MAT 320: Introduction to Analysis
 Homework Assignment 6

Please read Section 13 of Ross's textbook thoroughly before starting on the problem set below. Optional supplementary reading: pp30-42 of Rudin's book

Problem Set 6 (due at the start of recitation on Wednesday, 3/20): D-G (below), 13.12, 13.14, 13.3ba, 13.3c (below), 13.15

Problem D

Let $d_{\mathbb{R}}$ be the standard metric on $\mathbb{R}, d_{\mathbb{R}}\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|$. What are the closures in $\left(\mathbb{R}, d_{\mathbb{R}}\right)$ of

$$
\mathbb{N}, \quad S=\left\{2^{m}: m \in \mathbb{Z}\right\}, \quad \text { and } \quad[-2,2] \cap \mathbb{Q} \quad ?
$$

Note that $\propto \notin \mathbb{R}$. Give examples (3 in total) of a closed non-compact subset of $\left(\mathbb{R}, d_{\mathbb{R}}\right.$), of a bounded non-compact subset of $\left(\mathbb{R}, d_{\mathbb{R}}\right)$, and of a closed bounded non-compact subset of $\left(\mathbb{Q}, d_{\mathbb{R}} \mid \mathbb{Q}\right)$. Answers only.

Problem E

Let (X, d) be a metric space, \mathcal{C} be some collection of subsets of X (i.e. each element $B \in \mathcal{C}$ is a subset $B \subset X)$, and $A=\bigcup_{B \in \mathcal{C}} B$.
(a) Show that $\bar{A} \supset \bigcup_{B \in \mathcal{C}} \bar{B}$, where $\bar{A}, \bar{B} \subset X$ are the closures of A and B, respectively, in (X, d).
(b) Show that the opposite inclusion holds if \mathcal{C} is finite, but may not hold if \mathcal{C} is countable.

Problem F

Let d and d^{\prime} be two metrics on the same set X that are uniformly equivalent: there exists $C \in \mathbb{R}^{+}$such that

$$
C^{-1} d\left(x, x^{\prime}\right) \leq d^{\prime}\left(x, x^{\prime}\right) \leq C d\left(x, x^{\prime}\right) \quad \forall x, x^{\prime} \in X .
$$

(a) Show that a subset $U \subset X$ is open/closed w.r.t. d if and only if $U \subset X$ is open/closed w.r.t. d^{\prime}.
(b) Show that a sequence $\left(x_{n}\right)_{n}$ converges to x (resp. is Cauchy) w.r.t. d if and only if $\left(x_{n}\right)_{n}$ converges to x (resp. is Cauchy) w.r.t. d^{\prime}.
(c) Show that (X, d) is bounded/complete/compact if and only if $\left(X, d^{\prime}\right)$ is.

Problem G

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Define

$$
d_{1}, d_{2}, d_{3}:(X \times Y)^{2} \longrightarrow \mathbb{R}, \quad d_{i}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)= \begin{cases}\max \left(d_{X}\left(x, x^{\prime}\right), d_{Y}\left(y, y^{\prime}\right)\right), & \text { if } i=1 \\ \left(d_{X}\left(x, x^{\prime}\right)^{2}+d_{Y}\left(y, y^{\prime}\right)^{2}\right)^{1 / 2}, & \text { if } i=2 \\ d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right), & \text { if } i=3\end{cases}
$$

(a) Show that these three functions are metrics and that any two of them are uniformly equivalent.
(b) Take $\left(X, d_{X}\right),\left(Y, d_{Y}\right)=\left(\mathbb{R}, d_{\mathbb{R}}\right)$, i.e. \mathbb{R} with the standard metric. On a whole page by itself, draw 3 huge (but separate) copies of the first quadrant of the $x y$-plane. On the i-th copy, clearly draw the open unit ball $B_{1}^{i}((2,2))$ around $(2,2) \in \mathbb{R}^{2}$ with respect to the metric d_{i} (make sure it comes out large). On the same copy, clearly indicate what it means for this ball to be also open with respect to the metric d_{i+1} (with $d_{4} \equiv d_{1}$), as F-(a) says should be the case. You can add a few words clarifying the diagrams, but they should be mostly clear by themselves.

Problem 13.3c

Show that the metric space (B, d) in 13.3 a is complete.

