# MAT 324: Real Analysis, Fall 2017 Solutions to Bonus Problem Set 

## Problem 1 (10pts)

Complete the following definitions.
(a) An equivalence relation on a set $X$ is a subset $A \subset X^{2}$ such that
(i) $(x, x) \in A \forall x \in X$
(ii) if $(x, y) \in A$, then $(y, x) \in A$
(iii) if $(x, y),(y, z) \in A$, then $(x, z) \in A$.
(b) A metric space is a pair $(X, d)$, where $X$ is a set and $d: X^{2} \longrightarrow \mathbb{R}^{\geq 0}$ is a function such that (i) $d(x, y)=0$ iff $x=y \quad$ (ii) $d(x, y)=d(y, x) \quad$ (iii) $d(x, z) \leq d(x, y)+d(y, z)$.
(c) A map $f:(X, d) \longrightarrow\left(X^{\prime}, d^{\prime}\right)$ between two metric spaces is an isometry if $f$ is a bijection and $d^{\prime}(f(x), f(y))=d(x, y) \forall x, y \in X$.

Let $(X, d)$ be a metric space.
(d) A sequence of points $x_{n} \in X$ converges to a point $x \in X$ if $\lim _{n \longrightarrow \infty} d\left(x, x_{n}\right)=0$.
(e) The closure of a subset $Y \subset X$ is the subset $\bar{Y} \subset X$ consisting of the points $x \in X$ such that there exists a sequence $x_{n} \in Y$ converging to $x$.
(f) $A$ subset $Y \subset X$ is dense if $\bar{Y}=X$.
(g) A sequence of points $x_{n} \in X$ is Cauchy if $\lim _{m, n \longrightarrow \infty} d\left(x_{m}, x_{n}\right)=0$.
(h) The metric space $(X, d)$ is complete if every Cauchy sequence $x_{n} \in X$ converges to some $x \in X$.
(i) A completion of $(X, d)$ is a complete metric space $(\bar{X}, \bar{d})$ such that $X \subset \bar{X}, X$ is dense in $\bar{X}$, and $\left.\bar{d}\right|_{X^{2}}=d$.
(j) Two completions $(\bar{X}, \bar{d})$ and $\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$ of $(X, d)$ are equivalent if there exists an isometry $f:(\bar{X}, \bar{d}) \longrightarrow\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$ s.t. $f(x)=x \forall x \in X$.

## Problem 2 (10pts)

Show that every metric space $(X, d)$ admits a unique completion, up to equivalence.
Construct a completion $(\bar{X}, \bar{d})$ of $(X, d)$ as follows. We declare two Cauchy sequences $\mathbf{x} \equiv\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}$ and $\mathbf{y} \equiv\left(y_{n}\right)_{n \in \mathbb{Z}^{+}}$in $(X, d)$ to be equivalent if

$$
\lim _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

This is an equivalence relation. Let $\bar{X}$ be the set of equivalence classes of Cauchy sequences in $(X, d)$ with respect to this equivalence relation. Define

$$
\bar{d}: \bar{X}^{2} \longrightarrow \mathbb{R}^{\geq 0}, \quad \bar{d}\left(\left[\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}\right],\left[\left(y_{n}\right)_{n \in \mathbb{Z}^{+}}\right]\right)=\lim _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

Since $\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}$and $\left(y_{n}\right)_{n \in \mathbb{Z}^{+}}$are Cauchy in $(X, d)$, the sequence $d\left(x_{n}, y_{n}\right)$ is Cauchy in $\mathbb{R}$ and so the limit above exists. If $\left[\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}\right]=\left[\left(x_{n}^{\prime}\right)_{n \in \mathbb{Z}^{+}}\right]$and $\left[\left(y_{n}\right)_{n \in \mathbb{Z}^{+}}\right]=\left[\left(y_{n}^{\prime}\right)_{n \in \mathbb{Z}^{+}}\right]$, then

$$
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right| \leq d\left(x_{n}, x_{n}^{\prime}\right)+d\left(y_{n}, y_{n}^{\prime}\right) \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty
$$

and thus the function $\bar{d}$ is well-defined.
Since $d(x, x)=0$ for all $x \in X, d([\mathbf{x}],[\mathbf{x}])=0$ for all $\mathbf{x} \in \bar{X}$. By the definition of the equivalence and $\bar{d},[\mathbf{x}]=[\mathbf{y}]$ if $d([\mathbf{x}],[\mathbf{y}])=0$. Since $d$ satisfies (ii) and (iii) in Problem 1(a), do does $\bar{d}$. Thus, $(\bar{X}, \bar{d})$ is a metric space. We identify $X$ with the subset of $\bar{X}$ consisting of the equivalence classes $\left[\left(x_{n}=x\right)_{n \in \mathbb{Z}^{+}}\right]$; all such classes are distinct. Furthermore,

$$
\bar{d}\left(\left[\left(x_{n}=x\right)_{n \in \mathbb{Z}^{+}}\right],\left[\left(y_{n}=y\right)_{n \in \mathbb{Z}^{+}}\right]\right)=\lim _{n \longrightarrow \infty} d(x, y)=d(x, y) \quad \forall x, y \in X
$$

and so $\left.\bar{d}\right|_{X^{2}}=d$ under this identification. If $\mathbf{x} \equiv\left[\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}\right] \in \bar{X}$,

$$
\lim _{m \longrightarrow \infty} \bar{d}\left([\mathbf{x}],\left[\left(x_{m ; n}=x_{m}\right)_{n \in \mathbb{Z}^{+}}\right]\right) \equiv \lim _{m \longrightarrow \infty} \lim _{n \longrightarrow \infty} d\left(x_{n}, x_{m}\right)=0,
$$

since $\left(x_{n}\right)_{n \in \mathbb{Z}^{+}}$is Cauchy in $(X, d)$, i.e. the sequence $\left[\mathbf{x}_{m}\right] \in \bar{X}$, where $\mathbf{x}_{m} \equiv\left(x_{m ; n}=x_{m}\right)_{n \in \mathbb{Z}^{+}}$, converges to $[\mathrm{x}]$ in $(\bar{X}, \bar{d})$. Thus, $X$ is dense in $(\bar{X}, \bar{d})$.

Suppose $\left[\mathbf{x}_{m}\right.$ ] is a Cauchy sequence in $(\bar{X}, \bar{d})$ with $\mathbf{x}_{m}=\left(x_{m ; n}\right)_{n \in \mathbb{Z}^{+}}$, i.e.

$$
\lim _{n, n^{\prime} \longrightarrow \infty} d\left(x_{m ; n}, x_{m ; n^{\prime}}\right)=0 \quad \forall m, \quad \lim _{m, m^{\prime} \longrightarrow \infty} \bar{d}\left(\left[\mathbf{x}_{m}\right],\left[\mathbf{x}_{m^{\prime}}\right]\right) \equiv \lim _{m, m^{\prime} \longrightarrow \infty} \lim _{n \longrightarrow \infty} d\left(x_{m ; n}, x_{m^{\prime} ; n}\right)=0 .
$$

By the first condition, for each $m$ there exists $N_{m} \in \mathbb{Z}^{+}$such that $d\left(x_{m ; N_{m}}, x_{m ; n}\right) \leq 1 / m$ for all $n \geq N_{m}$. Let $\mathbf{x}=\left(x_{n ; N_{n}}\right)_{n \in \mathbb{Z}^{+}}$. Thus,

$$
\begin{aligned}
& \lim _{m \longrightarrow \infty} \bar{d}\left([\mathbf{x}],\left[\mathbf{x}_{m}\right]\right) \equiv \lim _{m \longrightarrow \infty} \lim _{n \longrightarrow \infty} d\left(x_{n ; N_{n}}, x_{m ; n}\right) \\
& \quad \leq \lim _{m \longrightarrow \infty} \lim _{\longrightarrow \rightarrow \infty} \lim _{n^{\prime} \longrightarrow \infty}\left(d\left(x_{n ; N_{n}}, x_{n ; n^{\prime}}\right)+d\left(x_{n ; n^{\prime}}, x_{m ; n^{\prime}}\right)+d\left(x_{m ; n^{\prime}}, x_{m ; n}\right)\right) \\
& \leq \lim _{m \longrightarrow \infty} \lim _{n \longrightarrow \infty}(1 / n)+\lim _{m, n \longrightarrow \infty} \lim _{n^{\prime} \longrightarrow \infty} d\left(x_{m ; n^{\prime}}, x_{m ; n}\right)+\lim _{m \longrightarrow \infty} \lim _{n, n^{\prime} \longrightarrow \infty} d\left(x_{m ; n^{\prime}}, x_{m ; n}\right)=0,
\end{aligned}
$$

i.e. the sequence $\left[\mathbf{x}_{m}\right]$ converges to $[\mathbf{x}]$ in $(\bar{X}, \bar{d})$. Thus, the metric space $(\bar{X}, \bar{d})$ is complete.

Let $(\bar{X}, \bar{d})$ and $\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$ be completions of $(X, d)$. Construct an isometry $f:(\bar{X}, \bar{d}) \longrightarrow\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$ s.t. $f(x)=x \forall x \in X$ as follows. Since $X$ is dense in $(\bar{X}, \bar{d})$, for each $x \in \bar{X}$ there exists a sequence $x_{n} \in X$ converging to $x$. Since $x_{n}$ is Cauchy in $(\bar{X}, \bar{d})$ and $\left.\bar{d}^{\prime}\right|_{X^{2}}=d=\left.\bar{d}\right|_{X^{2}}, x_{n}$ is Cauchy in $\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$ and so converges to some $f(x) \in \bar{X}$. If $x_{n}^{\prime} \in X$ is another sequence converging to $x$ in $(\bar{X}, \bar{d})$, then

$$
\bar{d}^{\prime}\left(x_{n}, x_{n}^{\prime}\right)=d\left(x_{n}, x_{n}^{\prime}\right)=\bar{d}\left(x_{n}, x_{n}^{\prime}\right) \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty
$$

and thus $x_{n}^{\prime}$ also converges to $f(x)$ in $(\bar{X}, \bar{d})$. If $y_{n} \in X$ is a sequence converging to $y$ in $(\bar{X}, \bar{d})$, then

$$
\bar{d}^{\prime}(f(x), f(y))=\lim _{n \longrightarrow \infty} \bar{d}^{\prime}\left(x_{n}, y_{n}\right)=\lim _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right)=\lim _{n \longrightarrow \infty} \bar{d}\left(x_{n}, y_{n}\right)=\bar{d}(x, y)
$$

If $x \in X$, we can take $x_{n}=x$ and so $f(x)=x$ for all $x \in X$.
In the same way, we can construct $g: \bar{X}^{\prime} \longrightarrow \bar{X}$ such that

$$
\bar{d}\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)=\bar{d}^{\prime}\left(x^{\prime}, y^{\prime}\right) \quad \forall x^{\prime}, y^{\prime} \in \bar{X}^{\prime}, \quad g(x)=x \quad \forall x \in X .
$$

The functions $F=g \circ f: \bar{X} \longrightarrow \bar{X}$ and $G=f \circ g: \bar{X}^{\prime} \longrightarrow \bar{X}^{\prime}$ satisfy

$$
\begin{aligned}
\bar{d}(F(x), F(y)) & =\bar{d}(x, y) \quad \forall x, y \in \bar{X}, & & F(x)=x \forall x \in X, \\
\bar{d}^{\prime}\left(G\left(x^{\prime}\right), G\left(y^{\prime}\right)\right) & =\bar{d}^{\prime}\left(x^{\prime}, y^{\prime}\right) \forall x^{\prime}, y^{\prime} \in \bar{X}^{\prime}, & & G(x)=x \forall x \in X .
\end{aligned}
$$

Since $X$ is dense in $(\bar{X}, \bar{d})$, the first line above implies that $F(x)=x$ for all $x \in \bar{X}$. Since $X$ is dense in $\left(\bar{X}^{\prime}, \bar{d}^{\prime}\right)$, the second line implies that $G\left(x^{\prime}\right)=x^{\prime}$ for all $x^{\prime} \in \bar{X}^{\prime}$. Thus, $f$ is a bijection (with inverse $g$ ).

