MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 9 (20pts)

4.4 2; 3pts Let X be a set and $F(X)$ be the set of all maps from X to itself. Show that $f \in F(X)$ is a surjection if and only if $g f=h f$ implies $g=h$ for all $g, h \in F(X)$.

Suppose $f \in F(X)$ is a surjection and $g, h \in F(X)$ are distinct, i.e. with $g(x) \neq h(x)$ for some $x \in X$. Since f is a surjection, $x=f(y)$ for some $y \in X$. Along with $g(x) \neq h(x)$, this implies that $g(f(y)) \neq h(f(y))$ and so $g f \neq h f$. Thus, $g f=h f$ implies $g=h$ if f is a surjection.

Suppose $f \in F(X)$ is not a surjection, i.e. there exists $x \in X$ such that $x \neq f(y)$ for any $y \in X$. Define

$$
g, h: X \longrightarrow X, \quad g(y)=y \quad \forall y \in X, \quad h(y)= \begin{cases}y, & \text { if } y \neq x \\ f(x), & \text { if } y=x\end{cases}
$$

In particular, $g f=h f$ because both compositions send y to $f(y)$. However, $g \neq h$ because $x \neq f(x)$. Thus, $g f=h f$ implies $g=h$ for all $g, h \in F(X)$ only if f is a surjection.
4.4 5; 2pts Suppose R is a ring with no zero divisors. Let $a, b, c \in R$ be such that ac=bc and $c \neq 0$. Show that $a=b$.

Since $a c-b c=0$, the distributive law gives $(a-b) c=0$. Since R has no zero divisors, it follows that either $a-b=0$ or $c=0$. Since the latter is not the case by assumption, $a-b=0$ and so $a=b$.
4.4 11; 3pts Let F be a field with additive identity 0 and multiplicative identity 1. The characteristic $\chi(F)$ of F is the smallest $n \in \mathbb{Z}^{+}$such that

$$
n \cdot 1 \equiv \underbrace{1+1+\ldots+1}_{n}
$$

is 0; if such an $n \in \mathbb{Z}^{+}$does not exist, then $\chi(F) \equiv 0$. Suppose $\chi(F) \neq 0$. Show that $\chi(F)$ is a prime number.

First, $\chi(F) \neq 1$ because $1 \neq 0$ in a field. Suppose $\chi(F)=m n$ with $m, n \in \mathbb{Z}^{+}$and $m, n \geq 2$. Since $m, n<\chi(F)$, the elements

$$
m \cdot 1 \equiv \underbrace{1+1+\ldots+1}_{m} \quad \text { and } \quad n \cdot 1 \equiv \underbrace{1+1+\ldots+1}_{n}
$$

of F are not zero, but their product $m n=\chi(F)$ is zero; thus, m and n are zero divisors in F. Since a field F has no zero divisors, this is a contradiction. Thus, $\chi(F)$ is either 0 or a prime number.

Problem E (12pts)

Let $(R,+, \cdot)$ be a commutative ring with additive identity 0 and multiplicative identity 1. An element $u \in R$ is called a unit if it has a multiplicative inverse (thus, 0 is not a unit, and every nonzero element of a field is a unit).
(a) Show that the sets of powers series and polynomials with coefficients in R,

$$
\begin{aligned}
R[[x]] & \equiv\left\{\sum_{n=0}^{\infty} a_{n} x^{n}: a_{0}, a_{1}, \ldots \in R\right\} \quad \text { and } \\
R[x] & \equiv\left\{\sum_{n=0}^{\infty} a_{n} x^{n} \in R[[x]]: \exists d \in \mathbb{Z}^{\geq 0} \text { s.t. } a_{n}=0 \quad \forall n>d\right\}
\end{aligned}
$$

have natural commutative ring structures. Specify the addition and product operations, additive identity $\mathbf{0}$, and multiplicative identity $\mathbf{1}$. Verify the required properties.
(b) Show that $a(x) \equiv 1+x$ is not a unit in $R[x]$.
(c) Show that $a(x) \equiv \sum_{n=0}^{\infty} a_{n} x^{n}$ is a unit in $R[[x]]$ if and only if a_{0} is a unit in R.
(a; $\mathbf{6 p t s}$) The addition and multiplication on $R[[x]]$ are given by

$$
\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} \quad \text { and } \quad\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{\substack{i, j \in \mathbb{Z} \geq 0 \\ i+j=n}} a_{i} b_{j}\right) x^{n}
$$

respectively. The latter is well-defined because each of the inner sums is finite and the addition in R is associative.

The commutativity and associativity of the addition on $R[[x]]$ and the commutativity of the multiplication on $R[[x]]$ defined above follow immediately from the commutativity and associativity of the addition on R and the commutativity of the multiplication on R. The distributive law for R implies the distributive law for $R[[x]]$. The associativity of the multiplication on $R[[x]]$ follows from the associativity of the multiplication on R via

$$
\begin{aligned}
\left(\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)\right) \cdot\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right) & =\sum_{n=0}^{\infty}\left(\sum_{\substack{i, j, k \in \mathbb{Z} \geq 0 \\
i+j+k=n}}\left(a_{i} b_{j}\right) c_{k}\right) x^{n}=\sum_{n=0}^{\infty}\left(\sum_{\substack{i, j, k \in \mathbb{Z} \geq 0 \\
i+j+k=n}} a_{i}\left(b_{j} c_{k}\right)\right) x^{n} \\
& =\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)\right)
\end{aligned}
$$

The zero power series and the constant power series with value 1,

$$
\mathbf{0} \equiv \sum_{n=0}^{\infty} 0 x^{n} \quad \text { and } \quad \mathbf{1} \equiv 1 x^{0}+\sum_{n=1}^{\infty} 0 x^{n}
$$

are the additive identity in $R[[x]]$ and the multiplicative identity in $R[[x]]$, respectively. Thus, $R[[x]]$ is a commutative ring with additive identity $\mathbf{0}$ and multiplicative identity $\mathbf{1}$.

Since the addition and multiplication operations on $R[[x]]$ send a pair of polynomials, i.e. elements of $R[x] \subset R[[x]]$, to polynomials, these operations restrict to addition and multiplication operations on $R[x]$. Since the operations on $R[[x]]$ are commutative and associative and satisfy the distributive law, the same applies to their restrictions to $R[x]$. Since $\mathbf{0}, \mathbf{1} \in R[x]$, we conclude that $R[x]$ is also a commutative ring with additive identity $\mathbf{0}$ and multiplicative identity $\mathbf{1}$.
(b; 2pts) Suppose

$$
\mathbf{1}=(1+x) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) \equiv b_{0}+\sum_{n=1}^{\infty}\left(b_{n}+b_{n-1}\right) x^{n} .
$$

This implies that $b_{0}=1$ and $b_{n}+b_{n-1}=0$ for all $n \in \mathbb{Z}^{+}$. Thus, $b_{n}=(-1)^{n}$ and so

$$
(1+x)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \in R[[x]]-R[x] .
$$

We conclude that $1+x$ is a unit (has a multiplicative inverse) in $R[[x]]$, but not in $R[x]$.
(c; 4pts) Suppose

$$
\mathbf{1}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=a_{0} b_{0}+\sum_{n=1}^{\infty}\left(\sum_{\substack{i, j \in \mathbb{Z} \geq 0 \\ i+j=n}} a_{i} b_{j}\right) x^{n} .
$$

This implies that $a_{0} b_{0}=1$, i.e. $a_{0} \in R$ is a unit (has a multiplicative inverse).
Suppose $a_{0} \in R$ is a unit with multiplicative inverse $a_{0}^{-1} \in R$. Thus,

$$
\begin{aligned}
b(x) \equiv\left(a_{0}\left(1+a_{0}^{-1} \sum_{n=1}^{\infty} a_{n} x^{n}\right)\right)^{-1} & \equiv a_{0}^{-1}\left(1+\sum_{m=1}^{\infty}\left(-a_{0}^{-1} \sum_{n=1}^{\infty} a_{n} x^{n}\right)^{m}\right) \\
& \equiv a_{0}^{-1}\left(1+\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{n} x^{n-1}\right)^{m}\left(-a_{0}^{-1}\right)^{m} x^{m}\right)
\end{aligned}
$$

is well-defined element of $R[[x]]$; the last expression becomes a power series in x after applying the multinomial theorem and collecting coefficients of the same powers of x because only finitely many terms contribute to each power of x. By a direct check, $a(x) b(x)=\mathbf{1}$ and so $a(x)$ has a multiplicative inverse in $R[[x]]$, i.e. $a(x)$ is a unit in $R[[x]]$.

