MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 1 (18pts)

1.1 2; 3pts Find $\operatorname{gcd}(6,14,21)$ and express it in the form $6 \alpha+14 \beta+21 \gamma$ for some $\alpha, \beta, \gamma \in \mathbb{Z}$.

We use Euclid's algorithm, first with non-matrix version and then matrix version.

Non-matrix version. Note that $\operatorname{gcd}(6,14,21)=\operatorname{gcd}(\operatorname{gcd}(6,14), 21)$. We first apply Euclid's algorithm with $(6,14)$:

$$
\begin{aligned}
&(1): 14 \\
&=2 \cdot \mathbf{6}+\mathbf{2} \\
&(2): \mathbf{6}
\end{aligned}=3 \cdot \mathbf{2}+\mathbf{0} \quad \operatorname{gcd}(6,14)=\mathbf{2} \xlongequal{(1)} 14-2 \cdot \mathbf{6} .
$$

We next apply Euclid's algorithm with $(\operatorname{gcd}(6,14), 21)=(2,21)$:

$$
\begin{array}{rlrl}
(3): 21 & =10 \cdot \mathbf{2}+\mathbf{1} & \operatorname{gcd}(2,21)=\mathbf{1} & \stackrel{(3)}{=} 21-10 \cdot \mathbf{2} \\
(4): & \mathbf{2} & =2 \cdot \mathbf{1}+\mathbf{0} & \\
=21-10 \cdot(14-2 \cdot \mathbf{6})=20 \cdot 6-10 \cdot 14+1 \cdot 21
\end{array}
$$

Thus, $\operatorname{gcd}(6,14,21)=1=20 \cdot 6+(-10) \cdot 14+1 \cdot 21$
Matrix version:

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 14 \\
0 & 0 & 1 & 21
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & 6 \\
-2 & 1 & 0 & 2 \\
-3 & 0 & 1 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
7 & -3 & 0 & 0 \\
-2 & 1 & 0 & 2 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

The second matrix is obtained from the first by subtracting the first row (which has the smallest last entry 6) times 2 from the second row (largest multiple of 6 dividing the last entry in the second row 14) and times 3 from the third row. The third matrix is obtained from the second by subtracting the second row (which has the smallest last entry 2) times 3 from the first row (largest multiple of 2 dividing the last entry in the first row 6) and times 1 from the third row. Since the last entry in the third row of the third matrix divides all other entries, this entries is $\operatorname{gcd}(6,14,21)$ and this row gives

$$
\operatorname{gcd}(6,14,21)=1=(-1) \cdot 6+(-1) \cdot 14+1 \cdot 21
$$

The computation above is a shorthand for

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
6 \\
14 \\
21
\end{array}\right)=\left(\begin{array}{c}
6 \\
14 \\
21
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
6 \\
14 \\
21
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
3
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc}
7 & -3 & 0 \\
-2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
6 \\
14 \\
21
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)
\end{aligned}
$$

1.16; 3pts Suppose that $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$. Show that $\operatorname{gcd}(a b, c)=1$.

By Corollary 1.1.3 (the main theorem of the chapter, stated as Theorem 1 in every lecture), there exist $\alpha, \beta, \gamma, \gamma^{\prime} \in \mathbb{Z}$ such that

$$
\alpha a+\gamma c=\operatorname{gcd}(a, c)=1 \quad \text { and } \quad \beta b+\gamma^{\prime} c=\operatorname{gcd}(b, c)=1 .
$$

Multiplying the two equations together, we obtain

$$
\alpha \beta(a b)+\left(\alpha \gamma^{\prime} a+\beta \gamma b+\gamma \gamma^{\prime} c\right) c=1 .
$$

Since $\operatorname{gcd}(a b, c)$ divides $a b$ and c, it divides each term on LHS above and thus their sum 1. Since $\operatorname{gcd}(a b, c) \in \mathbb{Z}^{+}$divides 1 , it equals 1 .
1.2 2; 3pts Show that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \in \mathbb{N}$.

We use induction. Since

$$
\sum_{i=1}^{1} i^{2}=1=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

the claim holds in the base $n=1$ case. If the claim holds for some $n \in \mathbb{N}$, then

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2}=\sum_{i=1}^{n} i^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

i.e. the claim holds for $n+1$. This completes the proof.
1.2 3; 3pts Each term in the Fibonacci sequence $1,1,2,3,5, \ldots$ is the sum of the two preceding terms. Show that every two successive terms in the sequence are relatively prime.

The Fibonacci sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by

$$
a_{0}=1, \quad a_{1}=1, \quad a_{n+2}=a_{n}+a_{n+1} \quad \forall n \geq 0 .
$$

We need to show that $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=1$ for all $n \geq 0$. We use induction. Since

$$
\operatorname{gcd}\left(a_{0}, a_{0+1}\right)=\operatorname{gcd}(1,1)=1,
$$

the claim holds in the base $n=0$ case. If the claim holds for some $n \geq 0$, then

$$
\operatorname{gcd}\left(a_{n+1}, a_{(n+1)+1}\right)=\operatorname{gcd}\left(a_{n+1}, a_{n}+a_{n+1}\right)=\operatorname{gcd}\left(a_{n+1}, a_{n}\right)=1 ;
$$

the middle equality above holds by Lemma 1.1.4. Thus, the claim holds for $n+1$. This completes the proof.
1.3 2; 3pts Show that it is enough to strike out all multiples of primes not exceeding \sqrt{n} when using the sieve method to find all primes not exceeding n.

Suppose $2 \leq m \leq n$ and no prime $p \leq \sqrt{n}$ divides m; we show that m is prime and thus should not be struck out. By Theorem 1.3.3 (Unique Factorization for \mathbb{Z}^{+}), $m=p_{1} p_{2} \ldots p_{r}$ for some $r \geq 1$ and primes $p_{1}, p_{2}, \ldots, p_{r}$. Since no prime $p \leq \sqrt{n}$ divides $m, p_{i}>\sqrt{n}$ for all $i=1,2, \ldots, r$. If $r \geq 2$, then

$$
m \geq p_{1} p_{2}>\sqrt{n} \cdot \sqrt{n}=n
$$

contrary to the assumption that $m \leq n$. Thus, $m=p_{1}$ is prime.
1.3 7; 3pts Suppose $2^{n}+1$ is prime for some $n \in \mathbb{Z}^{+}$. Show that $n=2^{k}$ for some $k \in \mathbb{Z}^{\geq 0}$.

Suppose not. By Theorem 1.3.3 (Unique Factorization for \mathbb{Z}^{+}), a (prime) odd integer $p \geq 3$ then divides n, i.e. $n=k p$ for some $k \in \mathbb{Z}^{+}$with $k<n$. Since p is odd,

$$
2^{n}+1=\left(2^{k}\right)^{p}+1^{p}=\left(2^{k}+1\right)\left(\left(2^{k}\right)^{p-1} 1^{0}-\left(2^{k}\right)^{p-2} 1^{1}-+\ldots-\left(2^{k}\right)^{1} 1^{p-2}+\left(2^{k}\right)^{0} 1^{p-1}\right) .
$$

Thus, the integer $2^{k}+1$ divides $2^{n}+1$. Since $1<2^{k}+1<2^{n}+1$, this contradicts to $2^{n}+1$ being prime. Thus, $n=2^{k}$ for some $k \in \mathbb{Z}^{\geq 0}$.

