
MAT 312/AMS 351: Applied Algebra
Solutions to Problem Set 9 (20pts)

4.4 2; 3pts Let X be a set and F (X) be the set of all maps from X to itself. Show that f ∈F (X)
is a surjection if and only if gf=hf implies g=h for all g, h∈F (X).

Suppose f ∈ F (X) is a surjection and g, h ∈ F (X) are distinct, i.e. with g(x) 6= h(x) for some
x∈X. Since f is a surjection, x= f(y) for some y∈X. Along with g(x) 6=h(x), this implies that
g(f(y)) 6=h(f(y)) and so gf 6=hf . Thus, gf=hf implies g=h if f is a surjection.

Suppose f ∈ F (X) is not a surjection, i.e. there exists x ∈X such that x 6= f(y) for any y ∈X.
Define

g, h : X −→ X, g(y) = y ∀ y∈X, h(y) =

{

y, if y 6=x;

f(x), if y=x.

In particular, gf=hf because both compositions send y to f(y). However, g 6=h because x 6=f(x).
Thus, gf=hf implies g=h for all g, h∈F (X) only if f is a surjection.

4.4 5; 2pts Suppose R is a ring with no zero divisors. Let a, b, c∈R be such that ac=bc and c 6=0.
Show that a=b.

Since ac−bc=0, the distributive law gives (a−b)c=0. Since R has no zero divisors, it follows that
either a−b=0 or c=0. Since the latter is not the case by assumption, a−b=0 and so a=b.

4.4 11; 3pts Let F be a field with additive identity 0 and multiplicative identity 1. The character-

istic χ(F ) of F is the smallest n∈Z
+ such that

n·1 ≡1+1+. . .+1
︸ ︷︷ ︸

n

is 0; if such an n∈Z
+ does not exist, then χ(F )≡0. Suppose χ(F ) 6=0. Show that χ(F ) is a prime

number.

First, χ(F ) 6=1 because 1 6=0 in a field. Suppose χ(F ) =mn with m,n∈Z
+ and m,n≥ 2. Since

m,n<χ(F ), the elements

m·1 ≡1+1+. . .+1
︸ ︷︷ ︸

m

and n·1 ≡1+1+. . .+1
︸ ︷︷ ︸

n

of F are not zero, but their product mn=χ(F ) is zero; thus, m and n are zero divisors in F . Since
a field F has no zero divisors, this is a contradiction. Thus, χ(F ) is either 0 or a prime number.



Problem E (12pts)

Let (R,+, ·) be a commutative ring with additive identity 0 and multiplicative identity 1. An element
u ∈R is called a unit if it has a multiplicative inverse (thus, 0 is not a unit, and every nonzero
element of a field is a unit).

(a) Show that the sets of powers series and polynomials with coefficients in R,

R[[x]] ≡

{ ∞∑

n=0

anx
n : a0, a1, . . .∈R

}

and

R[x] ≡

{ ∞∑

n=0

anx
n∈R[[x]] : ∃ d∈Z

≥0 s.t. an=0 ∀n>d

}

,

have natural commutative ring structures. Specify the addition and product operations, additive
identity 0, and multiplicative identity 1. Verify the required properties.

(b) Show that a(x)≡1+x is not a unit in R[x].

(c) Show that a(x)≡

∞∑

n=0

anx
n is a unit in R[[x]] if and only if a0 is a unit in R.

(a; 6pts) The addition and multiplication on R[[x]] are given by

∞∑

n=0

anx
n +

∞∑

n=0

bnx
n =

∞∑

n=0

(
an+bn

)
xn and

( ∞∑

n=0

anx
n

)

·

( ∞∑

n=0

bnx
n

)

=
∞∑

n=0

(
∑

i,j∈Z≥0

i+j=n

aibj

)

xn,

respectively. The latter is well-defined because each of the inner sums is finite and the addition
in R is associative.

The commutativity and associativity of the addition on R[[x]] and the commutativity of the mul-
tiplication on R[[x]] defined above follow immediately from the commutativity and associativity of
the addition on R and the commutativity of the multiplication on R. The distributive law for R

implies the distributive law for R[[x]]. The associativity of the multiplication on R[[x]] follows from
the associativity of the multiplication on R via

(( ∞∑

n=0

anx
n

)

·

( ∞∑

n=0

bnx
n

))

·

( ∞∑

n=0

cnx
n

)

=
∞∑

n=0

(
∑

i,j,k∈Z≥0

i+j+k=n

(aibj)ck

)

xn =
∞∑

n=0

(
∑

i,j,k∈Z≥0

i+j+k=n

ai(bjck)

)

xn

=

( ∞∑

n=0

anx
n

)

·

(( ∞∑

n=0

bnx
n

)

·

( ∞∑

n=0

cnx
n

))

.

The zero power series and the constant power series with value 1,

0 ≡

∞∑

n=0

0xn and 1 ≡ 1x0+
∞∑

n=1

0xn ,
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are the additive identity in R[[x]] and the multiplicative identity in R[[x]], respectively. Thus, R[[x]]
is a commutative ring with additive identity 0 and multiplicative identity 1.

Since the addition and multiplication operations on R[[x]] send a pair of polynomials, i.e. elements
of R[x]⊂R[[x]], to polynomials, these operations restrict to addition and multiplication operations
on R[x]. Since the operations on R[[x]] are commutative and associative and satisfy the distributive
law, the same applies to their restrictions to R[x]. Since 0,1∈R[x], we conclude that R[x] is also
a commutative ring with additive identity 0 and multiplicative identity 1.

(b; 2pts) Suppose

1 = (1+x)·

( ∞∑

n=0

bnx
n

)

≡ b0+

∞∑

n=1

(
bn+bn−1)x

n.

This implies that b0=1 and bn+bn−1=0 for all n∈Z
+. Thus, bn=(−1)n and so

(1+x)−1 =
∞∑

n=0

(−1)nxn ∈ R[[x]]−R[x].

We conclude that 1+x is a unit (has a multiplicative inverse) in R[[x]], but not in R[x].

(c; 4pts) Suppose

1 =

( ∞∑

n=0

anx
n

)

·

( ∞∑

n=0

bnx
n

)

= a0b0 +
∞∑

n=1

(
∑

i,j∈Z≥0

i+j=n

aibj

)

xn.

This implies that a0b0=1, i.e. a0∈R is a unit (has a multiplicative inverse).

Suppose a0∈R is a unit with multiplicative inverse a−1

0
∈R. Thus,

b(x) ≡

(

a0

(

1+a−1

0

∞∑

n=1

anx
n

))−1

≡ a−1

0

(

1+
∞∑

m=1

(

−a−1

0

∞∑

n=1

anx
n

)m
)

≡ a−1

0

(

1+
∞∑

m=1

( ∞∑

n=1

anx
n−1

)m
(
−a−1

0

)m
xm

)

is well-defined element of R[[x]]; the last expression becomes a power series in x after applying
the multinomial theorem and collecting coefficients of the same powers of x because only finitely
many terms contribute to each power of x. By a direct check, a(x)b(x) = 1 and so a(x) has a
multiplicative inverse in R[[x]], i.e. a(x) is a unit in R[[x]].
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