MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 3 (16pts)

1.6 3; 3pts Let $a \in \mathbb{Z}^{+}$. Show that the last digit of a and the last digit of a^{5} in base 10 are the same.

We need to show that $a^{5} \equiv a \bmod 10$. Since there are only 10 possibilities for $a \bmod 10$,

$$
a \equiv-4,-3,-2,-1,0,1,2,3,4,5 \bmod 10
$$

we can simply check this statement on each of them. Since $(-a)^{5}=-a^{5}$, it is in fact sufficient to check this on the 6 nonnegative choices. On them, we get

$$
\begin{gathered}
0^{5}=0, \quad 1^{5}=1, \quad 2^{5}=32 \equiv 2 \bmod 10, \quad 3^{5}=243 \equiv 3 \bmod 10 \\
4^{5}=1024 \equiv 4 \bmod 10, \quad 5^{5}=3125 \equiv 5 \bmod 10
\end{gathered}
$$

as needed.

Alternatively, we can use Euler's Theorem with some care. Since $(a b)^{5}=a^{5} b^{5}$, it is sufficient to check that $a^{5} \equiv a \bmod 10$ only for $a=0,1$ and the primes $p=2,3,5,7$ that are smaller that 10 . The first two cases are trivial. By Theorems 1.6.6 and 1.6.5,

$$
\left|G_{10}\right|=\left|G_{2 \cdot 5}\right|=\left|G_{2}\right| \cdot\left|G_{5}\right|=\left(2^{1}-2^{1-0}\right)\left(5^{1}-5^{1-0}\right)=4
$$

Since 3 and 7 are relatively prime to $10,3^{4} \equiv 1$ and $7^{4} \equiv 1 \bmod 10$; this implies the desired congruence for $a=3,7$. Euler's Theorem does not apply in the two remaining cases, $a=2,5$, because they are not relatively prime to 10 . In these cases, the congruence is verified as in the previous paragraph.

Another alternative is to use the Chinese Remainder Theorem. Since $10=2 \cdot 5$ and $\operatorname{gcd}(2,5)=1$,

$$
a^{5} \equiv a \bmod 10 \quad\left\{\begin{array}{l}
a^{5} \equiv a \bmod 2 \\
a^{5} \equiv a \bmod 5
\end{array}\right.
$$

If a is even (resp. odd), then so is $a^{5} ;$ thus, $a^{5} \equiv a \bmod 2$. Since 5 is prime, $a^{5} \equiv a \bmod 5$ by Fermat's Little Theorem.
1.6 7; 4pts Let $n \in \mathbb{Z}$. Show that $n^{13}-n$ is divisible by 2,3,5,7, and 13.

We need to show that $n^{13}=n \bmod p=2,3,5,7,13$. Since $(a b)^{13}=a^{13} b^{13}$, it is sufficient to check that $n^{13} \equiv n \bmod p$ only for $n=0,1$ and the primes n smaller than p. The first two cases are trivial. Since all primes n smaller than p are relatively prime to p, Euler's Theorem applies. By Theorem 1.6.6,

$$
\left|G_{2}\right|=1, \quad\left|G_{3}\right|=2, \quad\left|G_{5}\right|=4, \quad\left|G_{7}\right|=6, \quad\left|G_{13}\right|=12
$$

Since all these cardinalities divide $12, n^{12} \equiv 1 \bmod$ each $p=2,3,5,7,13$ for every n relatively prime to p. This establishes the desired congruence.
1.6 8; 5pts Let $n \in \mathbb{Z}^{+}$with $n \geq 2$ and p be a prime such that $p \mid n$, but $p^{2} \nmid n$. Show that

$$
p^{\left|G_{n}\right|+1} \equiv p \quad \bmod n .
$$

Can you generalize this statement?
Suppose $m \in \mathbb{Z}$ and

$$
r=\max \left\{k \in \mathbb{Z}^{\geq 0}: \exists \text { prime } p \text { s.t. } p\left|m, p^{k}\right| n\right\} \in \mathbb{Z}^{\geq 0}
$$

We show that

$$
\begin{equation*}
m^{\left|G_{n}\right|+r} \equiv m^{r} \quad \bmod n \tag{1}
\end{equation*}
$$

Let P_{m} be the set of all primes that divide m. For each $p \in P_{m}$, let

$$
r_{p}=\max \left\{k \in \mathbb{Z}^{\geq 0}: p^{k} \mid n\right\} \in \mathbb{Z}^{\geq 0} .
$$

Let $d=\prod_{p \in P_{m}} p^{r_{p}}$. Thus, d divides m^{r} and n, and d and m are relatively prime to n / d. If $n / d=1$, then $n=d$ divides both sides of (1) and the equality holds. If $n / d>1$, Theorem 6.1.6 and Euler's Theorem give

$$
m^{\left|G_{n}\right|}=m^{\left|G_{n / d}\right| \cdot\left|G_{d}\right|}=\left(m^{\left|G_{n / d}\right|}\right)^{\left|G_{d}\right|} \equiv 1^{\left|G_{d}\right|} \equiv 1 \quad \bmod n / d .
$$

This means that n / d divides $m^{\left|G_{n}\right|}-1$ and thus n divides

$$
d\left(m^{\left|G_{n}\right|}-1\right)\left(m^{r} / d\right)=m^{\left|G_{n}\right|+r}-m^{r} .
$$

This establishes (1).
1.6 13; 4pts A public code has base 143 and exponent 103. It uses the following letter-to-number equivalents:

$$
J=1, \quad N=2, \quad R=3, \quad H=4, \quad D=5, \quad A=6, \quad S=7, \quad Y=8, \quad T=9, \quad O=0 .
$$

Decode the received two-block message 10/03.
By Theorems 1.6.6 and 1.6.5,

$$
\left|G_{143}\right|=\left|G_{11 \cdot 13}\right|=\left|G_{11}\right| \cdot\left|G_{13}\right|=(11-1)(13-1)=120 .
$$

Thus, we need to find x so that $103 x \equiv 1 \bmod 120$. Euclid's algorithm with $(103,120)$ gives

$$
\begin{array}{lrl}
(1): & \mathbf{1 2 0} & =1 \cdot \mathbf{1 0 3}+\mathbf{1 7} \\
& \operatorname{gcd}(\mathbf{1 0 3}, \mathbf{1 2 0})=\mathbf{1} & \stackrel{(2)}{\underline{(1)}} \mathbf{1 0 3}-6 \cdot \mathbf{1 7} \\
\text { (2): } \mathbf{1 0 3} & =6 \cdot \mathbf{1 7}+\mathbf{1} & \underline{(1)} \\
\text { (3) } & \mathbf{1 7} & =17 \cdot \mathbf{1}+0
\end{array} \quad 6 \cdot(\mathbf{1 2 0}-1 \cdot \mathbf{1 0 3})=7 \cdot \mathbf{1 0 3}-6 \cdot \mathbf{1 2 0 .} .
$$

Thus, $7 \cdot 103-6 \cdot 120=1$ and we can use $x=7$ as the decoding exponent. Since

$$
10^{7}=1000^{2} \cdot 10 \equiv(-1)^{2} \cdot 10 \equiv 10 \bmod 143 \quad \text { and } \quad 3^{7}=243 \cdot 9 \equiv 100 \cdot 9 \equiv 900 \equiv 42 \bmod 143,
$$

the decoded two-block message is $10 / 42$. This corresponds to JOHN

