
MAT 312/AMS 351: Applied Algebra
Solutions to Problem Set 3 (16pts)

1.6 3; 3pts Let a∈Z
+. Show that the last digit of a and the last digit of a5 in base 10 are the same.

We need to show that a5≡a mod 10. Since there are only 10 possibilities for a mod 10,

a ≡ −4,−3,−2,−1, 0, 1, 2, 3, 4, 5 mod 10,

we can simply check this statement on each of them. Since (−a)5=−a5, it is in fact sufficient to
check this on the 6 nonnegative choices. On them, we get

05 = 0, 15 = 1, 25 = 32 ≡ 2 mod 10, 35 = 243 ≡ 3 mod 10,

45 = 1024 ≡ 4 mod 10, 55 = 3125 ≡ 5 mod 10,

as needed.

Alternatively, we can use Euler’s Theorem with some care. Since (ab)5 = a5b5, it is sufficient to
check that a5≡a mod 10 only for a=0, 1 and the primes p=2, 3, 5, 7 that are smaller that 10. The
first two cases are trivial. By Theorems 1.6.6 and 1.6.5,
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∣
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)

= 4.

Since 3 and 7 are relatively prime to 10, 34≡1 and 74≡1 mod 10; this implies the desired congru-
ence for a=3, 7. Euler’s Theorem does not apply in the two remaining cases, a=2, 5, because they
are not relatively prime to 10. In these cases, the congruence is verified as in the previous paragraph.

Another alternative is to use the Chinese Remainder Theorem. Since 10=2·5 and gcd(2, 5)=1,

a5 ≡ a mod 10 ⇐⇒

{

a5 ≡ a mod 2

a5 ≡ a mod 5

If a is even (resp. odd), then so is a5; thus, a5 ≡ a mod 2. Since 5 is prime, a5 ≡ a mod 5 by
Fermat’s Little Theorem.

1.6 7; 4pts Let n∈Z. Show that n13−n is divisible by 2,3,5,7, and 13.

We need to show that n13 =n mod p=2, 3, 5, 7, 13. Since (ab)13 = a13b13, it is sufficient to check
that n13 ≡ n mod p only for n = 0, 1 and the primes n smaller than p. The first two cases are
trivial. Since all primes n smaller than p are relatively prime to p, Euler’s Theorem applies. By
Theorem 1.6.6,
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Since all these cardinalities divide 12, n12≡1 mod each p=2, 3, 5, 7, 13 for every n relatively prime
to p. This establishes the desired congruence.



1.6 8; 5pts Let n∈Z
+ with n≥2 and p be a prime such that p|n, but p26 |n. Show that

p|Gn|+1 ≡ p mod n.

Can you generalize this statement?

Suppose m∈ Z and

r = max
{

k∈Z
≥0 : ∃ prime p s.t. p|m, pk|n

}

∈ Z
≥0.

We show that
m|Gn|+r ≡ mr mod n. (1)

Let Pm be the set of all primes that divide m. For each p∈Pm, let

rp = max
{

k∈Z
≥0 : pk|n

}

∈ Z
≥0.

Let d=
∏

p∈Pm
prp . Thus, d divides mr and n, and d and m are relatively prime to n/d. If n/d=1,

then n=d divides both sides of (1) and the equality holds. If n/d>1, Theorem 6.1.6 and Euler’s
Theorem give

m|Gn| = m|Gn/d|·|Gd| =
(

m|Gn/d|
)|Gd| ≡ 1|Gd| ≡ 1 mod n/d.

This means that n/d divides m|Gn|−1 and thus n divides

d
(

m|Gn|−1
)(

mr/d
)

= m|Gn|+r−mr .

This establishes (1).

1.6 13; 4pts A public code has base 143 and exponent 103. It uses the following letter-to-number
equivalents:

J = 1, N = 2, R = 3, H = 4, D = 5, A = 6, S = 7, Y = 8, T = 9, O = 0.

Decode the received two-block message 10/03.

By Theorems 1.6.6 and 1.6.5,
∣
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∣

∣ = (11−1)(13−1) = 120.

Thus, we need to find x so that 103x≡1 mod 120. Euclid’s algorithm with (103, 120) gives

(1): 120 = 1·103+17 gcd(103,120) = 1
(2)
== 103− 6·17

(2): 103 = 6 ·17+1
(1)
== 103− 6·(120−1·103) = 7·103−6·120.

(3): 17 = 17 ·1+0

Thus, 7·103−6·120=1 and we can use x=7 as the decoding exponent. Since

107 = 10002 ·10 ≡ (−1)2 ·10 ≡ 10 mod 143 and 37 = 243·9 ≡ 100·9 ≡ 900 ≡ 42 mod 143,

the decoded two-block message is 10/42. This corresponds to JOHN
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