R. Show that

(a) A∈M if and only if inf
{

m∗(B−A) : B∈B, A⊂B
}

=0;

(b) A∈M if and only if inf
{

m∗(A−B) : B∈B, B⊂A
}

=0.

If A∈M, there exist C,O⊂R such that

C,O ∈ B, C ⊂ A ⊂ O, m∗(A−C),m∗(O−A) = 0.

This is basically Theorems 2.17 and 2.29; C is a countable union of closed sets, while O is a
countable intersection of open sets. Thus,

inf
{

m∗(B−A) : B∈B, A⊂B
}

= m∗(O−A) = 0,

inf
{

m∗(A−B) : B∈B, B⊂A
}

= m∗(A−C) = 0.

This establishes one direction in each part.

Suppose inf
{

m∗(B−A) : B∈B, A⊂B
}

=0. For each n∈Z+, let Bn∈B be such that A⊂Bn and
m∗(Bn−A)<1/n. Thus,

B ≡
∞
⋂

n=1

Bn ∈ B, A⊂B, m∗(B−A) ≤ m∗(Bn−A) ≤
1

n
∀n∈Z+.

Thus, B−A is a null set and so B−A ∈ M. Since M is closed under differences,

A = B − (B−A) ∈ M .

This establishes the other direction in (a).

Suppose inf
{

m∗(A−B) : B∈B, B⊂A
}

=0. For each n∈Z+, let Bn∈B be such that Bn⊂A and
m∗(A−Bn)<1/n. Thus,

B ≡
∞
⋃

n=1

Bn ∈ B, B⊂A, m∗(A−B) ≤ m∗(A−Bn) ≤
1

n
∀n∈Z+.

Thus, A−B is a null set and so A−B ∈ M. Since M is closed under countable unions,

A = B ∪ (A−B) ∈ M .

This establishes the other direction in (b).
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Problem 5 (20pts)

For each n∈Z+, define

fn, gn : [0,∞) −→ R, fn(x) =
n2xe−nx

1+x2
, gn(x) =

xe−x

1+x2/n2
.

(a) Find

∫ ∞

0

(

lim
n−→∞

fn
)

dx and

∫ ∞

0

(

lim
n−→∞

gn
)

dx.

(b) Show that

lim
n−→∞

(
∫ ∞

0
fndx

)

= lim
n−→∞

(
∫ ∞

0
gndx

)

and find this limit.

(c) Let F : [0,∞) −→ [0,∞] be a Lebesgue measurable function such that fn ≤F for all n∈Z+.
Show that

∫

[0,1]
Fdm = ∞ .

(a; 5pts) Since fn(0)= 0 for all n, fn(0)−→ 0. Since enx with x> 0 dominates every polynomial
in n as n−→∞, fn(x)−→0 for all x>0 as well. It is immediate that

gn(x) −→
xe−x

1+0
= xe−x as n−→∞.

Thus,
∫ ∞

0

(

lim
n−→∞

fn
)

dx =

∫ ∞

0
0dx = 0,

∫ ∞

0

(

lim
n−→∞

gn
)

dx =

∫ ∞

0
xe−xdx =

(

− xe−x − e−x
)

∣

∣

∣

∞

0
= 1.

(b; 8pts) By the change of variables x−→nx,
∫ ∞

0
fndx =

∫ ∞

0

(nx)e−(nx)

1+(nx)2/n2
d(nx) =

∫ n·∞

n·0

xe−x

1+x2/n2
dx =

∫ ∞

0
gndx .

This implies that the two limits in the statement are the same. Since gn(x)≥0 and gn(x)րxe−x

for all x∈ [0,∞),

lim
n−→∞

(
∫ ∞

0
gndx

)

= lim
n−→∞

(
∫

[0,∞)
gndm

)

=

∫

[0,∞)

(

lim
n−→∞

gn
)

dm =

∫

[0,∞)
xe−xdm =

∫ ∞

0
xe−xdx = 1;

the second equality above holds by the Monotone Convergence Theorem.

(c; 7pts) Since fn ≥ 0, the assumption implies that |fn| ≤ F for all n ∈ Z+. If in addition
∫

[0,1]
Fdm < ∞, then

lim
n−→∞

(
∫ ∞

0
fndx

)

=

∫ ∞

0

(

lim
n−→∞

fn
)

dx = 0.

by the Dominated Convergence Theorem and part (a). However, this contradicts part (b).
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Problem 6 (20pts)

(a) State a definition of what it means for a bounded function f : [0, 1]−→ [0,∞) to be Riemann

integrable.

(b) State a definition of what it means for a bounded function f : [0, 1]−→ [0,∞) to be Lebesgue

integrable.

(c) Give an example of a bounded Lebesgue integrable function f : [0, 1]−→ [0,∞) which is not
Riemann integrable. Justify your answer.

(d) Show that every bounded Riemann integrable function f : [0, 1] −→ [0,∞) is also Lebesgue
integrable.

(a; 5pts) For a partition (0=a0<a1<. . .<ak=1) of [0, 1], let

sP (f) =

k
∑

n=1

(

inf
[an−1,an]

f
)(

an−an−1

)

, SP (f) =

k
∑

n=1

(

sup
[an−1,an]

f
)(

an−an−1

)

.

The bounded function f : [0, 1]−→ [0,∞) is Riemann integrable if

sup
{

sP (f) : P is partition of [0, 1]
}

= inf
{

SP (f) : P is partition of [0, 1]
}

.

(b; 5pts) A bounded function f : [0, 1]−→ [0,∞) is Lebesgue integrable if

∫

[0,1]
fdm ≡ sup

{ k
∑

n=1

anm(An) : An∈M, An⊂ [0, 1], An∩An′ =∅ ∀n 6=n′, an∈R≥0, an≤ inf
An

f

}

< ∞.

(c; 5pts) By Theorem 4.33(i), a bounded Riemann integrable function f : [0, 1] −→ [0,∞) is
a.e. continuous. Since the bounded function

f=1[0,1]∩Q : Q −→ [0,∞), f(x) =

{

1, if x∈ [0, 1]∩Q;

0, if x∈ [0, 1]−Q;

is nowhere continuous, it is not Riemann integrable. Since f = 0 a.e. on [0, 1] and the constant
function 0 is Lebesgue integrable, so is the function f .

(d; 5pts) By Theorem 4.33(i), a bounded Riemann integrable function f : [0, 1] −→ [0,∞) is
a.e. continuous and is thus measurable. On the other hand,

0 ≤

∫

[0,1]
fdm ≤

(

sup
[0,1]

f
)

m
(

[0, 1]
)

= sup
[0,1]

f < ∞,

since f is bounded. Thus, f is Lebesgue integrable on [0, 1].
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