Axiom of Countable Choice

For each $n \in \mathbb{Z}^+$, let A_n be a nonempty set. ACC says that there exists a sequence $(a_n)_{n \in \mathbb{Z}^+}$ with $a_n \in A_n$ for each $n \in \mathbb{Z}^+$. If \mathbb{Z}^+ were replaced by a finite set, this would be easily obtainable by induction. According to wiki, a common misconception is that this can be used to establish ACC itself.

One could try to do so as follows. Let

$$\mathcal{C} = \left\{ \left(S, (a_n)_{n \in S} \right) \colon S \subset \mathbb{Z}^+, \, a_n \in A_n \, \forall \, n \in S \right\}.$$

Define a partial order \prec on \mathcal{C} by

$$\left(S,(a_n)_{n\in S}\right)\prec\left(S',(a'_n)_{n\in S'}\right) \quad \text{if} \quad S\subset S' \text{ and } a_n=a'_n \;\forall n\in S.$$

$$\tag{1}$$

If $(S_k, (a_{k:n})_{n \in S_k})$ is any increasing chain (finite or infinite) of elements of \mathcal{C} , define

$$(S, (a_n)_{n \in S}) \in \mathcal{C}$$
 by $S = \bigcup_k S_k, a_n = a_{k;n}$ if $n \in S_k.$ (2)

If also $n \in S_{\ell}$, then $(S_k, (a_{k;n})_{n \in S_k}) \prec (S_{\ell}, (a_{\ell;n})_{n \in S_{\ell}})$ or the other way around and $a_{k;n} = a_{\ell;n}$ by the definition of \prec in (1). Thus, a_n in (2) is well-defined. Furthermore,

$$(S_k, (a_{k;n})_{n \in S_k}) \preceq (S, (a_n)_{n \in S}) \quad \forall k.$$

If S is missing some element $n^* \in \mathbb{Z}^+$, we can choose $a_{n^*} \in A_{n^*}$ and lengthen the above chain by adding

$$\left(S \cup \{n^*\}, (a_n)_{n \in S \cup \{n^*\}}\right) \in \mathcal{C}$$

to it. Thus, if we start with a maximal increasing chain of elements of C (i.e. there is no way of lengthening it), then $S = \mathbb{Z}^+$ and this establishes ACC.

The above is a standard approach to showing that a whole set satisfies some property. It depends on the existence of a maximal increasing chain. Unfortunately, this existence depends on the axiom of choice itself.