MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 6 (13pts)

5.1 1; 2pts Let G be a group and $a, b \in G$. Show that $a b=b a$ if and only if $(a b)^{-1}=a^{-1} b^{-1}$.

For all $a, b \in G,(a b)^{-1}=b^{-1} a^{-1}$ and $(b a)^{-1}=a^{-1} b^{-1}$. By the uniqueness of the inverses, this implies that $a b=b a$ if and only if $b^{-1} a^{-1}=a^{-1} b^{-1}$.
5.1 9; 3pts Let G be a group. Define a relation on G by $a \sim b$ if there exists $g \in G$ such that $b=g^{-1}$ ag. Show that \sim is an equivalence relation.

For every $a \in G, a=e^{-1} a e$ and so $a \sim a$; thus, \sim is reflexive. For all $a, b \in G$ such that $a \sim b$, there exists $g \in G$ such that $b=g^{-1} a g$. Thus, $a=\left(g^{-1}\right)^{-1} b g^{-1}$ and so \sim is symmetric. For all $a, b, c \in G$ such that $a \sim b$ and $b \sim c$, there exist $g, h \in G$ such that $b=g^{-1} a g$ and $c=h^{-1} b h$. Thus,

$$
c=h^{-1} b h=h^{-1}\left(g^{-1} a g\right) h=\left(h^{-1} g^{-1}\right) a(g h)=(g h)^{-1} a(g h)
$$

and so \sim is transitive.
5.2 2; 2pts Show that $\left|G_{n}\right|$ is even for every $n \geq 3$.

Since $[-1]_{n} \neq[1]_{n}$ in $G_{n} \subset \mathbb{Z}_{n}$ for $n \geq 3$ and $(-1)^{2}=1$, the order of the element $[-1]_{n}$ of $\left(G_{n}, \cdot\right)$ is 2 . Since the order of an element of a finite group divides the order of the group, 2 divides $\left|G_{n}\right|$ for $n \geq 3$.
5.2 4; 3pts Let H be a subgroup of a group $G, a \in G$, and $b \in a H$. Show that

$$
H=\left\{b^{-1} c: c \in a H\right\} .
$$

Since $b \in H, b=a h$ for some $h \in H$. If $c \in a H, c=a h^{\prime}$ for some $h^{\prime} \in H$. Thus,

$$
b^{-1} c=(a h)^{-1}\left(a h^{\prime}\right)=h^{-1} a^{-1} a h^{\prime}=h^{-1} h^{\prime} \in H,
$$

since $H \subset G$ is closed under multiplication. This implies that

$$
H \supset\left\{b^{-1} c: c \in a H\right\} .
$$

If $h^{\prime} \in H$, then $h h^{\prime} \in H$ and $a h h^{\prime} \in a H$. Since

$$
b^{-1}\left(a h h^{\prime}\right)=(a h)^{-1}\left(a h h^{\prime}\right)=h^{-1} a^{-1} a h h^{\prime}=h^{-1} h h^{\prime}=h^{\prime},
$$

it follows that

$$
H \subset\left\{b^{-1} c: c \in a H\right\} .
$$

Problem C (3pts)

Determine the elements of the cyclic subgroup of $\mathrm{GL}_{n} \mathbb{Z}$ generated by the matrix

$$
g \equiv\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

explicitly.
The elements are $\mathbb{I}_{2}, g, g^{2}, g^{3}, g^{4}, g^{5}$, where

$$
\begin{array}{lll}
\mathbb{I}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & g=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right), & g^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \\
g^{3}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), & g^{4}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right), & g^{5}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right) .
\end{array}
$$

