MAT 324: Real Analysis, Fall 2017 Midterm (80 mins)

Please write your solutions on the provided printer paper, starting each problem on a new page and clearly indicating the number (and part) of the problem you are solving. You do not need to copy the statements of the problems. You can cite established statements from the textbook as appropriate (e.g. not statements you are being asked to establish). There are 6 problems on this exam of varying difficulty.

Problem 1 (10pts)

(a) Give a definition of σ-field on a set X.
(b) Describe all σ-fields on the set $X \equiv\{a, b\}$ of two elements; explain why there are no others.

Problem 2 (10pts)

Let (X, \mathcal{F}, μ) be a measure space.
(a) Given a definition of what it means for a function $f: X \longrightarrow \mathbb{R}$ to be measurable.
(b) Suppose $f, g: X \longrightarrow \mathbb{R}$ are measurable functions and $A, B \in \mathcal{F}$ are disjoint subsets such that $A \cup B=X$. Show that the function

$$
h: X \longrightarrow \mathbb{R}, \quad h(x)= \begin{cases}f(x), & \text { if } x \in A ; \\ g(x), & \text { if } x \in B ;\end{cases}
$$

is measurable.
Note: You can take (X, \mathcal{F}, μ) to be the standard Lebesgue measure space $(\mathbb{R}, \mathcal{M}, m)$. This makes no difference, and there will be no grading penalty.

Problem 3 (20pts)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function, $A \subset \mathbb{R}$ be a null subset, and

$$
f(A) \equiv\{f(x): x \in A\} .
$$

(a) Show that $f(A)$ is a null set if A is bounded (i.e. $A \subset[-R, R]$ for some $R \in \mathbb{R}^{+}$).
(b) Show that $f(A)$ is a null set (whether or not A is bounded).

Note: If you cannot do (a) as stated, you can try it with f non-decreasing or $f(x)=x^{3}$ at the cost of 2 or 5 points penalty, respectively, to begin with. For the purposes of (b), you can assume (a).

Problem 4 (20pts)

Denote by $\mathcal{M} \subset 2^{\mathbb{R}}$ the collection of Lebesgue measurable subsets and by $\mathcal{B} \subset \mathcal{M}$ the collection of Borel subsets. Let $A \subset \mathbb{R}$. Show that
(a) $A \in \mathcal{M}$ if and only if $\inf \left\{m^{*}(B-A): B \in \mathcal{B}, A \subset B\right\}=0$;
(b) $A \in \mathcal{M}$ if and only if $\inf \left\{m^{*}(A-B): B \in \mathcal{B}, B \subset A\right\}=0$.

Problem 5 (20pts)

For each $n \in \mathbb{Z}^{+}$, define

$$
f_{n}, g_{n}:[0, \infty) \longrightarrow \mathbb{R}, \quad f_{n}(x)=\frac{n^{2} x \mathrm{e}^{-n x}}{1+x^{2}}, \quad g_{n}(x)=\frac{x \mathrm{e}^{-x}}{1+x^{2} / n^{2}}
$$

(a) Find $\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} f_{n}\right) \mathrm{d} x$ and $\int_{0}^{\infty}\left(\lim _{n \longrightarrow \infty} g_{n}\right) \mathrm{d} x$.
(b) Show that

$$
\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} f_{n} \mathrm{~d} x\right)=\lim _{n \longrightarrow \infty}\left(\int_{0}^{\infty} g_{n} \mathrm{~d} x\right)
$$

and find this limit.
(c) Let $F:[0, \infty) \longrightarrow[0, \infty]$ be a Lebesgue measurable function such that $f_{n} \leq F$ for all $n \in \mathbb{Z}^{+}$. Show that

$$
\int_{[0,1]} F \mathrm{~d} m=\infty .
$$

Problem 6 (20pts)

(a) State a definition of what it means for a bounded function $f:[0,1] \longrightarrow[0, \infty)$ to be Riemann integrable.
(b) State a definition of what it means for a bounded function $f:[0,1] \longrightarrow[0, \infty)$ to be Lebesgue integrable.
(c) Give an example of a bounded Lebesgue integrable function $f:[0,1] \longrightarrow[0, \infty)$ which is not Riemann integrable. Justify your answer.
(d) Show that every bounded Riemann integrable function $f:[0,1] \longrightarrow[0, \infty)$ is also Lebesgue integrable.

